
GI01/M055: Supervised Learning

3. Optimization and Learning Algorithms

October 19, 2009

John Shawe-Taylor

1

Today’s plan

• Gradient descent

• Newton’s method

• Empirical error minimization algorithms

• Perceptron algorithm

• Nonlinear hypothesis spaces

• Constrained optimisation

Bibliography: These lecture notes are available at:

http://www.cs.ucl.ac.uk/staff/J.Shawe-Taylor/courses/index-gi01.html

Lectures are in part based on Chapter 9 of Boyd and Vandenberghe

2

Empirical error minimization

E(w) ≡ Eemp(w) =
m∑

i=1

V (yi,w · xi)

How to minimize the empirical error?

• Least squares: V (y, z) = (y − z)2

• Logistic regression: V (y, z) = −
{
y log p(z) + (1 − y) log

(
1 − p(z)

)}
,

with

p(z) =
1

1 + e−z

Note: we have used the equivalent notation w · x ≡ w�x

3

Empirical error minimization

E(w) =
m∑

i=1

V (yi, w · xi)

We have seen that the optimality equations, ∇E(w) = 0, are

• for Least Squares:
∑m

i=1 xi

(
yi − xi · w

)
= 0 (linear in w)

• for Logistic Regression:
∑m

i=1 xi

(
yi − p(xi · w)

)
= 0

4

Iterative learning algorithms (I)

Suppose we want to minimize some function E(w) (think of a
general function, not necessarily a sum of losses)

Iterative algorithm

• Choose a starting value w(0) for w

• Compute a sequence of points {w(t)}t≥0 using the update
rule

w(t+1) = w(t) + η(t)Δ(w(t)), η(t) > 0, t ≥ 0

Typically a stopping criterion on w(t) is checked after each iter-
ation

5

Iterative learning algorithms (II)

w(t+1) = w(t) + η(t)Δ(w(t)), t ≥ 0

Let E∗ := minw E(w)

We hope that E(w(t)) → E∗ as t → ∞

We will present some natural algorithms which are used in prac-

tice and discuss their application to Least Squares, Logistic Re-

gression and the perceptron algorithm

Note: We will comment on but not prove the convergence properties of the

algorithms. For more information see Chapter 9 of Boyd and Vanderberghe

6

Iterative learning algorithms (III)

w(t+1) = w(t) + η(t)Δ(w(t)), t ≥ 0

• The vector Δ(w(t)) is called the search direction (for sim-

plicity, we let it depend on the previous update w(t) only)

• The positive parameter η is called the step length

What are candidate choices for the search direction and step

length?

7

Iterative learning algorithms (IV)

Suppose you have made your choice for Δ

A natural choice for η is the minimizer of E(w + ηΔ(w))

η := argmin
{
E(w + ρΔ(w)) : ρ > 0

}

This procedure is called line search (or, sometimes, exact line

search to distinguish it from approximate versions of it)

8

Iterative learning algorithms (V)

To choose the direction Δ(w) we require that

E(w(t+1)) < E(w(t)) (∗)
unless w(t) is optimal

If E is a differentiable convex function (this is true in most cases

we’ll consider), we know that, for all w,v ∈ IRd,

E(w + v) ≥ E(w) + ∇E(w) · v
Hence, to satisfy (∗) we must require that

Δ(w) · ∇E(w) < 0

9

Gradient descent

Hence, a natural choice is to take Δ to be the negative gradient

of E

w(t+1) = w(t) − η(t)∇E(w(t))

This choice reflects our intuition that if we take a little step
down the gradient, E will decrease

• If η(t) is chosen via line search and E is strongly convex, algorithm con-
verges: E(w(t)) → E∗ as t → ∞

• If the standard stopping criterion ‖∇E(w(t))‖ ≤ ε is used, the algorithm
terminates in a finite number of updates (which depends in particular on
w(0) and ε)

10

Newton’s method (I)

Let us consider the problem of solving the eq. G(w) = 0, w ∈ IR

• Choose a starting point w(0) for w

• Compute a sequence {w(t)}t≥0 using the update rule

� Compute G′(w(t))

� Let w(t+1) = w(t) − G(w(t))
G′(w(t))

If the method converges, w(0) is called an approximate zero of

G

11

Newton’s method (II)

To find the minimum of a function E(w) we need to solve the

equation E′(w) = 0

Applying Newton’s method to G = E′, we get the iterative rule

w(t+1) = w(t) − E′(w(t))

E′′(w(t))

Other interpretation: the quantity −E′(w)
E′′(w) minimizes the 2nd

order Taylor approximation of E at w

E(w + v) ≈ E(w) + E′(w)v +
1

2
E′′(w)v2

12

Newton’s method (III)

More generally, in IRd, the Newton direction is

Δ(w) = −H−1(w)∇E(w)

minimizes the quadratic approximation of E at w

E(w + v) ≈ E(w) + ∇E(w) · v +
1

2
v ·

(
H(w)v

)

where H(w) is the d × d Hessian matrix

Hjk(w) =
∂2E

∂wj∂wk
, j, k = 1, . . . , d

Note: if we considered a linear approximation E(w + v) ≈ E(w) + ∇E(w) · v
then the optimal direction would be given by the negative gradient of E

