
Enhancing Genetic Improvement Mutations
Using Large Language Models

Alexander E.I. Brownlee1[0000−0003−2892−5059], James
Callan2[0000−0002−5692−6203], Karine Even-Mendoza3[0000−0002−3099−1189], Alina

Geiger4[0009−0002−3413−283X], Carol Hanna2[0009−0009−7386−1622], Justyna
Petke2[0000−0002−7833−6044], Federica Sarro2[0000−0002−9146−442X], and

Dominik Sobania4[0000−0001−8873−7143]

1 University of Stirling, UK
2 University College London, UK

3 King’s College London, UK
4 Johannes Gutenberg University Mainz, Germany

Abstract. Large language models (LLMs) have been successfully ap-
plied to software engineering tasks, including program repair. However,
their application in search-based techniques such as Genetic Improve-
ment (GI) is still largely unexplored. In this paper, we evaluate the use
of LLMs as mutation operators for GI to improve the search process. We
expand the Gin Java GI toolkit to call OpenAI’s API to generate edits
for the JCodec tool. We randomly sample the space of edits using 5 dif-
ferent edit types. We find that the number of patches passing unit tests is
up to 75% higher with LLM-based edits than with standard Insert edits.
Further, we observe that the patches found with LLMs are generally less
diverse compared to standard edits. We ran GI with local search to find
runtime improvements. Although many improving patches are found by
LLM-enhanced GI, the best improving patch was found by standard GI.

Keywords: Large language models · Genetic Improvement

1 Introduction

As software systems grow larger and more complex, significant manual effort is
required to maintain them [2]. To reduce developer effort in software mainte-
nance and optimization tasks, automated paradigms are essential. Genetic Im-
provement (GI) [15] applies search-based techniques to improve non-functional
properties of existing software such as execution time as well as functional prop-
erties like repairing bugs. Although GI has had success in industry [12, 13], it
remains limited by the set of mutation operators it employs in the search [14].

Large Language Models (LLMs) have a wide range of applications as they are
able to process textual queries without additional training for the particular task
at hand. LLMs have been pre-trained on millions of code repositories spanning
many different programming languages [5]. Their use for software engineering
tasks has had great success [9, 6], showing promise also for program repair [17,

2 A. Brownlee et al.

19]. Kang and Yoo [10] have suggested that there is untapped potential in using
LLMs to enhance GI. GI uses the same mutation operators for different opti-
mization tasks. These operators are hand-crafted prior to starting the search
and thus result in a limited search space. We hypothesize that augmenting LLM
patch suggestions as an additional mutation operator will enrich the search space
and result in more successful variants.

In this paper, we conduct several experiments to explore whether using LLMs
as a mutation operator in GI can improve the efficiency and efficacy of the search.
Our results show that the LLM-generated patches have compilation rates of
51.32% and 53.54% for random search and local search, respectively (with the
Medium prompt category). Previously LLMs (using an LLM model as-is) were
shown to produce code that compiled roughly 40% of the time [16, 18]. We find
that randomly sampled LLM-based edits compiled and passed unit tests more
often compared to standard GI edits. We observe that the number of patches
passing unit tests is up to 75% higher for LLM-based edits than GI Insert edits.
However, we observe that patches found with LLMs are less diverse. For local
search, the best improvement is achieved using standard GI Statement edits,
followed by LLM-based edits. These findings demonstrate the potential of LLMs
as mutation operators and highlight the need for further research in this area.

2 Experimental Setup

To analyze the use of LLMs as a mutation operator in GI, we used the GPT
3.5 Turbo model by OpenAI and the GI toolbox Gin [3]. We experimented with
two types of search implemented within Gin: random search and local search.
Requests to the LLM using the OpenAI API were via the Langchain4J library,
with a temperature of 0.7. The target project for improvement in our experiments
was the popular JCodec [7] project which is written in Java. ‘Hot’ methods to
be targeted by the edits were identified using Gin’s profiler tool by repeating the
profiling 20 times and taking the union of the resulting set.

