GI01/M055: Supervised Learning

2. Discriminative and Generative Models

October 12, 2009
John Shawe-Taylor

Today's plan

- Discriminative vs. generative models
- Linear and quadratic discriminant analysis
- Logistic regression
- Naive Bayes classifier

Bibliography: These lecture notes are available at:
http://www.cs.ucl.ac.uk/staff/J.Shawe-Taylor/courses/index-gi01.htm
Lectures are in part based on Chapter 4 of Hastie, Tibshirani, \& Friedman

Summary from last class

Last week we have discussed two SL approaches:

- Empirical error minimization also known as Empirical risk minimization (ERM): look for a function in hypothesis space $\mathcal{H}(e g, \mathcal{H} \equiv$ all linear functions) which minimizes the empirical error
- k-NN: classify by majority vote amongst the k nearest neighbors (of the input we wish to classify)

We emphasized differences between the two methods (parametric vs. non parametric, global vs. local, etc.)

Discriminative vs. generative methods

A common aspect of $k-\mathrm{NN}$ and ERM is that they both directly compute a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ (or $P(y \mid x)$ as we'll see later) from available data without estimating the underlying probability model

Generative models approach (aka Statistical Decision Theory):

- first compute class conditional probabilities, $P(\mathrm{x} \mid y) y \in \mathcal{Y}$ and class probabilities $P(y)$
- then extract $P(y \mid \mathrm{x})$ by Bayes rule (we'll see how to extract a classifier f in a moment)

$$
P(y \mid \mathrm{x})=\frac{P(\mathrm{x} \mid y) P(y)}{P(\mathrm{x})}
$$

Generative models

Consider the binary classification problem, $\mathcal{Y}=\{0,1\}$

- Compute $P(\mathrm{x} \mid 0)$ and $P(\mathrm{x} \mid 1)$ within some model class via maximum likelihood
- Compute $P(0)=\frac{m_{0}}{m}$, where $m_{0}=\#$ data in class 0
- Use Bayes rule to compute $P(0 \mid \mathbf{x})=\frac{P(\mathrm{x} \mid 0) P(0)}{P(\mathrm{x})}$
where $P(\mathrm{x})=\sum_{y \in \mathcal{Y}} P(\mathrm{x} \mid y) P(y)=P(\mathrm{x} \mid 0) P(0)+P(\mathrm{x} \mid 1)(1-P(0))$

Generative models (cont.)

Once we know $P(0 \mid \mathrm{x})$ we classify x using the Bayes classifier:

$$
f(\mathrm{x})= \begin{cases}0 & \text { if } P(0 \mid \mathrm{x})>\frac{1}{2} \\ 1 & \text { otherwise }\end{cases}
$$

We can also write this as

$$
f(\mathrm{x})=\operatorname{argmax}_{y \in \mathcal{Y}} \frac{P(\mathrm{x} \mid y) P(y)}{P(\mathrm{x})}=\operatorname{argmax}_{y \in \mathcal{Y}} P(\mathrm{x} \mid y) P(y)
$$

- Note that $P(\mathrm{x})$ is not important for classification

Discriminant function

Equivalently, we can introduce the discriminant functions

$$
g_{k}(\mathrm{x})=\log P(k \mid \mathrm{x}), \quad k=0,1
$$

we classify x as 0 if $g(\mathrm{x}):=g_{0}(\mathrm{x})-g_{1}(\mathrm{x})>0$ and 1 otherwise. That is

$$
f(\mathrm{x})=\operatorname{argmax}_{k=0,1}\left\{g_{k}(\mathrm{x})\right\}
$$

- Decision regions:

$$
R_{0}=\left\{\mathrm{x}: g_{0}(\mathrm{x})>g_{1}(\mathrm{x})\right\}, \quad R_{1}=\left\{\mathrm{x}: g_{1}(\mathrm{x})>g_{0}(\mathrm{x})\right\}
$$

- Decision boundary: $\left\{\mathbf{x}: g_{0}(\mathrm{x})=g_{1}(\mathrm{x})\right\}$

