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Today’s plan

• Model selection problem

• Generalisation error bounds

• Error bound analysis

• VC–dimension

• Bias/variance trade-off

• Support Vector Machines

• Kernel Principal Components Analysis

Bibliography: These lecture notes are available at:

http://www.cs.ucl.ac.uk/staff/J.Shawe-Taylor/courses/index-gi01.html
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Supervised learning model (I) – review

P(x, y): fixed but unknown probability density (defines the learning en-
vironment)

Expected error:

E(f) := E [V (y, f(x))] =
∫

V (y, f(x))dP(x, y)

where V : IR × IR → IR is a loss function

• Our goal is to minimize E

• Optimal solution: f∗ := argminfE(f)

• We cannot compute f∗ because P is unknown
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Supervised learning model (II)

We have encountered different loss functions

• square loss: V (y, z) = (y − z)2

• misclassification loss (0-1 loss): V (y, z) = 1 if y �= z and zero other-
wise (here y, z ∈ {c1, . . . , cK})

• logistic regression: V (y, z) = y log(1+ e−z)+ (1− y) log(1+ ez)

We’ll see further loss functions later in the course when we speak about
support vector machines
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Supervised learning model (III)

P(x, y) is unknown ⇒ cannot compute f∗

We are only given an i.i.d. sample from P :

S = {(x1, y1), . . . , (xm, ym)}

We approximate (replace) the expected error E(f) with the empirical error

Eemp(f) :=
1

m

m∑
i=1

V (yi, f(xi))
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Supervised learning model (IV)

If we minimize Eemp over a sufficiently large set of functions, we can always
find a function f with zero empirical error!
But E(f) may be far away from zero! (overfitting)

We introduce a restrictive class of functions H (hypothesis space) and
minimize Eemp within H. That is, our learning algorithm is:

fS = argminf∈HEemp(f)

Linear regression: H = {f(x) = w�x : w ∈ IRd}
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Regularization

We minimize the penalized (regularized) empirical error

Eλ(f) :=
1

m

m∑
i=1

V (yi, f(xi)) + λR(f), λ > 0

Ridge regression: V (y, z) = (y − z)2, f(x) = w�x, R(f) = ‖w‖2

This is similar to empirical error minimization in the hypothesis space HA =

{f(x) = w�x : ‖w‖ ≤ A} for some A > 0

(this connection can be made formal: given A > 0 there is λ(A) > 0 such that ridge

regression gives the same solution as empirical error minimization in HA and vice versa,

given λ there is A(λ) such that...)
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Model complexity and overfitting

• If we pick the best model (learning algorithm) by minimizing the training
error we overfit the data

• We wish to estimate the expected (test) error
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Model selection and assessment

• Model selection: aims at estimating the performance of different mod-
els (learning algorithms) in order to choose the (approximately) best
one, for example:

– best hypothesis space among many possible ones

– best λ in ridge regression

– best k in k–NN etc.

• Model assessment: having chosen a final model, we wish to estimate
its expected error (aka generalization or prediction error) on new data
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Model selection and assessment (cont.)

If we have a large set of examples, a natural approach is to split the data
in three parts: training, validation and test set

1. Use the training set to fit the models (train different learning algorithms
on it)

2. Use the validation set for model selection. So the best model is the
one which minimizes the validation error

3. Use the test set for assessment of the expected error of the best model
above

Typically, we keep most of the data for training (say 1/2 for training, 1/4 for
validation and testing)
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Test set bound

• What does it mean if we observe an error rate of ĉS on a sample S of
size m?

• Can we say something about the true error rate cD?

• If we assume sample is drawn independently and identically (i.i.d.)
from the distribution that generates the test data, we have the following
result:

Proposition 1 Fix δ > 0. With probability at least 1 − δ over the
generation of the sample S,

cD ≤ ĉS +

√
ln(1/δ)

2m
.
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Generalization error bound

• Often, we have only few examples. Can we choose a model and as-
sess its expected error directly (without splitting the training data)?

• Learning theory studies conditions which ensure the predictivity of
a learning algorithm:

– The expected error is close to the empirical error

– The expected error decreases when the number of samples in-
creases

• We discuss a central approach in the theory which allows us to relate
the training error to the generalization error
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Theories of learning

• Basic approach of SLT is to view learning from a statistical viewpoint.

