
GI01/M055: Supervised Learning

2. Discriminative and Generative Models

October 12, 2009

John Shawe-Taylor

1

Today’s plan

• Discriminative vs. generative models

• Linear and quadratic discriminant analysis

• Logistic regression

• Naive Bayes classifier

Bibliography: These lecture notes are available at:

http://www.cs.ucl.ac.uk/staff/J.Shawe-Taylor/courses/index-gi01.htm

Lectures are in part based on Chapter 4 of Hastie, Tibshirani, & Friedman

2

Summary from last class

Last week we have discussed two SL approaches:

• Empirical error minimization also known as Empirical risk
minimization (ERM): look for a function in hypothesis space
H (eg, H ≡ all linear functions) which minimizes the empirical
error

• k-NN: classify by majority vote amongst the k nearest neigh-
bors (of the input we wish to classify)

We emphasized differences between the two methods (paramet-
ric vs. non parametric, global vs. local, etc.)

3

Discriminative vs. generative methods

A common aspect of k−NN and ERM is that they both directly
compute a function f : X → Y (or P(y|x) as we’ll see later)
from available data without estimating the underlying probability
model

Generative models approach (aka Statistical Decision Theory):

• first compute class conditional probabilities, P(x|y) y ∈ Y and
class probabilities P(y)

• then extract P(y|x) by Bayes rule (we’ll see how to extract a

classifier f in a moment)

P(y|x) =
P(x|y)P(y)

P(x)
4

Generative models

Consider the binary classification problem, Y = {0,1}

• Compute P(x|0) and P(x|1) within some model class via

maximum likelihood

• Compute P(0) = m0
m , where m0 = #data in class 0

• Use Bayes rule to compute P(0|x) = P (x|0)P (0)
P (x)

where P (x) =
∑

y∈Y P (x|y)P (y) = P (x|0)P (0) + P (x|1)(1 − P (0))

5

Generative models (cont.)

Once we know P(0|x) we classify x using the Bayes classifier:

f(x) =

⎧⎪⎨
⎪⎩

0 if P(0|x) > 1
2

1 otherwise

We can also write this as

f(x) = argmaxy∈Y
P(x|y)P(y)

P(x)
= argmaxy∈YP(x|y)P(y)

• Note that P(x) is not important for classification

6

Discriminant function

Equivalently, we can introduce the discriminant functions

gk(x) = logP(k|x), k = 0,1

we classify x as 0 if g(x) := g0(x) − g1(x) > 0 and 1 otherwise.
That is

f(x) = argmaxk=0,1

{
gk(x)

}

• Decision regions:

R0 =
{
x : g0(x) > g1(x)

}
, R1 =

{
x : g1(x) > g0(x)

}

• Decision boundary:
{
x : g0(x) = g1(x)

}

7

Multiclass extension

The above can be extended naturally to more than two classes

(say Y = {c1, . . . , cK}). We use the notation P (k|x) = P (y = ck|x)

gk(x) = logP(k|x), k = 1, . . . , K

(actually only K − 1 discriminant functions need to be specified because

probabilities must sum to one)

f(x) = argmaxK
k=1

{
gk(x)

}

8

Multiclass extension (cont.)

f(x) = argmaxK
k=1gk(x)

• Decision regions: Rk =
{
x : gk(x) > g�(x), for all � �= k

}

• Decision boundaries:
{
x : gk(x) = g�(x), k �= �, gq(x) ≤ gk(x) for all q

}
(roughly speaking, there is a decision boundary between class k and � if

“ties occurs” among those classes)

9

Multiclass example

We introduce discriminant

functions gk(x) for each

class k = 1, . . . , K and use

the classification rule:

f(x) = argmaxK
k=1gk(x)

10

Multiclass example (cont.)

If the discriminant functions are

linear, f partitions the input

space in piecewise linear regions

Rk = {x : gk(x) > g�(x), k �= �}
The decision boundaries are the

lines (hyperplanes in IRd) of the

type {x : gk(x) = g�(x), k �= �} (for

some k and �, not all!) Boundaries

also linear if gk is minus distance

to a centre as in diagram. Gives

so-called Voronoi diagram.

11

Some well studied generative models

A generative model is identified by choosing a parameterized

family of densities P(x|y) such as:

• Gaussians

• Mixture of Gaussians

• Naive Bayes: based on assumption P(x|y) =
∏d

i=1 Pi(xi|y)

• Some more general non-parametric densities

12

Gaussian densities

We will assume that P(x|0), P(x,1) are Gaussians with different

means and covariances. The Gaussian density is defined as

G(x;μ,Σ) :=
1

(2π)
d
2 |Σ|12

exp
{
−1

2
(x − μ)�Σ−1(x − μ)

}

where |Σ| is the determinant of matrix Σ

Recall two important properties of the Gaussian:

• μ is the mean of x: E[x] = μ

• Σ is the covariance of x: E[(x − μ)(x − μ)�] = Σ

13

Linear and quadratic discriminant analysis

We compute the parameters θ = {μ0, μ1,Σ0,Σ1, π0} via maxi-
mum likelihood (we use the notation π0 := P (y = 0)):

L(θ;S) =
m∏

i=1

P(xi, yi; θ) =
m∏

i=1

P(xi|yi; θ)P(yi)

The minus log likelihood is

− logL =
1

2

∑
i:yi=0

(xi − μ0)
�Σ−1

0 (xi − μ0) +
1

2

∑
i:yi=1

(xi − μ1)
�Σ−1

1 (xi − μ1)

+
m0

2
log |Σ0| +

m1

2
log |Σ1| + m0 logπ0 + m1 log(1 − π0) + const.