Multiclass extension

The above can be extended naturally to more than two classes (say $\mathcal{Y}=\left\{c_{1}, \ldots, c_{K}\right\}$). We use the notation $P(k \mid \mathbf{x})=P\left(y=c_{k} \mid \mathbf{x}\right)$

$$
g_{k}(\mathrm{x})=\log P(k \mid \mathrm{x}), \quad k=1, \ldots, K
$$

(actually only $K-1$ discriminant functions need to be specified because probabilities must sum to one)

$$
f(\mathrm{x})=\operatorname{argmax}_{k=1}^{K}\left\{g_{k}(\mathrm{x})\right\}
$$

Multiclass extension (cont.)

$$
f(\mathbf{x})=\operatorname{argmax} x_{k=1}^{K} g_{k}(\mathbf{x})
$$

- Decision regions: $R_{k}=\left\{\mathrm{x}: g_{k}(\mathrm{x})>g_{\ell}(\mathrm{x})\right.$, for all $\left.\ell \neq k\right\}$
- Decision boundaries: $\left\{\mathbf{x}: g_{k}(\mathbf{x})=g_{\ell}(\mathrm{x}), k \neq \ell, g_{q}(\mathrm{x}) \leq g_{k}(\mathrm{x})\right.$ for all $\left.q\right\}$ (roughly speaking, there is a decision boundary between class k and ℓ if "ties occurs" among those classes)

Multiclass example

We introduce discriminant functions $g_{k}(\mathrm{x})$ for each class $k=1, \ldots, K$ and use the classification rule:

$$
f(\mathrm{x})=\operatorname{argmax}_{k=1}^{K} g_{k}(\mathrm{x})
$$

Multiclass example (cont.)

If the discriminant functions are linear, f partitions the input space in piecewise linear regions $R_{k}=\left\{\mathrm{x}: g_{k}(\mathrm{x})>g_{\ell}(\mathrm{x}), k \neq \ell\right\}$ The decision boundaries are the lines (hyperplanes in \mathbb{R}^{d}) of the type $\left\{\mathrm{x}: g_{k}(\mathrm{x})=g_{\ell}(\mathrm{x}), k \neq \ell\right\}$ (for some k and ℓ, not all!) Boundaries also linear if g_{k} is minus distance to a centre as in diagram. Gives so-called Voronoi diagram.

Some well studied generative models

A generative model is identified by choosing a parameterized family of densities $P(\mathrm{x} \mid y)$ such as:

- Gaussians
- Mixture of Gaussians
- Naive Bayes: based on assumption $P(\mathbf{x} \mid y)=\prod_{i=1}^{d} P_{i}\left(x_{i} \mid y\right)$
- Some more general non-parametric densities

Gaussian densities

We will assume that $P(\mathrm{x} \mid 0), P(\mathrm{x}, 1)$ are Gaussians with different means and covariances. The Gaussian density is defined as

$$
G(\mathrm{x} ; \mu, \Sigma):=\frac{1}{(2 \pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\mathrm{x}-\mu)^{\top} \Sigma^{-1}(\mathrm{x}-\mu)\right\}
$$

where $|\Sigma|$ is the determinant of matrix Σ
Recall two important properties of the Gaussian:

- μ is the mean of $\mathbf{x}: \mathbf{E}[\mathbf{x}]=\mu$
- Σ is the covariance of $\mathrm{x}: \mathrm{E}\left[(\mathrm{x}-\mu)(\mathrm{x}-\mu)^{\top}\right]=\Sigma$

Linear and quadratic discriminant analysis

We compute the parameters $\theta=\left\{\mu_{0}, \mu_{1}, \Sigma_{0}, \Sigma_{1}, \pi_{0}\right\}$ via maximum likelihood (we use the notation $\pi_{0}:=P(y=0)$):

$$
L(\theta ; S)=\prod_{i=1}^{m} P\left(\mathbf{x}_{i}, y_{i} ; \theta\right)=\prod_{i=1}^{m} P\left(\mathbf{x}_{i} \mid y_{i} ; \theta\right) P\left(y_{i}\right)
$$