• Aim of any theory is to model real/ artificial phenomena so that we can
better understand/ predict/ exploit them.

• SLT is just one approach to understanding/ predicting/ exploiting learn-
ing systems, others include Bayesian inference, inductive inference,
statistical physics, traditional statistical analysis.
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Theories of learning cont.

• Each theory makes assumptions about the phenomenon of learning
and based on these derives predictions of behaviour as well as algo-
rithms that aim at optimising the predictions.

• Each theory has strengths and weaknesses – the better it captures the
details of real world experience, the better the theory and the better the
chances of it making accurate predictions and driving good algorithms.
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General statistical considerations

• Statistical models (not including Bayesian) begin with an assumption
that the data is generated by an underlying distribution P typically not
given explicitly to the learner.

• If we are trying to classify cancerous tissue from healthy tissue, there
are two distributions, one for cancerous cells and one for healthy ones.
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General statistical considerations cont.

• Usually the distribution subsumes the processes of the natural/artificial
world that we are studying.

• Rather than accessing the distribution directly, statistical learning typ-
ically assumes that we are given a ‘training sample’ or ‘training set’

S = {(x1, y1), . . . , (xm, ym)}
generated identically and independently (i.i.d.) according to the distri-
bution P .
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Generalisation of a learner

• Assume that we have a learning algorithm A that chooses a function
AF(S) from a function space F in response to the training set S.

• From a statistical point of view the quantity of interest is the random
variable:

ε(S, A, F) = E(x,y) [�(AF(S), x, y)] ,

where � is a ‘loss’ function that measures the discrepancy between
AF(S)(x) and y.
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Generalisation of a learner

• For example, in the case of classification � is 1 if the two disagree
and 0 otherwise, while for regression it could be the square of the
difference between AF(S)(x) and y.

• We refer to the random variable ε(S, A, F) as the generalisation of the
learner.
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Example of Generalisation I

• We consider the Breast Cancer dataset from the UCI repository.

• Use the simple Parzen window classifier described by Bernhard Schölkopf:
weight vector is

w+ − w−

where w+ is the average of the positive training examples and w− is
average of negative training examples. Threshold is set so hyperplane
bisects the line joining these two points.
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Example of Generalisation II

• Given a size m of the training set, by repeatedly drawing random train-
ing sets S we estimate the distribution of

ε(S, A, F) = E(x,y) [�(AF(S), x, y)] ,

by using the test set error as a proxy for the true generalisation.

• We plot the histogram and the average of the distribution for various
sizes of training set – initially the whole dataset gives a single value if
we use training and test as the all the examples, but then we plot for
training set sizes:

342,273,205,137,68,34,27,20,14,7.
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Example of Generalisation III

• Since the expected classifier is in all cases the same:

E [AF(S)] = ES

[
w+

S − w−
S

]
= ES

[
w+

S

]
− ES

[
w−

S

]
= Ey=+1 [x] − Ey=−1 [x] ,

we do not expect large differences in the average of the distribution,
though the non-linearity of the loss function means they won’t be the
same exactly.
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Error distribution: full dataset
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Error distribution: dataset size: 342
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Error distribution: dataset size: 273
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68
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Error distribution: dataset size: 34
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Error distribution: dataset size: 27
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Error distribution: dataset size: 20
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Bayes risk and consistency

• Traditional statistics has concentrated on analysing

ES [ε(S, A, F)] .

• For example consistency of a classification algorithm A and function
class F means

lim
m→∞ ES [ε(S, A, F)] = fBayes,

where

fBayes(x) =

{
1 ifP(x,1) > P(x,0),
0 otherwise.

is the function with the lowest possible risk, often referred to as the
Bayes risk.
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Expected versus confident bounds

• For a finite sample the generalisation ε(S, A, F) has a distribution de-
pending on the algorithm, function class and sample size m.

• Traditional statistics as indicated above has concentrated on the mean
of this distribution – but this quantity can be misleading, eg for low fold
cross-validation.
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Expected versus confident bounds cont.

• Statistical learning theory has preferred to analyse the tail of the dis-
tribution, finding a bound which holds with high probability.

• This looks like a statistical test – significant at a 1% confidence means
that the chances of the conclusion not being true are less than 1%
over random samples of that size.