• {μ0,Σ0}, {μ1,Σ1} and π0 can be separately computed!

• LDA: Σ0 and Σ1 constrained to be equal, QDA: Σ0 �= Σ1

14

Univariate case: ML solution

In this case we have (we use the notation Σ = σ2)

− logL =
1

2

∑
i∈C(0)

(xi − μ0)
2

σ2
0

+
1

2

∑
i∈C(1)

(xi − μ1)
2

σ2
1

+m0 log |σ0| + m1 log |σ1| + m0 logπ0 + m1 log(1 − π0) + const.

Solving for ∇ logL = 0 we obtain (please verify this):

• π0 = m0
m

• μ0 = 1
m0

∑
i:yi=0 xi, σ2

0 = 1
m0

∑
i:yi=0(xi − μ0)

2

• μ1 = 1
m1

∑
i:yi=1 xi, σ2

1 = 1
m1

∑
i∈yi=1(xi − μ1)

2

15

Univariate case: discriminant function

P(x|0) =
1√

2πσ0
exp

{
−(x − μ0)

2

2σ2
0

}
, P(x|1) =

1√
2πσ1

exp

{
−(x − μ1)

2

2σ2
1

}
,

Recalling that gk(x) = logP(k|x) = logP(x|k)P(k) (minus an unim-

portant logP (x)), we obtain

gk(x) = − x2

2σ2
k

+
μkx

σ2
k

− μ2
k

2σ2
k

+ log
πk√
2πσk

, k = 0,1

16

Univariate case: discriminant function

gk(x) = − x2

2σ2
k

+
μkx

σ2
k

− μ2
k

2σ2
k

+ log
πk√
2πσk

Hence, in general, the discriminant functions need to be quadratic

However, if σ0 = σ1 = σ we can choose them to be linear (can
drop term x2

2σk
)

In this case the ML solution for σ is

σ2 =
1

m

⎧⎨
⎩

∑
i:yi=0

(xi − μ0)
2 +

∑
i:yi=1

(xi − μ1)
2

⎫⎬
⎭

17

Multivariate case

Estimating parameters in multivariate case: solving for ∇ logL =
0 we obtain:

• π0 = m0
m

• μ0 = 1
m0

∑
i:yi=0 xi, Σ0 = 1

m0

∑
i:yi=0(xi − μ0)(xi − μ0)

�

• μ1 = 1
m1

∑
i:yi=1 xi, Σ1 = 1

m1

∑
i∈yi=1(xi − μ1)(xi − μ1)

�

• if constrain Σ0 = Σ1: Σ = 1
m

∑1
k=0

∑
i∈yi=k(xi−μk)(xi−μ1)

�

Verifying this involves use of equations for matrix differentials:
the relevant results are given on the web page:

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html#deriv quad

18

Multivariate case

Similarly to the univariate case, we have

g(x) := log
P(0|x)
P(1|x) = log

P(x|0)P(0)

P(x|1)P(1)
= g0(x) − g1(x)

where

gk(x) = −1

2
x�Σ−1

k x+μ�
kΣ−1

k x+bk, bk := −1

2
μ�

kΣ−1
k μk+log

⎛
⎝ πk

(2π)
d
2 |Σk|

1
2

⎞
⎠

In general, g is a multiquadric (we call this QDA)

However, if Σ0 = Σ1 = Σ then g(x) is linear in x: (we call this
LDA)

g(x) = (μ0 − μ1)
�Σ−1x − 1

2
(μ1 + μ0)

�Σ−1(μ0 − μ1) + log
π0

1 − π0
19

3 classes example: equal covariances

If Σ0 = Σ1 = Σ2

then gk(x) are linear

gk(x) = μ�
kΣ−1x − 1

2
μ�

kΣ−1μk + logπk

20

3 classes example: linear vs. non-linear

Here is an example where

using different covariances

gives a better model...

...However:

• LDA: need to fit (K − 1)(d + 1) parameters (since we need
to compute K − 1 differences gk − g� and each has d + 1
parameters)

• QDA: need to fit (K − 1)d(d+2)
2 parameters, so if d is high

QDA may more easily overfit our data

21

Logistic regression (I)

Let’s go back to the discriminative model approach. Assume

that

log
P(0|x)
P(1|x) = −(w�x + b) (incorporate b in w...)

