Textual vs. Graphical Visualization of Fine-Grained Dependences
Extended Abstract

Jens Krinke
FernUniversi&t in Hagen

1 Introduction Because this general approach to layout PDGs had
A slice extracts those statements from a program that pof—a”ed’ a declarative qpproach hag be_en implemented. It
. . p . is based on the following observations:
tentially have an influence onto a specific statement of in-
terest that is the slicing criterion. Slicing has found its 1. The control-dependence subgraph is similar to the
way into various applications. It is mostly used in the area structure of the abstract syntax tree.
of software maintenance and reengineering, e.g. in testing,
impact analysis, and cohesion measurement.

One of the main slicing approaches uses reachability
analysis in program dependence graphs (PDGs). Program
dependence graphs mainly consist of nodes representin@e first observation leads to the requirement to have a
the statements of a program, and control and data depet¥ee-like layout of the control dependence subgraph with
dence edges: the additional requirement that the order of the nodes in a

hierarchy level should be the same as the order of the cor-

e Control dependence between two statement nodes e¥esponding statements in the source code. The second ob-

ists if one statement controls the execution of theservation leads to an approach where the data dependence
other (e.g. through if- or while-statements). edges should be added to the resulting layout without mod-
. ifying it. As most data dependence edges would now cross
» Data dependence between two statement nodes exisg e narts of the graph, a Manhattan layout is adequate.
if a definition of a variable at one statement might tpis enaples an orthogonal layout of edges with fixed start
reach the usage of the same variable at another staterq end points. This approach has been implemented in

ment. a tool that visualizes system dependence graphs. Starting

For the interprocedural variants IPDG and SDG the graphérom a graphical representati_on O_f the Cf_i" graph, the user

are extended with additional interprocedural edges (Whicl'?an sglect procedure_s and visualize their PDGs. Thrf’“gh

are not discussed here). THe¢kward slice S(n) of an _select|on of n.odes, slices can be calculated_ and are visual-

IPDG at noden consists of all nodes on which (transi- ized throygh mveﬁed nodes in the PDGs laid out.

tively) depends via an interprocedurally realizable path. EXPerience with the presented tool shows that the lay-
The program dependence graph itself and the computeBUt is very comprehensible for medium sized procedures

slices within the program dependence graph are results th&d thfe #Ser eaﬁily kﬁeps a cognigve mgp from the St”#:'
should be presented to the user if not used in followingtU® ©f the graph to the source code and vice versa. This

analyses. As graphical presentations are often more intlﬁwapping is supported by the possibility to switch between

itive than textual ones, a graphical visualization of PDGs? textual visualization of the source code and the graphical
is desirable layout of the current procedure. Sets of nodes marked in

the graph can be highlighted in the source code and marked
2 Visualization of PDGs regions in the source code can pe high_light.eq in the graph.

Together with additional navigational aids, it is easy to see
Layout of graphs is a widely explored research field withwhat statements influence which other statements and how.
many general solutions available in graph drawing tools. However, experience has shown that the graphical vi-
We evaluated some of these toalaVinci VCG anddot) sualization is still too complex. For larger procedures the
to lay out PDGs. Our experience with these tools to layounumber of nodes and edges is too high, and it takes very
PDGs has been disappointing. The resulting layouts weréong to follow edges across multiple pages by scrolling.
visually appealing but unusable, as it was not possible to The presented graphical visualization has been found
comprehend the graph. The reason is that the viewer hae be far too complex for large programs and non-intuitive
no cognitive mapping back to the source code, which is thdor visualization of slices. Therefore the graphical visu-
representation he is used to. The user expects a represeglization has been extended with a visualization in source
tation that is either similar to the abstract syntax tree (as @ode. This causes a non-trivial projection of nodes onto
presentation of the syntactical structure), or a control-flow-source code, because of the fine-grained structure of the
graph like presentation. dependences between statements.

2. Most edges in a PDG are data dependence edges.
Usually, a node with a variable definition has more
than one outgoing data dependence edge.