• This is also the source of the acronym PAC: probably approximately
correct, the ‘confidence’ parameter δ is the probability that we have
been misled by the training set.
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Probability of being misled in classification

• Aim to cover a number of key techniques of SLT. Basic approach is
usually to bound the probability of being misled and set this equal to δ.

• What is the chance of being misled by a single bad function f , i.e.
training error errS(f) = 0, while true error is bad err(f) > ε?

PS {errS(f) = 0, err(f) > ε} = (1 − err(f))m

≤ (1 − ε)m

≤ exp(−εm).

so that choosing ε = ln(1/t)/m ensures probability less than t.
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Finite or Countable function classes
If we now consider a function class

F = {f1, f2, . . . , fn, . . .}
and make the probability of being misled by fn less than qnδ with

∞∑
n=1

qn ≤ 1,

then the probability of being misled by one of the functions is bounded by

PS

{
∃fn: errS(fn) = 0, err(fn) >

1

m
ln

(
1

qnδ

)}
≤ δ.

This uses the so-called union bound – the probability of the union of a set
of events is at most the sum of the individual probabilities.
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Finite or Countable function classes result

• The bound translates into a theorem: given F and q, with probability
at least 1 − δ over random m samples the generalisation error of a
function fn ∈ F with zero training error is bounded by

err(fn) ≤ 1

m

(
ln

(
1

qn

)
+ ln

(
1

δ

))
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Some comments on the result

• We can think of the term ln
(

1
qn

)
as the complexity / description length

of the function fn.

• Note that we must put a prior weight on the functions. If the func-
tions are drawn at random according to a distribution pn, the expected
generalisation will be minimal if we choose our prior q = p.

• This is the starting point of the PAC-Bayes analysis.
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Hoeffding inequality

Let ξ be a random variable with mean μ = E[ξ]

and taking values in the interval [a, b]

Let ξ1, . . . , ξm be an i.i.d. sample of ξ

and define the empirical mean ξ̄(m) = 1
m

∑m
i=1 ξi

Then for every ε > 0 we have that

Prob
(
ξ̄(m) − μ > ε

)
≤ exp

(
− 2mε2

(b − a)2

)

and

Prob
(
μ − ξ̄(m) > ε

)
≤ exp

(
− 2mε2

(b − a)2

)

Note: for a proof, see §8.2 Devroye, Györfi and Lugosi
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Simplest case: H = {f}

We shall apply Hoeffding’s inequality to the random variable ξ = V (y, f(x)).
For simplicity, assume that V (y, f(x)) ∈ [0,1] (one can always reduce to
this case anyway)

Hoeffding’s inequality gives

Prob (E(f) − Eemp(f) > ε) ≤ exp(−2mε2)

This implies that with probability (confidence) at least 1 − δ

(think of δ as a small positive number)

E(f) ≤ Eemp(f) +

√√√√log 1
δ

2m

We call D(f) := E(f) − Eemp(f) the deviation error of f

41



Finite hypothesis space

Now suppose that H = {f(1), . . . , f(N)}

For each fixed function in H, Hoeffding’s inequality holds true

However, now we are not interested in the deviation error of a fixed function
but in the deviation error of the minimizer of Eemp

fS ≡ f(n∗) := argminN
n=1

m∑
i=1

V (yi, f
(n)(xi))

What can we say about the probability of the following event?

{D(f(n∗)) > ε}
Since f(n∗) can be any function in H we need a uniform bound over H!
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Union bound

Recall the following fundamental property of probability: for every set A1, A2, . . . , An

of events, we have that

P(A1 ∪ A2 ∪ . . . ∪ AN) ≤
N∑

n=1

P(An)

So, if we let An = {|E(f(n)) − Eemp(f(n))| ≥ ε} we conclude that

A1 ∪ A2 ∪ . . . ∪ AN =
{

N
max
n=1

|E(f(n)) − Eemp(f
(n))| ≥ ε

}
Thus, we have

Prob
{

N
max
n=1

{
E(f(n)) − Eemp(f

(n))
}
≥ ε

}
≤ N exp(−2mε2)
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Uniform bound

Prob
{

N
max
n=1

{
E(f(n)) − Eemp(f

(n))
}
≥ ε

}
≤ N exp(−2mε2)

This is also called a uniform bound over H (it holds for every f ∈ H). The
bound implies that

Prob {E(fS) − Eemp(fS) ≥ ε} ≤ N exp(−2mε2)

which is equivalent to say that with confidence at least 1 − δ

E(fS) ≤ Eemp(fS) +

√√√√logN + log 1
δ

2m

As N increases more examples are required in order to avoid overfitting!
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Sample complexity bound

Prob {E(fS) − Eemp(fS) ≥ ε} ≤ |H| exp(−2mε2)

How many examples are needed to avoid overfitting?