The minus log likelihood is

$$
\begin{aligned}
-\log L= & \frac{1}{2} \sum_{i: y_{i}=0}\left(\mathbf{x}_{i}-\mu_{0}\right)^{\top} \Sigma_{0}^{-1}\left(\mathbf{x}_{i}-\mu_{0}\right)+\frac{1}{2} \sum_{i: y_{i}=1}\left(\mathbf{x}_{i}-\mu_{1}\right)^{\top} \Sigma_{1}^{-1}\left(\mathbf{x}_{i}-\mu_{1}\right) \\
& +\frac{m_{0}}{2} \log \left|\Sigma_{0}\right|+\frac{m_{1}}{2} \log \left|\Sigma_{1}\right|+m_{0} \log \pi_{0}+m_{1} \log \left(1-\pi_{0}\right)+\text { const. }
\end{aligned}
$$

- $\left\{\mu_{0}, \Sigma_{0}\right\},\left\{\mu_{1}, \Sigma_{1}\right\}$ and π_{0} can be separately computed!
- LDA: Σ_{0} and Σ_{1} constrained to be equal, QDA: $\Sigma_{0} \neq \Sigma_{1}$

Univariate case: ML solution

In this case we have (we use the notation $\Sigma=\sigma^{2}$)
$-\log L=\frac{1}{2} \sum_{i \in C(0)} \frac{\left(x_{i}-\mu_{0}\right)^{2}}{\sigma_{0}^{2}}+\frac{1}{2} \sum_{i \in C(1)} \frac{\left(x_{i}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}$ $+m_{0} \log \left|\sigma_{0}\right|+m_{1} \log \left|\sigma_{1}\right|+m_{0} \log \pi_{0}+m_{1} \log \left(1-\pi_{0}\right)+$ const. Solving for $\nabla \log L=0$ we obtain (please verify this):

- $\pi_{0}=\frac{m_{0}}{m}$
- $\mu_{0}=\frac{1}{m_{0}} \sum_{i: y_{i}=0} x_{i}, \quad \sigma_{0}^{2}=\frac{1}{m_{0}} \sum_{i: y_{i}=0}\left(x_{i}-\mu_{0}\right)^{2}$
- $\mu_{1}=\frac{1}{m_{1}} \sum_{i: y_{i}=1} x_{i}, \quad \sigma_{1}^{2}=\frac{1}{m_{1}} \sum_{i \in y_{i}=1}\left(x_{i}-\mu_{1}\right)^{2}$

Univariate case: discriminant function

$P(x \mid 0)=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left\{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right\}, \quad P(x \mid 1)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} \exp \left\{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right\}$,

Recalling that $g_{k}(x)=\log P(k \mid x)=\log P(x \mid k) P(k)$ (minus an unimportant $\log P(x)$), we obtain

$$
g_{k}(x)=-\frac{x^{2}}{2 \sigma_{k}^{2}}+\frac{\mu_{k} x}{\sigma_{k}^{2}}-\frac{\mu_{k}^{2}}{2 \sigma_{k}^{2}}+\log \frac{\pi_{k}}{\sqrt{2 \pi} \sigma_{k}}, \quad k=0,1
$$

Univariate case: discriminant function

$$
g_{k}(x)=-\frac{x^{2}}{2 \sigma_{k}^{2}}+\frac{\mu_{k} x}{\sigma_{k}^{2}}-\frac{\mu_{k}^{2}}{2 \sigma_{k}^{2}}+\log \frac{\pi_{k}}{\sqrt{2 \pi} \sigma_{k}}
$$

Hence, in general, the discriminant functions need to be quadratic

However, if $\sigma_{0}=\sigma_{1}=\sigma$ we can choose them to be linear (can drop term $\frac{x^{2}}{2 \sigma_{k}}$)

In this case the ML solution for σ is

$$
\sigma^{2}=\frac{1}{m}\left\{\sum_{i: y_{i}=0}\left(x_{i}-\mu_{0}\right)^{2}+\sum_{i: y_{i}=1}\left(x_{i}-\mu_{1}\right)^{2}\right\}
$$