For the random sampling experiments, we set up the runs with statement-
level edits (copy/delete/replace/swap from [14] and insert break/continue/return
from [4]) and LLM edits, generating 1000 of each type at random. A timeout of
10000 milliseconds was used for each unit test to catch infinite loops introduced
by edits; exceeding the timeout counts as a test failure. For local search, exper-
iments were set up similarly. There were 10 repeat runs (one for each of the top
10 hot methods) but the runs were limited to 100 evaluations resulting in 1000
evaluations in total, matching the random search. In practice this was 99 edits
per run as the first was used to time the original unpatched code.

We experimented with three different prompts for sending requests to the
LLM for both types of search: a simple prompt, a medium prompt, and a
detailed prompt. With all three prompts, our implementation requests five
different variations of the code at hand. The simple prompt only requests the
code without any additional information. The medium prompt provides more
information about the code provided and the requirements, as shown in Fig-

Enhancing Genetic Improvement Mutations Using Large Language Models 3

Give me 5 d i f f e r e n t Java implementat ions o f t h i s method body :
‘ ‘ ‘
<code>
‘ ‘ ‘
This code be longs to p r o j e c t <projectname >.
Wrap a l l code in cur ly braces , i f i t i s not a l r eady .
Do not in c lude any method or c l a s s d e c l a r a t i o n s .
l a b e l a l l code as java .

Fig. 1. The medium prompt for LLM requests, with line breaks added for readability.

ure 1. Specifically, we provide the LLM with the programming language used,
the project that the code belongs to, as well as formatting instructions. The de-
tailed prompt extends the medium prompt with an example of a useful change.
This example was taken from results obtained by Brownlee et al. [4]. The patch
is a successful instance of the insert edit applied to the jCodec project (i.e., an
edit that compiled, passed the unit tests and offered a speedup over the original
code). We use the same example for all the detailed prompt requests used
in our experiments; this is because LLMs are capable of inductive reasoning
where the user presents specific information, and the LLM can use that input
to generate more general statements, further improved in GPT-4 [8].

LLM edits are applied by selecting a block statement at random in a target
‘hot’ method. This block’s content is <code> in the prompt. The first code block
in the LLM response is identified. Gin uses JavaParser (https://javaparser.org)
internally to represent target source files, so we attempt to parse the LLM sug-
gestion with JavaParser, and replace the original block with the LLM suggestion.

3 Results

The first experiment compares standard GI mutations, namely Insert and
Statement edits, with LLM edits using differently detailed prompts (Simple,
Medium, and Detailed) using Random Sampling. Table 1 shows results for
all patches as well as for unique patches only. We report how many patches
were successfully parsed by JavaParser (named as Valid), how many compiled,
and how many passed all unit tests (named as Passed). We excluded patches
syntactically equivalent to the original software. Best results are in bold.

We see that although substantially more valid patches were found with the
standard Insert and Statement edits, more passing patches could be found by
using the LLM-generated edits. In particular, for the Medium, and Detailed
prompts 292 and 230 patches passed the unit tests, respectively. For the Insert
and Statement edits only 166 and 91 passed the unit tests, respectively. Anec-
dotally, the hot methods with lowest/highest patch pass rates differed for each
operator: understanding this variation will be interesting for future investigation.

It is also notable that LLM patches are less diverse: over 50% more unique
patches were found by standard mutation operators than the LLM usingMedium,

4 A. Brownlee et al.

Table 1. Results of our Random Sampling experiment. We exclude patches syntacti-
cally equivalent to the original software in this table. For all and unique patches we
report: how many patches passed JavaParser, compiled, and passed all unit tests.

Unique All
EditCategory Patches Valid Compiled Passed Patches Valid Compiled Passed

Statement 896 819 199 80 967 869 227 91
Insert 785 785 284 161 860 860 295 166
Simple 193 0 0 0 1000 0 0 0
Medium 324 260 183 154 645 463 331 292
Detailed 332 268 126 110 606 456 250 230

Table 2. Local Search results. We exclude all empty patches. We report how many
patches compiled, passed all unit tests, and how many led to improvements in runtime.
We report best improvement found and median improvement among improving patches.