Sample complexity: minimum number m of examples that we need in
order to ensure that the deviation error of fS will be less than ε with proba-
bility at least 1 − δ

The sample complexity depends on H, ε and δ. In our case:

m(ε, H, δ) =
log |H| + log 1

δ

2ε2
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Structural risk minimization

This is a model selection approach to choosing a hypothesis space within
a nested family of spaces: H1 ⊂ H2 ⊂ · · · ⊂ HQ

(For simplicity assume each set Hq is finite)

Let fS,q be the minimizer of Eemp in Hq. For each fixed q we have with
confidence at least 1 − δ

E(fS,q) ≤ Eemp(fS,q) +

√√√√log |Hq| + log 1
δ

2m

The structural risk minimization chooses the hypothesis space Hq∗
which minimizes the r.h.s. of this inequality
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Structural risk minimization (cont.)

For each fixed q we have

E(fS,q) ≤ Eemp(fS,q) +

√√√√log |Hq| + log 1
δ

2m

The structural risk minimization chooses the hypothesis space Hq∗
which minimizes the r.h.s. of this inequality

The expected error of function fS,q∗ (model) is bounded as

E(fS,q∗) ≤ Eemp(fS,q∗) +

√√√√log |Hq∗| + logQ + log 1
δ

2m
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What if uncountably many functions?

• We need a way to convert from an infinite set to a finite one.

• Key idea is to replace measuring performance on a random test point
with measuring on a second ‘ghost’ sample

• In this way the analysis is reduced to a finite set of examples and
hence a finite set of classification functions.

• This step is often referred to as the ‘double sample trick’
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Double sample trick
The result has the following form:

Pm{X ∈ Xm: ∃h ∈ H : errX(h) = 0, err(h) ≥ ε}
≤ 2P2m{XY ∈ X2m : ∃h ∈ H :

errX(h) = 0, errY(h) ≥ ε/2}
If we think of the first probability as being over XY the result concerns

three events:

A(h) := {errX(h) = 0}
B(h) := {err(h) ≥ ε}
C(h) := {errY(h) ≥ ε/2}
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Double sample trick II

It is clear that

P2m(C(h)|A(h)&B(h)) = P2m(C(h)|B(h))

> 0.5

for reasonable m by a binomial tail bound.
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Double sample trick II
Hence, we have

P2m{XY ∈ X2m : ∃h ∈ H : A(h)&C(h)} ≥
P2m{XY ∈ X2m : ∃h ∈ H : A(h)&B(h)&C(h)} =

P2m{XY ∈ X2m : ∃h ∈ H : A(h)&B(h)}
P(C(h)|A(h)&B(h))

It follows that

Pm{X ∈ Xm : ∃h ∈ H : A(h)&B(h)} ≤
2P2m{XY ∈ X2m : ∃h ∈ H : A(h)&C(h)}

the required result.
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How many functions on a finite sample?

• Let H be a set of {−1,1} valued functions.

• The growth function BH(m) is the maximum cardinality of the set of
functions H when restricted to m points – note that this cannot be
larger than 2m, i.e. log2(BH(m)) ≤ m

• For the statistics to work we want the number of functions to be much
smaller than this.
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Examining the growth function

Consider a plot of the ratio of the growth function BH(m) to 2m for linear
functions in a 20 dimensional space:
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Vapnik Chervonenkis dimension

• The Vapnik-Chervonenkis dimension is the point at which the graph
stops being linear:

VCdim(H) = max{m : for some x1, . . . ,xm,

for all b ∈ {−1,1}m,

∃hb ∈ H, hb(xi) = bi}

• For linear functions L in R
n, VCdim(L) = n + 1.
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Sauer’s Lemma

• Sauer’s Lemma:

BH(m) ≤
d∑

i=0

(m
i

)
≤
(

em

d

)d
,

where m ≥ d = VCdim(H).
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Basic Theorem of SLT
We want to bound the probability that the training examples can mislead
us about one of the functions we are considering using:

Pm{X ∈ Xm: ∃h ∈ H : errX(h) = 0, err(h) ≥ ε}
→ double sample trick →
≤ 2P2m{XY ∈ X2m : ∃h ∈ H :

errX(h) = 0, errY(h) ≥ ε/2}
→ union bound →
≤ 2BH(2m)P2m{XY ∈ X2m :

errX(h) = 0, errY(h) ≥ ε/2}
Final ingredient is known as symmetrisation.
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Symmetrisation

• Consider generating a 2m sample S. Since the points are generated
independently the probability of generating the same set of points in a
different order is the same.

• Consider a fixed set Σ of permutations and each time we generate a
sample we randomly permute it with a uniformly chosen element of Σ
– gives probability distribution P 2m

Σ
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Symmetrisation cont.

• Any event has equal probability under P 2m and P2m
Σ , so that

P2m(A) = P2m
Σ (A) = E

2m [Pσ∼Σ(A)]

• Consider particular choice of Σ the permutations that swap/leave un-
changed corresponding elements of the two samples X and Y – 2m

such permutations.
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Completion of the proof

P2m{XY ∈ X2m: errX(h) = 0, errY(h) ≥ ε/2}
≤ E

2m [Pσ∼Σ{errX(h) = 0, errY(h) ≥ ε/2 for σ(XY)}]
≤ E

2m
[
2−εm/2

]
= 2−εm/2

• Setting the right hand side equal to δ/(2BH(2m)) and inverting gives
the bound on ε.
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Final result
• Assembling the ingredients gives the result: with probability at least

1−δ of random m samples the generalisation error of a function h ∈ H

chosen from a class H with VC dimension d with zero training error is
bounded by

ε = ε(m, H, δ) =
2

m

(
d log

2em

d
+ log

2

δ

)

• Note that we can think of d as the complexity / capacity of the function
class H.
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Lower bounds

• VCdim Characterises Learnability in PAC setting: there exist distribu-
tions such that with probability at least δ over m random examples, the
error of h is at least

max
(

d − 1

32m
,
1

m
log

(
1

δ

))
.
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Non-zero training error

• Very similar results can be obtained for non-zero training error.

• The main difference is the introduction of a square root to give a bound
of the form

ε(m, H, k, δ) = k + O

⎛
⎝
√

d

m
log

2em

d
+

√
1

m
log

2

δ

⎞
⎠

for k training errors, which is significantly worse than in the zero train-
ing error case.

• PAC-Bayes bounds now interpolate between these two.
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Bias/variance decomposition

E(fS) − E(f∗) = E(fS) − E(fH)︸ ︷︷ ︸
variance

+E(fH) − E(f∗)︸ ︷︷ ︸
bias

where fH = argminf∈HE(f). Using the VC–bound and the fact that
Eemp(fS) ≤ Eemp(fH) we obtain that

E(fS) − E(fH) = E(fS) − Eemp(fS) + Eemp(fS) − E(fH)

≤ E(fS) − Eemp(fS) + Eemp(fH) − E(fH)

≤ 2 × 2

√√√√
2

h(log 2m
h + 1) + log 2

δ

m
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Sample error and approximation error

E(fS) − E(f∗) = E(fS) − E(fH)︸ ︷︷ ︸
variance

+E(fH) − E(f∗)︸ ︷︷ ︸
bias

• the variance (or sample error) increases with the complexity of H and
decreases with the sample size m

• the bias is independent of the sample and decreases with the com-
plexity of H. It measures the approximation error of H to f∗. For
example, for the square loss we have:

E(f) = Ex,y[(y − f(x))2] = E(f∗) + Ex[(f(x) − f∗(x))2]
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Bias/variance decomposition in statistics

In statistics another way to study the behavior of a learning algorithm is via
the average generalization error (over the sampling of the training set S)

We define f̄(x) = ES[fS(x)]. For the square loss we have that

ES [E(f)] = E(f∗) + ES[‖f̄ − fS‖2]︸ ︷︷ ︸
variance

+ ‖f∗ − f̄‖2︸ ︷︷ ︸
bias

where we have used the notation

‖f − g‖2 := Ex

[
(f(x) − g(x))2

]
When f̄ = fH the bias is the same as the previous notion of bias (approx-
imation error)
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Criticisms of PAC Theory

• The theory is certainly valid and the lower bounds indicate that it is not
too far out – so can’t criticise as stands

• Criticism is that it doesn’t accord with experience of those applying
learning.