13

Newton’s method (IV)

In summary, Newton’s method works as follows

• Choose a starting value w(0) for w

• Compute a sequence {w(t)}t≥0 using the update rule

w(t+1) = w(t) − η(t)H−1(w(t))∇E(w(t))

where η(t) is again chosen via line search

• A standard stopping criterion is∥∥∥∇E(w(t)) · (H(w(t))∇E(w(t))
)∥∥∥ < ε

• This modified version of Newton’s method (with line search) is sometimes
called damped Newton’s method

• Newton’s method has typically faster convergence than gradient descent

14

Empirical error minimization via gradient
descent

Δ(w) = −∇E(w) = −
m∑

i=1

V ′(yi,w · xi)xi

Here, V ′ denotes (abusing some notation) the partial derivative
of V wrt. its second argument. Our update rule is

w(t+1) = w(t) − η(t)
m∑

i=1

V ′(yi,w · xi)xi

This is an example of a batch learning algorithm (all training
examples are used to compute the gradient).

Note: The step size η is called the learning rate

15

Online gradient descent

Rather than computing the gradient of E every time, the online

gradient approach selects one example at a time (below, i(t) is

the example selected at time t)

Δ(w) = −V ′(yi(t),w · xi(t))xi(t)

Two standard selection rules:

• i(t) = t modulo m

• i(t) sampled uniformly in {1, . . . , m}

Note: a compromise approach is to select few examples at random at a time.
We refer to this method as the stochastic gradient method

16

Least squares

V (y,w · x) = (y − w · x)2 ⇒ V ′(y,w · x) = −2(y − w · x)

• Gradient descent update rule:

w(t+1) = w(t) + η(t)
m∑

i=1

(
yi − w(t) · xi

)
xi

• Online update rule

w(t+1) = w(t) + η(t)
(
yi(t) − w(t) · xi(t)

)
xi(t)

17

When η(t) = O(t−1) the algorithm converges

Note: The online algorithm is known in pattern recognition and machine

learning as the Widrow-Hoff online algorithm

Logistic regression

Recalling the formula for V (y, z) on page 3, we have

V (y, z) = y log(1 + e−z) + (1 − y) log(1 + ez)

A direct computation gives (use the trick: p′(z) = p(z)[1 − p(z)])

V ′(y, z) = (1 + e−z)−1 − y = p(z) − y

• Gradient descent update rule:

w(t+1) = w(t) + η(t)
m∑

i=1

(
yi − p(w(t) · xi)

)
xi

• Online update rule:

w(t+1) = w(t) + η(t)
(
yi(t) − p(w(t) · xi(t))

)
xi(t)

18

Logistic regression (cont.)

If m is not too large Newton’s method is preferred to gradient
descent. A direct computation gives

w(t+1) = w(t) + η(t)(X�W(t)X)−1X�W(t)(y − p(t))

where W(t) is a diagonal matrix with diagonal elements

W
(t)
ii = p(w(t) · xi)(1 − p(w(t) · xi))

and (p(t))i = p(w(t) · xi).

This algorithm is referred to as Iteratively Reweighted Least
Squares:

w(t+1) = (X�W(t)X)−1X�W(t)z(t)

where z(t) = Xw(t) + η(t)(y−p(t)) is the adjusted output at time
t

19

Logistic regression (cont.)

Let’s go back to the online version of Logistic Regression

w(t+1) = w(t) + η(t)
(
yi(t) − p(w(t) · xi(t))

)
xi(t)

Suppose we modify p(z) as

p(z) =
1

1 + e−βz

where β is a positive parameter. In particular, when β → ∞ then

p(z) goes to

p(z) =

⎧⎪⎨
⎪⎩

1 if z ≥ 0

0 otherwise

20

Online perceptron

If we recode the output as ỹ := 2(y − 1
2) (positive and negative

classes) and fix the learning rate to one, then the online gradient

descent gives the famous Perceptron Algorithm

w(t+1) =

⎧⎪⎨
⎪⎩

w(t) + ỹ(t)x(t) if ỹ(t)w · x(t) < 0

w(t) otherwise

Equivalently, this is the online algorithm for the loss function

V (ỹi,w
·x) =

⎧⎪⎨
⎪⎩

−ỹw · x if ỹw · x < 0

0 otherwise

21

Convergence of the perceptron

Let 1 ≤ t1 < t2 < · · · < tN denote the times when a mistake has

been made

Suppose that the training set is linearly separable with a margin

at least ρ, that is, there is a unit vector u ∈ IRd such that

ỹiu · xi ≥ ρ, i = 1, . . . , m

Then we have the following important result

N ≤ maxi ‖xi‖2
ρ2

22

Proof of Convergence

• Proof works by lower and upper bounding growth of w

• Convergence must occur before these two bounds become

inconsistent; upper bound:

‖wt+1‖2 = 〈wt + yixi,wt + yixi〉 ≤ ‖wt‖2 + ‖xi‖2
≤ (t + 1)max

i
‖xi‖2.

lower bound:〈
wt+1,u

〉
= 〈wt,u〉 + yi 〈u,xi〉
≥ (t + 1)ρ.