EditCategory Patches Compiled Passed ImpFound BestImp(ms) Median(ms)

Statement 990 213 105 71 508.0 137.0
Insert 948 414 264 136 313.0 81.0
Simple 990 2 2 2 176.0 137.5
Medium 990 530 520 164 395.0 75.5
Detailed 990 379 369 196 316.0 95.0

and Detailed prompts. With the Simple prompt, however, not a single patch
passed the unit tests, since the suggested edits often could not be parsed. Thus
detailed prompts are necessary to force LLM to generate usable outputs.

We investigated further the differences between Medium and Detailed
prompts to understand the reduction in performance with Detailed (in the
unique patches sets) as Medium had a higher number of compiled and passed
patches. In both prompt levels, the generated response was the same for 42
cases (out of the total unique valid cases). However, Detailed tended to gen-
erate longer responses with an average of 363 characters, whereas Medium had
an average of 304 characters. We manually examined several Detailed prompt
responses, in which we identified some including variables from other files, poten-
tially offering a significant expansion of the set of code variants GI can explore.

The second experiment expands our analysis, comparing the performance of
the standard and LLM edits with Local Search. Table 2 shows the results of
the Local Search experiment. We report the number of compiling and passing
patches as well as the number of patches were runtime improvements were found.
Furthermore, we report the median and best improvement in milliseconds (ms).
In the table, we excluded all empty patches. As before, best results are in bold.

Again, we see that more patches passing the unit tests could be found with
the LLM using theMedium, andDetailed prompts. In addition, more improve-
ments could be found by using the LLM with these prompts. Specifically, with
Medium andDetailed, we found 164 and 196 improvements, respectively, while
we only found 136 with Insert and 71 with Statement. The best improvement
could be found with 508 ms with the Statement edit. The best improvement
found using LLMs (using the Medium prompt) was only able to improve the
runtime by 395 ms. We also examined a series of edits in Local Search results to

Enhancing Genetic Improvement Mutations Using Large Language Models 5

gain insights into the distinctions between Medium and Detailed prompts due
to the low compilation rate of Detailed prompt’s responses. In the example, a
sequence of edits aimed to inline a call to function clip. The Detailed prompt
tried to incorporate the call almost immediately within a few edits, likely lead-
ing to invalid code. On the other hand, the Medium prompt made less radical
changes, gradually refining the code. It began by replacing the ternary opera-
tor expression with an if-then-else statement and system function calls before
eventually attempting to inline the clip function call.

4 Conclusions and Future Work

Genetic improvement of software is highly dependent on the mutation operators
it utilizes in the search process. To diversify the operators and enrich the search
space further, we incorporated a Large Language Model (LLM) as an operator.

Limitations. To generalise, future work should consider projects besides
our target, jCodec. Our experiments used an API giving us no control over the
responses generated by the LLM or any way of modifying or optimizing them.
Though we did not observe changes in behaviour during our experiments, Ope-
nAI may change the model at any time, so future work should consider local
models. We experimented with only three prompt types for LLM requests and
within this limited number of prompts found a variation in the results. Finally,
our implementation for parsing the responses from the LLMs was relatively sim-
plistic. However, this would only mean that our reported results are pessimistic
and an even larger improvement might be achieved by the LLM-based operator.

Summary. We found that, although more valid and diverse patches were
found with standard edits using Random Sampling, more patches passing the
unit tests were found with LLM-based edits. For example, with the LLM edit
using the Medium prompt, we found over 75% more patches passing the unit
tests than with the classic Insert edit. In our Local Search experiment, we
found the best improvement with the Statement edit (508 ms). The best LLM-
based improvement was found with the Medium prompt (395 ms). Thus there
is potential in exploring approaches combining both LLM and ‘classic’ GI edits.

Our experiments revealed that the prompts used for LLM requests greatly
affect the results. Thus, in future work, we hope to experiment more with prompt
engineering. It might also be helpful to mix prompts: e.g., starting with medium
then switching to detailed to make larger edits that break out of local minima.
Further, the possibility of combining LLM edits with others such as standard
copy/delete/replace/swap or PAR templates [11] could be interesting. Finally,
we hope to conduct more extensive experimentation on additional test programs.