Multivariate case

Estimating parameters in multivariate case: solving for $\nabla \log L=$ 0 we obtain:

- $\pi_{0}=\frac{m_{0}}{m}$
- $\mu_{0}=\frac{1}{m_{0}} \sum_{i: y_{i}=0} \mathbf{x}_{i}, \quad \Sigma_{0}=\frac{1}{m_{0}} \sum_{i: y_{i}=0}\left(\mathbf{x}_{i}-\mu_{0}\right)\left(\mathbf{x}_{i}-\mu_{0}\right)^{\top}$
- $\mu_{1}=\frac{1}{m_{1}} \sum_{i: y_{i}=1} \mathrm{x}_{i}, \quad \Sigma_{1}=\frac{1}{m_{1}} \sum_{i \in y_{i}=1}\left(\mathrm{x}_{i}-\mu_{1}\right)\left(\mathrm{x}_{i}-\mu_{1}\right)^{\top}$
- if constrain $\Sigma_{0}=\Sigma_{1}: \Sigma=\frac{1}{m} \sum_{k=0}^{1} \sum_{i \in y_{i}=k}\left(\mathrm{x}_{i}-\mu_{k}\right)\left(\mathrm{x}_{i}-\mu_{1}\right)^{\top}$

Verifying this involves use of equations for matrix differentials: the relevant results are given on the web page:
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html\#deriv_quad

Multivariate case

Similarly to the univariate case, we have

$$
g(\mathrm{x}):=\log \frac{P(0 \mid \mathrm{x})}{P(1 \mid \mathrm{x})}=\log \frac{P(\mathrm{x} \mid 0) P(0)}{P(\mathrm{x} \mid 1) P(1)}=g_{0}(\mathrm{x})-g_{1}(\mathrm{x})
$$

where
$g_{k}(\mathrm{x})=-\frac{1}{2} \mathrm{x}^{\top} \Sigma_{k}^{-1} \mathrm{x}+\mu_{k}^{\top} \Sigma_{k}^{-1} \mathbf{x}+b_{k}, \quad b_{k}:=-\frac{1}{2} \mu_{k}^{\top} \Sigma_{k}^{-1} \mu_{k}+\log \left(\frac{\pi_{k}}{(2 \pi)^{\frac{d}{2}}\left|\Sigma_{k}\right|^{\frac{1}{2}}}\right)$
In general, g is a multiquadric (we call this QDA)
However, if $\Sigma_{0}=\Sigma_{1}=\Sigma$ then $g(\mathrm{x})$ is linear in x : (we call this LDA)
$g(\mathrm{x})=\left(\mu_{0}-\mu_{1}\right)^{\top} \Sigma^{-1} \mathrm{x}-\frac{1}{2}\left(\mu_{1}+\mu_{0}\right)^{\top} \Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)+\log \frac{\pi_{0}}{1-\pi_{0}}$

3 classes example: equal covariances

If $\Sigma_{0}=\Sigma_{1}=\Sigma_{2}$
then $g_{k}(\mathbf{x})$ are linear

$$
g_{k}(\mathrm{x})=\mu_{k}^{\top} \Sigma^{-1} \mathrm{x}-\frac{1}{2} \mu_{k}^{\top} \Sigma^{-1} \mu_{k}+\log \pi_{k}
$$

3 classes example: linear vs. non-linear

Here is an example where using different covariances gives a better model...