• Mismatch between theory and practice.

• For example

66



Support Vector Machines (SVM)

One example of PAC failure is in analysing SVMs: linear functions in very
high dimensional feature spaces.

1. kernel trick means we can work in an infinite dimensional feature space
(⇒ infinite VC dimension) so that PAC result does not apply:

2. and YET very impressive performance
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Support Vector Machines cont.

1. SVM seeks linear function in a feature space defined implicitly via a
kernel κ:

κ(x, z) = 〈φ(x), φ(z)〉

2. For example the 1-norm SVM seeks w to solve

minw,b,γ,ξ ‖w‖2 + C
∑m

i=1 ξi

subject to yi (〈w, φ (xi)〉 + b) ≥ 1 − ξi, ξi ≥ 0,
i = 1, . . . , m.
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Margin in SVMs

• Intuition behind SVMs is that maximising the margin makes it possible
to obtain good generalisation despite the high VC dimension

• The lower bound implies that we must be taking advantage of a benign
distribution, since we know that in the worst case generalisation will be
bad.
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Margin in SVMs cont

• Hence, we require a theory that can give bounds that are sensitive to
serendipitous distributions – in particular we conjecture that the margin
is an indication of such ‘luckiness’.

• The proof approach will rely on using real-valued function classes. The
margin gives an indication of the accuracy with which we need to ap-
proximate the functions when applying the statistics.
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Covering Numbers

F a class of real functions defined on X and ‖ · ‖d a norm on F, then

N(γ, F, ‖ · ‖d)

is the smallest size set Uγ such that
for any f ∈ F there is a u ∈ Uγ such that ‖f − u‖d < γ.
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Covering Numbers cont.

For generalization bounds we need the γ-growth function,

Nm(γ, F) := sup
X∈Xm

N(γ, F, �X∞).

where �X∞ gives the distance between two functions as the maximum dif-
ference between their outputs on the sample.
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Second statistical result

• We want to bound the probability that the training examples can mis-
lead us about one of the functions with margin bigger than fixed γ:

Pm{X ∈ Xm: ∃f ∈ F : errX(f) = 0, mX(f) ≥ γ, errP (f) ≥ ε}
≤ 2P2m{XY ∈ X2m : ∃f ∈ F such that

errX(f) = 0, mX(f) ≥ γ, errY(f) ≥ ε/2}
≤ 2N2m(γ/2, F)P2m{XY ∈ X2m : for fixed f ′

mX(f ′) > γ/2, mY(εm/2)(f
′) < γ/2}

≤ 2N2m(γ/2, F)2−εm/2 ≤ δ
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Second statistical result cont.

• inverting gives
ε = ε(m, F, δ, γ) =

2

m

(
log2 N2m(γ/2, F) + log2

2

δ

)
i.e. with probability 1−δ over m random examples a margin γ hypoth-
esis has error less than ε. Must apply for finite set of γ (‘do SRM over
γ’).
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Bounding the covering numbers

Have the following correspondences with the standard VC case (easy slo-
gans):

Growth function – γ-growth function

Vapnik Chervonenkis dim – Fat shattering dim

Sauer’s Lemma – Alon et al.
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Covering numbers for linear functions

• For the case of linear functions there is a more direct route to bounding
the covering numbers.

• We convert the γ/2 approximation on the sample problem into a clas-
sification problem, which is solvable with a margin of γ/2.

• It follows that if we use the perceptron algorithm to find a classifier, we
will find a function satisfying the γ/2 approximation with just 8R2/γ2

updates.
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Covering numbers for linear functions

• This gives a sparse dual representation of the function. The covering is
chosen as the set of functions with small sparse dual representations.