Data Availability. The code, LLMs prompt and experimental infrastruc-
ture, data from the evaluation, and results are available as open source at [1]. The
code is also under the ‘llm’ branch of github.com/gintool/gin (commit 9fe9bdf;
branched from master commit 2359f57 pending full integration with Gin).

Acknowledgements UKRI EPSRC EP/P023991/1 and ERC 741278.

6 A. Brownlee et al.

References

1. Artifact of Enhancing Genetic Improvement Mutations Using Large Language
Models. Zenodo (Sep 2023). https://doi.org/10.5281/zenodo.8304433

2. Böhme, M., Soremekun, E.O., Chattopadhyay, S., Ugherughe, E., Zeller, A.: Where
is the bug and how is it fixed? An experiment with practitioners. In: Proc. ACM
Symposium on the Foundations of Software Engineering. pp. 117–128 (2017)

3. Brownlee, A.E., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.:
Gin: genetic improvement research made easy. In: GECCO. pp. 985–993 (2019)

4. Brownlee, A.E., Petke, J., Rasburn, A.F.: Injecting shortcuts for faster running
Java code. In: IEEE CEC 2020. p. 1–8

5. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al.: Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021)

6. Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., Zhang,
J.M.: Large language models for software engineering: Survey and open problems
(2023)

7. Github - jcodec/jcodec: Jcodec main repo, https://github.com/jcodec/jcodec
8. Han, S.J., Ransom, K.J., Perfors, A., Kemp, C.: Inductive reasoning in humans

and large language models. Cognitive Systems Research p. 101155 (2023)
9. Hou, X., Liu, Y., Yang, Z., Grundy, J., Zhao, Y., Li, L., Wang, K., Luo, X., Lo, D.,

Wang, H.: Large language models for software engineering: A systematic literature
review. arXiv:2308.10620 (2023)

10. Kang, S., Yoo, S.: Towards objective-tailored genetic improvement through large
language models. arXiv:2304.09386 (2023)

11. Kim, D., Nam, J., Song, J., Kim, S.: Automatic Patch Generation Learned from
Human-Written Patches (2013), http://logging.apache.org/log4j/

12. Kirbas, S., Windels, E., Mcbello, O., Kells, K., Pagano, M., Szalanski, R., Nowack,
V., Winter, E., Counsell, S., Bowes, D., Hall, T., Haraldsson, S., Woodward, J.:
On the introduction of automatic program repair in bloomberg. IEEE Software
38(4), 43–51 (2021)

13. Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A.,
Scott, A.: Sapfix: Automated end-to-end repair at scale. In: ICSE-SEIP. pp. 269–
278 (2019)

14. Petke, J., Alexander, B., Barr, E.T., Brownlee, A.E., Wagner, M., White, D.R.:
Program transformation landscapes for automated program modification using
Gin. Empirical Software Engineering 28(4), 1–41 (2023)

15. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: A comprehensive survey. IEEE Transac-
tions on Evolutionary Computation 22, 415–432 (2018)

16. Siddiq, M.L., Santos, J., Tanvir, R.H., Ulfat, N., Rifat, F.A., Lopes, V.C.: Exploring
the effectiveness of large language models in generating unit tests. arXiv preprint
arXiv:2305.00418 (2023)

17. Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of the automatic bug
fixing performance of chatgpt. In: 2023 IEEE/ACM International Workshop on
Automated Program Repair (APR). pp. 23–30. IEEE Computer Society (2023)

18. Xia, C.S., Paltenghi, M., Tian, J.L., Pradel, M., Zhang, L.: Universal fuzzing via
large language models. arXiv preprint arXiv:2308.04748 (2023)

19. Xia, C.S., Zhang, L.: Keep the conversation going: Fixing 162 out of 337 bugs for
$0.42 each using chatgpt. arXiv preprint arXiv:2304.00385 (2023)