...However:

- LDA: need to fit $(K-1)(d+1)$ parameters (since we need to compute $K-1$ differences $g_{k}-g_{\ell}$ and each has $d+1$ parameters)
- QDA: need to fit $(K-1) \frac{d(d+2)}{2}$ parameters, so if d is high QDA may more easily overfit our data

Logistic regression (I)

Let's go back to the discriminative model approach. Assume that

$$
\log \frac{P(0 \mid \mathrm{x})}{P(1 \mid \mathrm{x})}=-\left(\mathrm{w}^{\top} \mathrm{x}+b\right) \quad(\text { incorporate } b \text { in } \mathrm{w} \ldots)
$$

Using $P(0 \mid \mathbf{x})+P(1 \mid \mathbf{x})=1$, a simple computation gives

$$
P(1 \mid \mathrm{x}) \equiv p(\mathrm{x} ; \mathbf{w})=\frac{1}{1+e^{-\mathbf{w}^{\top} \mathrm{x}}}
$$

Note: for simplicity, we discuss only binary classification but all of what we say naturally extends to the multiclass case

Logistic regression (II)

Recall our notation from last class

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\vdots \\
\mathbf{x}_{m}^{\top}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

We compute \mathbf{w} by maximizing the conditional likelihood:

$$
L(\mathbf{w} ; \mathbf{y} \mid \mathbf{X})=P(\mathbf{y} \mid \mathbf{X} ; \mathbf{w})=\prod_{i=1}^{m} P\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

Logistic regression (III)

The log-likelihood is given by (modulo an additive constant term)
$\ell(\mathbf{w}):=\log L(\mathbf{w} ; \mathbf{y} \mid \mathbf{X})=\sum_{i=1}^{m}\left\{y_{i} \log p\left(\mathbf{x}_{i} ; \mathbf{w}\right)+\left(1-y_{i}\right) \log \left(1-p\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)\right\}$
The quantity

$$
-y \log p(\mathbf{x} ; \mathbf{w})-(1-y) \log (1-p(\mathbf{x} ; \mathbf{w}))
$$

is the cross entropy function between the binary probability functions ($y, 1-y$) and ($p(\mathrm{x} ; \mathbf{w}), 1-p(\mathrm{x} ; \mathbf{w})$).

For distributions p and q the cross-entropy between p and q is defined as

$$
H(p, q)=-\sum_{x} p(x) \log q(x)=H(p)+D_{\mathrm{KL}}(p \| q) .
$$

Loss function

Thus maximizing the likelihood is equivalent to minimizing a generalized type of empirical error:

$$
\mathcal{E}_{\mathrm{emp}}=\sum_{i=1}^{m} V\left(y_{i}, f(\mathrm{x})\right), \quad f(\mathrm{x})=\mathbf{w}^{\top} \mathbf{x}
$$

where $V: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is called the loss function

- Least squares: $V(y, f(\mathrm{x}))=(y-f(\mathrm{x}))^{2}$
- Logistic regression:

$$
V(y, f(\mathrm{x}))=y \log \left(1+e^{-f(\mathrm{x})}\right)+(1-y) \log \left(1+e^{f(\mathrm{x})}\right)
$$

Logistic regression (IV)

$$
\ell(\mathbf{w})=\sum_{i=1}^{m}\left\{y_{i} \log p\left(\mathbf{x}_{i} ; \mathbf{w}\right)+\left(1-y_{i}\right) \log \left(1-p\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)\right\}
$$

Setting the derivatives to zero we obtain the nonlinear equations:

$$
\nabla \ell(\mathbf{w})=\sum_{i=1}^{m} \mathbf{x}_{i}\left(y_{i}-p\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)=0
$$

Compare to normal equations for least squares:

$$
\sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{w}=\sum_{i=1}^{m} \mathbf{x}_{i} y_{i} \quad \text { or } \quad \sum_{i=1}^{m} \mathbf{x}_{i}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)=0
$$

They look very similar! We'll see next week how to solve those

Log-Reg versus LDA

Let's go back to LDA. We assumed that $P(\mathrm{x} \mid 0)$ and $P(\mathrm{x} \mid 1)$ are Gaussians with the same covariance and estimated their mean and covariance (as well as the class probabilities) by ML

It follows that $P(\mathbf{x})$ is a mixture of Gaussians

More interestingly, it is easy to verify that

$$
P(1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}} \quad \text { like in logistic regression! }
$$

Logistic regression vs. LDA (cont.)

However, in logistic regression, $P(\mathrm{x})$ will not in general be a mixture of Gaussians!