• Gives a bound on the size of the covering numbers of the form

log2 N2m(γ/2, F) ≤ k log2
e(2m + k − 1)

k

where k =
8R2

γ2
.
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Generalization of SVMs

For distribution with support in ball of radius R, (eg Gaussian Kernels R =
1) and margin γ, have bound:

ε(m, L, δ, γ) =
2

m

(
k log2

e(2m + k − 1)

k
+ log2

m

δ

)

where k = 8R2

γ2 .
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Controlling generalisation

• Now consider using an SVM on the same data and compare the dis-
tribution of generalisations

• SVM distribution in red
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68
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Error distribution: dataset size: 20
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Using a kernel
• Can consider much higher dimensional spaces using the kernel trick

• Can even work in infinite dimensional spaces, eg using the Gaussian
kernel:

κ(x, z) = exp

(
−‖x − z‖2

2σ2

)
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Error distribution: dataset size: 342
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Error distribution: dataset size: 273
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Subspace methods
• Principal components analysis: choose directions to maximise vari-

ance in the training data

• Canonical correlation analysis: choose directions to maximise corre-
lations between two different views of the same objects

• Gram-Schmidt: greedily choose directions according to largest resid-
ual norms

• Partial least squares: greedily choose directions with maximal covari-
ance with the target (will not cover this)

In all cases we need kernel versions in order to apply these methods in
high-dimensional kernel defined feature spaces
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Principal Components Analysis
• PCA is a subspace method – that is it involves projecting the data into

a lower dimensional space.

• Subspace is chosen to ensure maximal variance of the projections:

w = argmaxw:‖w‖=1w
′X′Xw

• This is equivalent to maximising the Raleigh quotient:

w′X′Xw

w′w

90



Principal Components Analysis
• We can optimise using Lagrange multipliers in order to remove the

contraints:

L(w, λ) = w′X′Xw − λw′w

taking derivatives wrt w and setting equal to 0 gives:

X′Xw = λw

implying w is an eigenvector of X′X.

• Note that

λ = w′X′Xw =
m∑

i=1

〈w,xi〉2
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Principal Components Analysis
• So principal components analysis performs an eigenvalue decompo-

sition of X′X and projects into the space spanned by the first k eigen-
vectors

• Captures a total of

k∑
i=1

λi

of the overall variance:
m∑

i=1

‖xi‖2 =
n∑

i=1

λi = tr(K)
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Kernel PCA
• We would like to find a dual representation of the principal eigenvec-

tors and hence of the projection function.

• Suppose that w, λ �= 0 is an eigenvector/eigenvalue pair for X′X,
then Xw, λ is for XX′:

(XX′)Xw = X(X′X)w = λXw

• and vice versa α, λ → X′α, λ

(X′X)X′α = X′(XX′)α = λX′α

• Note that we get back to where we started if we do it twice.
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Kernel PCA
• Hence, 1-1 correspondence between eigenvectors corresponding to

non-zero eigenvalues, but note that if ‖α‖ = 1

‖X′α‖2 = α′XX′α = α′Kα = λ

so if αi, λi, i = 1, . . . , k are first k eigenvectors/values of K

1√
λi

αi

are dual representations of first k eigenvectors w1, . . . ,wk of X′X
with same eigenvalues.

• Computing projections:

〈wi, φ(x)〉 =
1√
λi

〈X′αi, φ(x)〉 =
1√
λi

m∑
j=1

αi
jκ(xi,x)
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Sample question
a) Define what is meant by a valid kernel function and give the positive

semi-definite condition that ensures a kernel is valid?

b) Show that

κ(x, z) = 〈x, z〉2

is a valid kernel for x, z ∈ R
d.

c) Express the distance of the image of a point x from the centre of mass
of a set of examples

S = {x1, . . . ,xm}
in a kernel defined feature space.
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Sample question (cont)
d) Using the result of part (c) give the algorithm in Matlab code or pseu-

docode that finds the indices of the test points that lie outside the
smallest sphere containing all of the training data centred at the centre
of mass. You may assume that the matrix K(1 : m + n,1 : m + n)
has (i, j)th entry κ(xi,xj), i, j = 1, . . . , m + n, where x1, . . . ,xm

are the training set and xm+1, . . . ,xm+n are the test points.

e) Show that if we remove one point xj from S, the centre of mass moves
away from φ(xj) on the line from φ(xj) through the centre of mass by

1
m−1 times the distance between them.

f) Hence or otherwise show that increasing the radius of the sphere by
m

m−2 in the algorithm ensures that the leave one out error (an error
occurs if the test point is not inside the sphere) on the training set is at
most 1.
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