3 Visualization of Locality 2. A (backward) slice for a criterion procedufis the
set of statements (or nodes in the PDG) which may

Independent of visualization, one of the problems in un- .
influence a statement .

derstanding a slice is to decide why a specific statement is

included in that slice and how strong the influence of thatThese definitions can be adapted to the other slicing and
statement is onto the slicing criterion. A slice cannot an-chopping variants, including the adaption of the needed

swer these questions as it does not contain any qualitativgigorithms. It will not be presented here, as it is straight-
information. Probably the most important attributdds forward.

cality. Users are more interested in facts that are near the As previously noted, it is helpful to identify the ‘hot’

current pOint of interest than on those far away. A Simpleprocedures and giobai variables. However, to |dent|fy
but very useful aid is to provide the user with navigationthem, we have to measure the procedures’ and variables’
along the dependences: For a selected statement, show ﬁ.‘Hpact on the System_ A Simpie measurement is to com-
statements that are directly dependent (or vice versa). pute slices for every procedure or global variable and
A more general approach to accomplish locality in slic- record the size of the computed slices. However, this might
ing is to limit the Iength of a path between the criterion be too Simpie_ A Siightiy better approach is to Compute
and the reached statement. Using paths in program depeghops between the procedures or variables. A visualization
dence graphs has instead of paths in control flow graphgol has been implemented that computes a n matrix
has an advantage. A statement that has a direct influenggy ,, procedures or variables, where every elementof
on the criterion will be reached by a path with length one, the matrix is the size of a chop from the procedure or vari-
independent of textual or control flow distance. ablen; ton;. The matrix is painted using a color for every
Distance-limited slices cannot Slmply be visualized entry' Corresponding to the size—the bigger' the darker.
with the techniques presented in the previous section withwjith this tool, it is easy to get an overall impression of
out any modification. Another pOSSlblllty is to indicate the software to anaiyze_ |mportant procedures or giobai
the distances from the (slicing) criterion for any node invyariables can be identified on first sight and their relation-
the (pOSS|b|y distance'limiIEd) slice. The textual visual- Shlp can be studied. Doing this as a preparing Stage aids
ization from the pI'EViOUS section is therefore modified notin later, more thorough investigations with traditional slic-

only to highlight the nodes in the textual representation,ing visualizations like the ones presented in the previous
but also to give any source code fragment a color that repsections.

resents the distance of the equivalent nodes to the crite-
rion. The slicing algorithm needs not to be changed in5 Conclusions
order to accommodate the distance computation—it is suf-

ficient to remember the distance of a node during breadthPeSPite the widespread use of graphical visualization in
first search software maintenance and reverse engineering, our and

other’s experiences for graphical visualization of program
dependence and program slices are different. For tasks re-
lated to large-scale understanding graphical visualization
For large-scale program understanding the presented vistras proven to be successful. The main reason is that the
alization techniques are not very helpful. If an unknown number of nodes (or objects) to be visualized is kept very
program is analyzed, the very detailed information of pro-low by clustering techniques. Tasks related to understand-
gram dependences and slices is overwhelming, and a mudhg dependences in detail (like program dependences and
less detailed information is needed. The user who tries tglices) suffer from the sheer amount of data to be visual-
understand the program will start with variables and proceized. The various experiences show that graphical visu-
dures and not with statements. To understand a previouslylization has more disadvantages than advantages in this
unknown program, it is helpful to identify the ‘hot’ proce- area.
dures and global variables—the procedures and variables The visualization of slices in textual form has shown to
with the highest impact on the system. be much more effective, because the programmer is accus-
This section will show how slicing and chopping can tomed to representations similar to source code. However,
help to visualize programs in a more abstract way, illus-slices are still hard to understand due to the loss of local-
trating relations between variables or procedur€sop- ity. Distance-limited slicing and its visualization can help,
ping reveals the statements involved in a transitive depenbecause it limits the distance of the influence to the current
dence from one specific statement (the source criterion) tpoint of interest. The visualization of the distance shows
another (the target criterion). A chop for a chopping crite-immediately how important a statement is for the current
rion (s, t) is the set of nodes that are part of an influenceinfluence.

4 Abstract Visualization

of the (source) node onto the (target) node For large-scale program understanding none of the de-
It is possible to define slices for variables or proceduresailed slicing visualizations are helpful. The presented ap-
informally: proach to visualize the influence range of variables and

procedures by visualizing the size of chops can help the

1. A (backward) slice for a criterion variable is the user to identify “hot spots” of the program very fast.
set of statements (or nodes in the PDG) which may

influence variable at some point in the program.