- LDA based on stronger assumptions than Log-Reg
- Log-Reg leaves the marginal density of x arbitrary and fits parameter w by maximizing the conditional likelihood
- If $P(\mathrm{x} \mid 0)$ and $P(\mathrm{x} \mid 1)$ are indeed Gaussians then we should use LDA
- Otherwise Log-Reg should work better (more robust to the underlying $P(\mathrm{x})$)

Naive Bayes classifier

Based on the following simple assumption:

$$
P(\mathbf{x} \mid y)=\prod_{j=1}^{d} P\left(x_{j} \mid y\right)
$$

Meaning: the components of \mathbf{x} are conditionally independent given y :

$$
\begin{aligned}
P\left(\mathrm{x}=\left(x_{1}, \ldots, x_{d}\right) \mid y\right) & =P\left(x_{1} \mid y\right) P\left(x_{2} \mid y, x_{1}\right) \cdots P\left(x_{d} \mid y, x_{1}, \ldots, x_{d-1}\right) \\
& =P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right) \cdots P\left(x_{d} \mid y\right)=\prod_{j=1}^{d} P\left(x_{j} \mid y\right)
\end{aligned}
$$

Naive Bayes (cont.)

Individual class conditional probabilities can be estimated independently!

Discriminant functions (recall $\left.\pi_{k}:=P\left(y=c_{k}\right)\right)$

$$
g_{k}(\mathrm{x})=\log P(\mathrm{x} \mid k) \pi_{k}=\sum_{j=1}^{d} \log P\left(x_{j} \mid k\right)+\log \pi_{k}
$$

As before if $P\left(x_{j} \mid k\right)$ are Gaussians the discriminant functions are linear

- Naive Bayes is a very simple model! Yet, if d is very large it is a good choice to try

Naive Bayes: binary features

Example ("bag of words" representation for text documents) Assume x_{j} are binary variables and $x_{j}=1$ if j-th word in our dictionary appears in document \mathbf{x} and $x_{j}=0$ otherwise

Define $p_{j k}:=P\left(x_{j}=1 \mid y=k\right)$ and $\pi_{k}:=P(y=k)$ - here we are thinking of $p_{j k}$ as being a distribution over words.

One can show (exercise) that the maximum likelihood estimate of $p_{j k}$ and π_{k} (constraining $\sum_{j} p_{j k}=1=\sum_{k} \pi_{k}$) is

$$
\begin{aligned}
p_{j k} & =\frac{\#\left\{(\mathrm{x}, y) \in S: x_{j}=1 \text { and } y=k\right\}}{\sum_{j^{\prime}} \#\left\{(\mathrm{x}, y) \in S: x_{j^{\prime}}=1 \text { and } y=k\right\}} \\
\pi_{k} & =\frac{\#\{(\mathrm{x}, y) \in S: y=k\}}{m}
\end{aligned}
$$

Dealing with rare words

Note that if, say, the h-th word is not in any training input data, $p_{h k}=\frac{\#\left\{(\mathrm{x}, y) \in S: x_{h}=1 \text { and } y=k\right\}}{\sum_{h^{\prime}} \#\left\{(\mathrm{x}, y) \in S: x_{h^{\prime}}=1 \text { and } y=k\right\}}=\frac{0}{m_{k}}=0, \quad$ for all k
However, if a new document x contains the h-th word, we have: $p_{h k}=0 \Rightarrow P(\mathrm{x} \mid k)=0 \Rightarrow P(\mathrm{x})=0$. Hence

$$
P(k \mid \mathrm{x})=\frac{P(\mathrm{x} \mid k) \pi_{k}}{P(\mathrm{x})}=\frac{0}{0}
$$

To avoid this pathological situation we introduce the following modified estimator (N is the number of words - including those not in the training set)

$$
p_{h k}=\frac{\#\left\{(\mathrm{x}, y) \in S: x_{h}=1 \text { and } y=k\right\}+1}{N+\sum_{h^{\prime}} \#\left\{(\mathrm{x}, y) \in S: x_{h^{\prime}}=1 \text { and } y=k\right\}}
$$

