
Evaluating Explanations for Software Patches
Generated by Large Language Models

Dominik Sobania1[0000−0001−8873−7143], Alina Geiger1[0009−0002−3413−283X],
James Callan2[0000−0002−5692−6203], Alexander Brownlee3[0000−0003−2892−5059],
Carol Hanna2[0009−0009−7386−1622], Rebecca Moussa2[0000−0001−9123−6008], Mar
Zamorano López2[0000−0002−8872−4876], Justyna Petke2[0000−0002−7833−6044], and

Federica Sarro2[0000−0002−9146−442X]

1 Johannes Gutenberg University Mainz, Germany
{dsobania,geiger}@uni-mainz.de

2 University College London, United Kingdom
{james.callan.19,carol.hanna.21,r.moussa,maria.lopez.20,

j.petke,f.sarro}@ucl.ac.uk
3 University of Stirling, United Kingdom

alexander.brownlee@stir.ac.uk

Abstract. Large language models (LLMs) have recently been integrated
in a variety of applications including software engineering tasks. In this
work, we study the use of LLMs to enhance the explainability of soft-
ware patches. In particular, we evaluate the performance of GPT 3.5 in
explaining patches generated by the search-based automated program
repair system ARJA-e for 30 bugs from the popular Defects4J bench-
mark. We also investigate the performance achieved when explaining
the corresponding patches written by software developers. We find that
on average 84% of the LLM explanations for machine-generated patches
were correct and 54% were complete for the studied categories in at least
1 out of 3 runs. Furthermore, we find that the LLM generates more accu-
rate explanations for machine-generated patches than for human-written
ones.

Keywords: Large Language Models · Software Patches · AI Explain-
ability · Program Repair · Genetic Improvement

1 Introduction

Generative AI tools, especially large language models (LLMs), have recently been
used for a variety of general application scenarios [6]. Moreover, applications like
ChatGPT are known to an even broader public. In addition to these general
applications, LLMs are often used for software development tasks[3, 4] such as
automated code generation [2], bug fixing [12] and explaining source code [1].

Genetic improvement (GI) [11] uses search-based strategies to find patches
that improve existing software. GI can improve a software’s functional (i.e., fix
bugs) or non-functional properties (e.g., runtime). Despite the successful applica-
tion of GI in various application domains [11], GI has not yet seen a wider uptake



2 Sobania et al.

in industry. One of the limitations of current tools is the lack of explanations
of the generated patches. Thus it is not surprising, that the use of automatic
explanations has already been discussed [8] and investigated [7]. However, the
quality of the generated patch explanations has not yet been studied in detail.

Therefore, this work presents an empirical study investigating the quality
of LLM-generated explanations of the patches obtained when applying GI. For
comparison, we examine how well LLMs can explain human-written software
patches. Specifically, we use the API of the gpt-3.5-turbo-16k LLM model by
OpenAI to generate explanations for software patches, automatically generated
by one of the most well-known GI tools, namely ARJA-e [13], to fix 30 bugs
extracted from the popular Defects4J benchmark [5]. We also consider corre-
sponding human-written patches to fix the same bugs, in order to assess the
quality of LLM-generated explanations for patches generated automatically by
GI tooling vs. those applied manually by the developers. Each generated expla-
nation was evaluated by three independent reviewers.

We find that, on average across the studied categories, 84% of the explana-
tions for machine-generated patches were correct and 54% were complete in at
least 1 out of 3 runs. We observe a low level of complexity in the explanations.

Given the positive results achieved herein, in the future, it would be interest-
ing to extend the current investigation and include other GI tools, LLM models,
and benchmarks. We made the source code along with the relevant scripts and
all of the LLM’s patch explanations available online.4

2 Experimental Design

In this section, we explain in detail how we generated and evaluated the expla-
nations for the considered software patches.

2.1 Generation of Software Patch Explanations

To analyse and compare explanations of an LLM for human-written and machine-
generated patches, we considered bugs from three projects: Chart, Lang, and
Math, included in the well-known Defects4J benchmark [5] and used the API
of the gpt-3.5-turbo-16k LLM model by OpenAI for the explanations. In to-
tal, we used 30 randomly sampled bugs under the condition that all changes are
made in one file and the length of a file has a maximum of 1500 lines after remov-
ing comments, since the used LLM has an upper limit for the length of requests.
We took the human-written patches from Defects4J5 and the machine-generated
patches (one patch per bug) from the ARJA-e repository.6

