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Today’s plan

e Discriminative vs. generative models
e Linear and quadratic discriminant analysis
e LoOgistic regression

e Naive Bayes classifier

Bibliography: These lecture notes are available at:
http://www.cs.ucl.ac.uk/staff/J.Shawe-Taylor/courses/index-gi0l.htm
Lectures are in part based on Chapter 4 of Hastie, Tibshirani, & Friedman
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Summary from last class

LLast week we have discussed two SL approaches:

e Empirical error minimization also known as Empirical risk
minimization (ERM): look for a function in hypothesis space
H (eg, 'H = all linear functions) which minimizes the empirical

error

e k-NN: classify by majority vote amongst the k nearest neigh-
bors (of the input we wish to classify)

We emphasized differences between the two methods (paramet-
ric vs. non parametric, global vs. local, etc.)



Discriminative vs. generative methods

A common aspect of k—NN and ERM is that they both directly
compute a function f : X — Y (or P(y|x) as we'll see later)
from available data without estimating the underlying probability
model

Generative models approach (aka Statistical Decision Theory):

e first compute class conditional probabilities, P(x|y) y € Y and
class probabilities P(y)

e then extract P(y|x) by Bayes rule (we'll see how to extract a
classifier f in a moment)

P(x[y)P(y)

Pl) =0




Generative models

Consider the binary classification problem, Y = {0, 1}

e Compute P(x|0) and P(x|1) within some model class via
maximum likelihood

e Compute P(0) = %, where mg = #data in class 0

P(x]0)P(0)
P(x)

e Use Bayes rule to compute P(0lx) =

where P(x) =} oy, P(x|y)P(y) = P(x|0)P(0) + P(x[1)(1 — P(0))



Generative models (cont.)

Once we know P(0]x) we classify x using the Bayes classifier:

0 if P(O|x) >3
f(x) =

1 otherwise
We can also write this as

P(x|y)P(y)
P(x)

f(x) = argmax,cy = argmax,cyP(x|y) P(y)

e Note that P(x) is not important for classification



Discriminant function

Equivalently, we can introduce the discriminant functions
g.(x) =log P(klx), k=0,1

we classify x as 0 if g(x) := go(x) — g1(x) > 0 and 1 otherwise.
That is

f(x) = argmax;—o,1{gx(x) }

e Decision regions:

Ro={x:g0(x) > g1(x)}, R1i={x:g1(x)>go(x)}

e Decision boundary: {x : go(x) = gl(x)}



Multiclass extension

The above can be extended naturally to more than two classes
(say Y ={c1,...,cKx}). We use the notation P(k|x) = P(y = c|x)

9r(x) =log P(klx), k=1,....K

(actually only K — 1 discriminant functions need to be specified because
probabilities must sum to one )

f(x) = argmaxi_ {gx(x) |



Multiclass extension (cont.)

f(x) = argmaxf_, gp(x)

e Decision regions: Ry = {x : gr(x) > go(x), for all £ # k}

e Decision boundaries: {x L gr(x) = gp(x), k # £, gq(x) < gi(x) for all q}

(roughly speaking, there is a decision boundary between class k£ and ¢ if

“ties occurs’ among those classes)



Multiclass example

. ] ) ) o o‘%@ e c@ ) 0 I:" .
We introduce discriminant i

functions g¢i(x) for each

class £ = 1,..., K and use
the classification rule: ¥~
f(x) = argmaxi_, g5 (x) -
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Multiclass example (cont.)

If the discriminant functions are
linear, f partitions the input
space in piecewise linear regions

Ry, = {x: gp(x) > go(x), k £ £}

The decision boundaries are the
lines (hyperplanes in R%) of the
type {x: gp(x) = g¢(x), k # £} (for
some k and ¢, not all') Boundaries
also linear if g, is minus distance
to a centre as in diagram. Gives
so-called VVoronoi diagram.
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Some well studied generative models

A generative model is identified by choosing a parameterized
family of densities P(x|y) such as:

e Gaussians

e Mixture of Gaussians

e Naive Bayes: based on assumption P(x|y) = Hf;izl P;(xz;|y)
e Some more general non-parametric densities
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Gaussian densities

We will assume that P(x|0), P(x,1) are Gaussians with different
means and covariances. The Gaussian density is defined as

1 1 Ts—1
G(x;pu,2) = ——(x — > (x—
(x; 1, 5) (%)%Z'%exp{ S ) = - )|

where |X| is the determinant of matrix X

Recall two important properties of the Gaussian:

e 11 is the mean of x: E[x] = pu

e > is the covariance of x: E[(x—p)(x—pn)'] =X
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Linear and quadratic discriminant analysis