Using P(0|x) + P(1|x) = 1, a simple computation gives

P(1|x) ≡ p(x;w) =
1

1 + e−w�x

Note: for simplicity, we discuss only binary classification but all of what we

say naturally extends to the multiclass case

22

Logistic regression (II)

Recall our notation from last class

X =

⎡
⎢⎣x�

1...
x�

m

⎤
⎥⎦ , y =

⎡
⎢⎣y1

...
ym

⎤
⎥⎦

We compute w by maximizing the conditional likelihood:

L(w;y|X) = P(y|X;w) =
m∏

i=1

P(yi|xi;w)

23

Logistic regression (III)

The log-likelihood is given by (modulo an additive constant term)

�(w) := logL(w;y|X) =
m∑

i=1

{
yi log p(xi;w) + (1 − yi) log

(
1 − p(xi;w)

)}

The quantity

−y log p(x;w) − (1 − y) log(1 − p(x;w))

is the cross entropy function between the binary probability
functions (y,1 − y) and (p(x;w),1 − p(x;w)).

For distributions p and q the cross-entropy between p and q is
defined as

H(p, q) = −∑
x

p(x) log q(x) = H(p) + DKL(p‖q).
24

Loss function

Thus maximizing the likelihood is equivalent to minimizing a
generalized type of empirical error:

Eemp =
m∑

i=1

V
(
yi, f(x)

)
, f(x) = w�x

where V : Y × Y → IR is called the loss function

• Least squares: V
(
y, f(x)

)
=

(
y − f(x)

)2

• Logistic regression:

V
(
y, f(x)

)
= y log

(
1 + e−f(x)

)
+ (1 − y) log

(
1 + ef(x)

)

25

Logistic regression (IV)

�(w) =
m∑

i=1

{
yi log p(xi;w) + (1 − yi) log

(
1 − p(xi;w)

)}

Setting the derivatives to zero we obtain the nonlinear equations:

∇�(w) =
m∑

i=1

xi

(
yi − p(xi;w)

)
= 0

Compare to normal equations for least squares:

m∑
i=1

xix
�
i w =

m∑
i=1

xiyi or
m∑

i=1

xi

(
yi − x�

i w
)
= 0

They look very similar! We’ll see next week how to solve those

26

Log-Reg versus LDA

Let’s go back to LDA. We assumed that P(x|0) and P(x|1) are

Gaussians with the same covariance and estimated their mean

and covariance (as well as the class probabilities) by ML

It follows that P(x) is a mixture of Gaussians

More interestingly, it is easy to verify that

P(1|x) =
1

1 + e−w�x
like in logistic regression!

27

Logistic regression vs. LDA (cont.)

However, in logistic regression, P(x) will not in general be a
mixture of Gaussians!

• LDA based on stronger assumptions than Log-Reg

• Log-Reg leaves the marginal density of x arbitrary and fits
parameter w by maximizing the conditional likelihood

• If P(x|0) and P(x|1) are indeed Gaussians then we should
use LDA

• Otherwise Log-Reg should work better (more robust to the
underlying P(x))

28

Naive Bayes classifier

Based on the following simple assumption:

P(x|y) =
d∏

j=1

P(xj|y)

Meaning: the components of x are conditionally independent

given y:

P(x = (x1, . . . , xd)|y) = P(x1|y)P(x2|y, x1) · · ·P(xd|y, x1, . . . , xd−1)

= P(x1|y)P(x2|y) · · ·P(xd|y) =
d∏

j=1

P(xj|y)

29

Naive Bayes (cont.)

Individual class conditional probabilities can be estimated inde-
pendently!

Discriminant functions (recall πk := P(y = ck))

gk(x) = logP(x|k)πk =
d∑

j=1

logP(xj|k) + logπk

As before if P(xj|k) are Gaussians the discriminant functions are
linear

• Naive Bayes is a very simple model! Yet, if d is very large it
is a good choice to try

30

Naive Bayes: binary features

Example (“bag of words” representation for text documents)
Assume xj are binary variables and xj = 1 if j−th word in our
dictionary appears in document x and xj = 0 otherwise

Define pjk := P(xj = 1|y = k) and πk := P(y = k) – here we are
thinking of pjk as being a distribution over words.

One can show (exercise) that the maximum likelihood estimate
of pjk and πk (constraining

∑
j pjk = 1 =

∑
k πk) is

pjk =
#

{
(x, y) ∈ S : xj = 1 and y = k

}
∑

j′ #
{
(x, y) ∈ S : xj′ = 1 and y = k

}

πk =
#{(x, y) ∈ S : y = k}

m
31

Dealing with rare words

Note that if, say, the h−th word is not in any training input data,

phk =
#

{
(x, y) ∈ S : xh = 1 and y = k

}
∑

h′ #
{
(x, y) ∈ S : xh′ = 1 and y = k

} =
0

mk
= 0, for all k

However, if a new document x contains the h−th word, we have:
phk = 0 ⇒ P(x|k) = 0 ⇒ P(x) = 0. Hence

P(k|x) =
P(x|k)πk

P(x)
=

0

0

To avoid this pathological situation we introduce the following
modified estimator (N is the number of words – including those
not in the training set)

phk =
#

{
(x, y) ∈ S : xh = 1 and y = k

}
+ 1

N +
∑

h′ #
{
(x, y) ∈ S : xh′ = 1 and y = k

}
32