The prompt we used to issue a request to the LLM is shown with some
example code lines in Fig. 1 and consists of three parts. In the first part, we
explain how we represent the changes introduced by a patch. In the second part,
4 https://github.com/SOLAR-group/ExplanationsForSoftwarePatches
5 https://github.com/rjust/defects4j
6 https://github.com/yyxhdy/arja/tree/arja-e



Evaluating Explanations for Software Patches Generated by LLMs 3

In the g iven code , l i n e s s t a r t i n g with an "o" i n d i c a t e
unchanged l i n e s , l i n e s s t a r t i n g with a "+" i n d i c a t e added
l i n e s , and l i n e s s t a r t i n g with a "−" i n d i c a t e removed l i n e s .
P lease exp la in only the mod i f i c a t i on s made us ing the
provided template :

Condition : Under what c i r cumstances or c ond i t i on s was the
change nece s sa ry ?
Consequence : What are the p o t e n t i a l impacts or e f f e c t s o f
t h i s change ?
Position : Where in the codebase was the change implemented?
Cause : What was the motivat ion f o r t h i s change ? Why was the
prev ious implementation i n s u f f i c i e n t or prob lemat ic ?
Change: How was the code or behavior be ing a l t e r e d to address
the i d e n t i f i e d cond i t i on or problem?

The code :

− import java . i o . S e r i a l i z a b l e ;
o import java . u t i l . Co l l e c t i o n s ;
+ import java . u t i l . L i s t ;

Fig. 1. The prompt we used for requests to the LLM with 3 example code lines. Line
breaks were added and relevant keywords are printed in bold font for better display.

we force the LLM to describe the main characteristics of a software patch as
identified by Liang et al. [9]. The third part consists of the source code of the
whole file where the patch was applied and each line is marked with the symbols
indicating the introduced changes.

Overall, we performed 3 runs for each manually and automatically generated
patch for each of the 30 bugs resulting in a total of 180 explanations. For the
requests to the LLM, we set the temperature t = 0.8, as used by Chen et al. [2].

2.2 Evaluation of the Software Patch Explanations

To evaluate the explanations of the considered patches, we carried out manual
assessment. Specifically, we provided each of our 9 reviewers with a set of 10
bugs with their corresponding patches. This means that each of these sets was
evaluated by 3 independent reviewers. Furthermore, we anonymized whether it
was a human-written or machine-generated patch during the evaluation process.

In order to ensure consistent evaluation, we used the following applicable
content-based categories for evaluation of explainable AI as recommended by
Nauta et al. [10]:

– Correctness: Is the explanation accurate with regards to the provided
patch?



4 Sobania et al.

– Completeness: Does the explanation of the patch describe the changes in
the patch in full?

– Complexity: Does the explanation for the patch have unnecessary com-
plexity?

– Continuity: Does the model give similar explanations for the same patch
over all 3 runs?

For each considered patch and each category (see Fig. 1), reviewers checked
whether the explanations given by the LLM are correct. After that, we used a
majority vote in order to get the final result. Furthermore, we calculated the
inter-rate agreement.

At least 1 run 3 out of 3 runs
Patch generated by: Machine Human Machine Human

Condition 24 21 12 7
Consequence 25 22 11 7

Correctness Position 29 29 22 21
Cause 25 21 9 6
Change 23 22 9 6

Condition 13 13 3 2
Consequence 16 14 5 4

Completeness Position 16 19 7 7
Cause 17 14 4 3
Change 19 18 6 3

Condition 5 7 0 1
Consequence 5 7 0 1

Complexity Position 4 3 0 0
Cause 5 9 0 1
Change 6 14 1 3

Condition - - 10 10
Consequence - - 11 6

Continuity Position - - 17 12
Cause - - 9 9
Change - - 11 8

Table 1. Results of the manual validation of the LLM-generated explanations for the
machine-generated and human-written patches for 30 bugs. At least 1 run refers to the
case that in at least 1 out of 3 runs, the reviewers evaluated the categories positively. 3
out of 3 refers to the case where the evaluation was positive for all runs. For Complexity
results are reported for a negative evaluation. Best results are marked in bold font.



Evaluating Explanations for Software Patches Generated by LLMs 5

3 Results

Table 1 shows the results of our evaluation for both the machine-generated and
the human-written patches. Since we performed 3 runs per patch (API calls to
retrieve a patch explanation), we report the sum of correct patch explanations
for the case where only 1 run per patch was correct and for the case where all 3
runs provided a correct patch explanation. Best results are printed in bold font.
Note that for the results in the Complexity category lower values are better.