We compute the parameters 0 = {ug, 1,220,221, 7o} Via maxi-
mum likelihood (we use the notation mg := P(y = 0)):

L(6;S) = H P(x;,y;,0) = H P(x;|y;; 0)P(y;)

=1 1=1
The minus log likelihood is
1 B 1 _
—logL = 5 Z (Xz‘_NO)TZol(Xé_NO) —I_E Z (Xz'_,ul)Tzll(Xz'_Ml)
1:y; =0 1y, =1

m m
-|-7O log |Xo| + 71 log | 1| + mglog g + mq l0g(1 — 7g) + const.

o {1p, 20}, {p1,21} and mg can be separately computed!

e LDA: > and >4 constrained to be equal, QDA: > # 21
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Univariate case: ML solution

In this case we have (we use the notation ¥ = ¢2)
1 (z; — po)? | 1 (z; — p1)?
—logL = 5 ) -2 +§ > -2
1€C(0) 0 ieC(1) 1
+mglog |og| + mq 109 |o1| + mglog mg + mq l09(1 — 7g) + const.
Solving for Vlog L = 0 we obtain (please verify this):

m
® mo =7,
_ 1 2 _ 1 2
® [10 = 1= Vi =0Tir 00 = = 2iy;=0(% — Ko)

N
|

_ 1 2
® 11 = 5T Diy=1Ti, 01 = 7 Liey=1(Ti — p1)
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Univariate case: discriminant function

_ 2 - — 2
P(£U|O):\/2_1 Oexp{—(xQF;O) }, P(:p|1):\/2_1 lexp{—( 2’21) },
o O'O o 0'1

Recalling that g, (x) = log P(k|z) = log P(xz|k)P(k) (minus an unim-
portant log P(z)), we obtain
2 2

Tr) = — e
gk‘( ) 20_2 + O'l% 20_% + log /—O_k

k=0,1
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Univariate case: discriminant function

2 2
Pk

O
202 + 0% 20% + 109 \V2TOoy
Hence, in general, the discriminant functions need to be quadratic

gp(x) = —

However, if go =01 = o We can choose them to be linear (can
drop term 25’7 )

In this case the ML solution for o is

{ Z (z; —po)*+ Y (33@'_,“1)2}

VY= 11y =1
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Multivariate case

Estimating parameters in multivariate case: solving for Vlog L =
0O we obtain:

mQ

07‘(‘0:m

_ 1 _ 1
® [0 = 55 Xiy;=0%Xir 20 = ;o 2iny;=0(X; — po) (X — po) '
o — 1 5 oy, =1 5 (x; — 1) (x; — 1) "

M1 = g7 2iy=1Xi 1 = g 2icy=1(Xi — p1) (X — p1

e if constrain 29 =27: > = %Z,}::O Zieyi:k(xi_ﬂk)(xi_,ul)T

Verifying this involves use of equations for matrix differentials:
the relevant results are given on the web page:

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html#deriv_quad
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Multivariate case

Similarly to the univariate case, we have

POlx) . P(x|0)P(0)
P log PIP(L) go(x) — g1(x)

g(x) :=log

where
1 + 1 Tl
ge(x) = —ox 3y Y pp Xy txAby, by = _Eﬂkzk ' pyt1og T 1
(27m) 2|22
In general, g is a multiquadric (we call this QDA)

However, if 9 = 31 = X then ¢g(x) is linear in x: (we call this
LDA)

1
9(x) = (o — 1) "= Mx = Z (1 + o) " (o — 1) +log -
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3 classes example: equal covariances

If Sg=51 =35
then gi(x) are linear

1 1 +

gr(X) = ppZ" "x — >H >y + log 7,

20




3 classes example: linear vs. non-linear

Here is an example where
using different covariances
gives a better model...

...However:

e LDA: need to fit (K —1)(d+ 1) parameters (since we need
to compute K — 1 differences g — gy and each has d + 1
parameters)

e QDA: need to fit (K — 1)@ parameters, so if d is high
QDA may more easily overfit our data
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Logistic regression (I)

Let's go back to the discriminative model approach. Assume
that

P(0x) - . |
O = — b incorporate b in w...
gpmx) (wx+b) ( p w...)
Using P(0Olx) + P(1|x) = 1, a simple computation gives
1
P(1|X) :p(X,W) - 1 —I— e—WTX

Note: for simplicity, we discuss only binary classification but all of what we

say naturally extends to the multiclass case
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Logistic regression (II)

Recall our notation from last class

X=1|1:],

We compute w by maximizing the conditional likelihood:

y:

m

Lw;y|X) = P(y|X;w) = ]| P(yilx;; w)

1=1
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Logistic regression (III)

The log-likelihood is given by (modulo an additive constant term)

m

((w) :==1log L(w;y|X) = Y {wilogp(x;;w) + (1 — ;) 1og (1 — p(xi; w)) }
1=1

The quantity

—ylogp(x; w) — (1 —y)log(1l —p(x;w))
IS the cross entropy function between the binary probability
functions (y,1 —y) and (p(x;w),1 — p(x;w)).