23

Proof of Convergence (cont)

• implies:

ρ2t2 ≤ 〈wt,u〉2 ≤ ‖wt‖2 ≤ tmax
i

‖xi‖2

so that

t ≤ maxi ‖xi‖2
ρ2

24

Richer hypothesis spaces

• So far we have considered linear functions for simplicity.

Nothing prevents us to minimize the empirical error in a richer

space of nonlinear functions f parameterized by a vector w

• These function spaces provide richer models which can fit the

training data better than linear functions (typically, the num-

ber of parameters may be much larger than the dimension of

x). However, to guarantee generalization (avoid overfitting)

we will need to modify the empirical error to penalize the

selection of “complicated functions”

25

Nonlinear features

A natural idea is to choose f to be linear in some nonlinear
features of x

f(x) = w · φ(x)

We have already encountered an example where x ∈ IR and

φ(x) = (1, x, x2, . . . , xr)

As r increases the minimum of the empirical error decreases but
overfitting may occur

We’ll see that overfitting can be controlled by minimizing the
penalized error Eemp(w) + λ‖w‖2 for an appropriate choice of
the positive parameter λ

26

Kernel expansions

f(x) = w · φ(x)

We will see that this approximation is related to the apparently
different functions

f(x) =
m∑

i=1

ciK(x,xi)

where K is called the kernel function

Optimization algorithms can be derived similarly to the case of
linear functions

An important example is the Gaussian kernel, leading to radial basis func-
tions

f(x) =
m∑

i=1

ci exp
(− β‖x − xi||2

)

27

Neural networks

The above type of approximation gives nonlinear functions of
x. These are still linear in the parameters w or the vector c =
(c1, . . . , cm) in the kernel approximation

A neural network (NNet) is an example of nonlinear approxima-
tion. For example, a one hidden layer neural network

f(x) =
L∑

	=1

u	h(w	 · x)

depends nonlinearly on the L(d+1) parameters w = (u1, ..., uL,w1, ...,wL)

A linear function (perceptron) is a NNet with no hidden layers.
On the other hand, the model can be made richer by adding
more hidden layers (multi-layer perceptron)

28

Neural networks (cont.)

The function h is called activation function and could be for

example h(z) = (1 + e−z)−1, used in Logistic Regression

E(w) =
m∑

i=1

V

(
yi,

L∑
	=1

u	h(w	 · xi)
)

The parameters w are usually computed via (online) gradient

descent, called back-propagation

NNets have played an important role in the development of learn-

ing algorithms in the 60’s and later in the mid 80’s

29

Principal Components Analysis

• PCA is a subspace method – that is it involves projecting the

data into a lower dimensional space.

• Subspace is chosen to ensure maximal variance of the pro-

jections:

w = argmaxw:‖w‖≤1w
′X′Xw

• This is equivalent to maximising the Raleigh quotient:

w′X′Xw

w′w

30

Principal Components Analysis

• We can optimise using Lagrange multipliers in order to re-
move the constraints:

L(w, λ) = w′X′Xw − λ
(
w′w − 1

)

(λ is multiplier; minus because constraint is ‖w‖2 ≤ 1)

• taking derivatives wrt w and setting equal to 0 gives:

X′Xw = λw

implying w is an eigenvalue of X′X. This equation is invariant
to rescaling w. Once rescaled so that ‖w‖ = 1 we have

λ = w′X′Xw =
m∑

i=1

〈w,xi〉2

31

Principal Components Analysis

• So principal components analysis performs an eigenvalue de-

composition of X′X and projects into the space spanned by

the first k eigenvectors

• Captures a total of

k∑
i=1

λi

of the overall variance:
m∑

i=1

‖xi‖2 =
n∑

i=1

λi = tr(X′X)

32

Sample question
a) Give the update rule for the perceptron algorithm with initial weight vector

w = 0.

b) State the perceptron convergence theorem (PCT).

c) Give the implication of your answers to both a) and b) for how the resulting
weight vector can be expressed in terms of the training points.

d) Consider a training set

S = {(x1, y1), . . . , (xm, ym)}
with ‖xi‖ = 1 for all i, but which is not necessarily linearly separable.
Consider the augmented inputs

x̃i = [xT
i , aeT

i]T ,

where a ∈ R+ and ei is the ith unit vector in Rm and xT denotes the
transpose of the vector x. Show that the training set

S̃ = {(x̃1, y1), . . . , (x̃m, ym)}
33

is linearly separable.

e) Suppose there exists a weight vector w such that

yi〈w,xi〉 ≥ 1 − ξi, ξi ≥ 0,

for all i. Use the PCT to give a bound on the number of updates of the
PCA applied to S̃ in terms of ‖w‖, ∑

i ξ
2
i , and the parameter a.