We see that in most cases, best results are achieved for the machine-generated
patches. On average across all categories, explanations for machine-generated
patches are correct in 84% of the cases and complete in 54% of the cases in at least
1 out of 3 runs. For human patches, explanations were on average 76.67% correct
and 52% complete (in 1 out of 3 runs). It is thus noticeable that the results for
Correctness are quite high, but for Completeness we observe significantly lower
results. Although descriptions are often formally correct, important details are
sometimes missing. On a positive note, the complexity of the patch explanations
is generally very low.

4 Threats to Validity

It is worth mentioning, that we collected the LLM explanations via the API
for the gpt-3.5-turbo-16k model. Since this is a proprietary model offered by
OpenAI, future responses may differ from those in our experiments. Addition-
ally, the evaluation of the given explanations was done manually and therefore
reflects the subjective opinion of the reviewers. To counteract this, each patch
was evaluated by three reviewers and the final result was determined by a ma-
jority vote. Further, we calculated the inter-rate agreement among the reviewers
by analysing how often all three reviewers agreed in their ratings of the explana-
tions. We found that the inter-rate agreement between the reviewers was 84.27%.
Finally, the patches examined were all correct with respect to the existing soft-
ware tests, but this does not necessarily mean that they are correct in general.
However, this does not pose a threat to our evaluation, as we have investigated
how well LLMs can explain the changes made.

5 Conclusions and Future Work

In this paper, we evaluated the quality of explanations generated by an LLM
for software patches. Furthermore, we studied whether the quality of LLM ex-
planations differs for machine-generated and human-written patches. We found
that, on average across the studied categories, 84% of the LLM explanations for
machine-generated patches were correct and 54% were complete in at least 1
out of 3 runs. Our analysis shows that the explanations for machine-generated
patches were overall better than the explanations for human-written patches.

In future work, we intend to expand our study to include more benchmark
problems and patches generated by other GI tools, in addition to analysing LLM-
generated explanations for patches improving non-functional software properties.



6 Sobania et al.

Acknowledgements

Supported by UKRI EPSRC grant no. EP/P023991/1 and ERC grant no. 741278.

References

1. Chen, E., Huang, R., Chen, H.S., Tseng, Y.H., Li, L.Y.: GPTutor: a ChatGPT-
powered programming tool for code explanation. arXiv preprint arXiv:2305.01863
(2023)

2. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al.: Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021)

3. Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., Zhang,
J.M.: Large language models for software engineering: Survey and open problems
(2023)

4. Hou, X., Liu, Y., Yang, Z., Grundy, J., Zhao, Y., Li, L., Wang, K., Luo, X., Lo, D.,
Wang, H.: Large language models for software engineering: A systematic literature
review. arXiv:2308.10620 (2023)

5. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis. p. 437–440. ISSTA 2014,
Association for Computing Machinery, New York, NY, USA (2014)

6. Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., McHardy, R.: Chal-
lenges and applications of large language models. arXiv preprint arXiv:2307.10169
(2023)

7. Kang, S., Chen, B., Yoo, S., Lou, J.G.: Explainable automated debugging via
large language model-driven scientific debugging. arXiv preprint arXiv:2304.02195
(2023)

8. Krauss, O.: Exploring the use of natural language processing techniques for en-
hancing genetic improvement. In: 2023 IEEE/ACM International Workshop on
Genetic Improvement (GI). pp. 21–22. IEEE (2023)

9. Liang, J., Hou, Y., Zhou, S., Chen, J., Xiong, Y., Huang, G.: How to explain a
patch: An empirical study of patch explanations in open source projects. In: 2019
IEEE 30th International Symposium on Software Reliability Engineering (ISSRE).
pp. 58–69. IEEE (2019)

10. Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y., Schlötterer,
J., van Keulen, M., Seifert, C.: From anecdotal evidence to quantitative evaluation
methods: A systematic review on evaluating explainable AI. ACM Comput. Surv.
55(13s) (jul 2023)

11. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: a comprehensive survey. IEEE Transactions
on Evolutionary Computation 22(3), 415–432 (2017)

12. Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of the automatic bug
fixing performance of ChatGPT. In: 2023 IEEE/ACM International Workshop on
Automated Program Repair (APR). pp. 23–30. IEEE Computer Society (2023)

13. Yuan, Y., Banzhaf, W.: Toward better evolutionary program repair: An integrated
approach. ACM Transactions on Software Engineering and Methodology (TOSEM)
29(1), 1–53 (2020)