For distributions p and g the cross-entropy between p and q is
defined as

H(p,q) = —) p(z)logq(z) = H(p) + Dk (pllq).
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Loss function

Thus maximizing the likelihood is equivalent to minimizing a
generalized type of empirical error:

m
Eemp =Y V(v f(x)), f(x)=w'x
i=1
where V : Y x Y — IR is called the loss function

e Least squares: V(y,f(x)> = (y - f(X)>2

e LOgistic regression:

V(y, f()) = ylog (14 e /) 4 (1 —y)log (1 + /™)
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Logistic regression (IV)

m

(w) =Y {ilogp(xi; w) + (1 — ;) log (1 — p(x;; w)) }
1=1

Setting the derivatives to zero we obtain the nonlinear equations:

Viw) = 3 xi(yi — p(xi;w)) = 0
1=1

Compare to normal equations for least squares:

m m m
Ter Teo) —
E X;X; W = E X;Yy;  Or E X; (yZ — X; W) =0
=1 =1 1=1

They look very similar! We'll see next week how to solve those
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Log-Reg versus LDA

Let's go back to LDA. We assumed that P(x|0) and P(x]|1) are
Gaussians with the same covariance and estimated their mean
and covariance (as well as the class probabilities) by ML

It follows that P(x) is a mixture of Gaussians

More interestingly, it is easy to verify that

1
P(llx) = — like in logistic regression!

14 e W'x
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Logistic regression vs. LDA (cont.)

However, in logistic regression, P(x) will not in general be a
mixture of Gaussians!
e LDA based on stronger assumptions than Log-Reg

e L0g-Reg leaves the marginal density of x arbitrary and fits
parameter w by maximizing the conditional likelihood

e If P(x|0) and P(x|1) are indeed Gaussians then we should
use LDA

e Otherwise Log-Reg should work better (more robust to the
underlying P(x))
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Naive Bayes classifier

Based on the following simple assumption:

d
P(xly) = [] P(zjly)
J=1

Meaning: the components of x are conditionally independent
given y:

P(X: (5131,...,33d)|y) — P(a:1|y)P(:c2|y,azl)---P(azd|y,:c1,...,:cd_1)
d
= P(z1|ly)P(x2ly) -+ P(zqly) = [] P(zjly)
=1
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Naive Bayes (cont.)

Individual class conditional probabilities can be estimated inde-
pendently!

Discriminant functions (recall w; := P(y = c¢;))

d
gk(x) = Iog P(X|k)7‘(‘k. = Z Iog P(CE]“C) -+ Iog T
j=1

As before if P(x;|k) are Gaussians the discriminant functions are
linear

e Naive Bayes is a very simple model! Yet, if d is very large it
IS @ good choice to try
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Naive Bayes: binary features

Example (“bag of words” representation for text documents)
Assume xz; are binary variables and z; = 1 if j—th word in our
dictionary appears in document x and T = O otherwise

Define p;, := P(z; = lly = k) and m, := P(y = k) — here we are
thinking of Pji as being a distribution over words.

One can show (exercise) that the maximum likelihood estimate
of p;i, and m, (constraining Y ;pj, =1 =3, m) IS

#{(X,y) €S:xz;=1and yzk}
Zj/#{(x,y) €S:zy=1and yzk}
#{(x,y) € Sy =k}

m

Pjk

7Tk —
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Dealing with rare words

Note that if, say, the h—th word is not in any training input data,

#{(X,y)ES:azh=1andy=k} 0
Phk — = —=0, forallk
SwH#{(xy) €S ay=1andy=kf M
However, if a new document x contains the h—th word, we have:
ppr = 0= P(x|k) = 0= P(x) = 0. Hence
P(x|k 0
P(k|x) = (x|k)m, _ O
P(x) 0
To avoid this pathological situation we introduce the following
modified estimator (NN is the number of words — including those
not in the training set)

#{(X,y)ES:whzl and y:k}+1
N+zh,#{(x,y) €S :z;,; =1 and yzk}

Phk —
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