
Context-Sensitivity Matters, But Context Does Not

Jens Krinke
FernUniversiẗat in Hagen

Hagen, Germany

Abstract

Whether context-sensitive program analysis is more ef-
fective than context-insensitive analysis is an ongoing dis-
cussion. There is evidence that context-sensitivity matters
in complex analyses like pointer analysis or program slic-
ing. One might think that the context itself matters, because
empirical data shows that context-sensitive program slicing
is more precise and under some circumstances even faster
than context-insensitive program slicing. Based on some ex-
periments, we will show that this is not the case.

The experiment requires backward slices to return to call
sites specified by an abstract call stack. Such call stacks can
be seen as a poor man’s dynamic slicing: For a concrete ex-
ecution, the call stack is captured, and static slices are re-
stricted to the captured stack. The experiment shows that
there is no significant increase in precision of the restricted
form of slicing compared to the unrestricted traditional slic-
ing. The reason is that a large part of an average slice is due
to called procedures.

1. Introduction

A slice extracts those statements from a program that po-
tentially have an influence on a specific statement of inter-
est which is the slicing criterion. Originally, slicing was de-
fined by Weiser in 1979; he presented an approach to com-
pute slices based on iterative data flow analysis [20, 21].
The other main approach to slicing uses reachability analy-
sis in program dependence graphs (PDGs) [7]. Program de-
pendence graphs mainly consist of nodes representing the
statements of a program as well as control and data depen-
dence edges:

• Control dependence between two statement nodes ex-
ists if one statement controls the execution of the other
(e.g. through if- or while-statements).

• Data dependence between two statement nodes exists
if a definition of a variable at one statement might
reach the usage of the same variable at another state-
ment.

A slice can now be computed in three simple steps: Map
the slicing criterion on a node, find all backward reachable
nodes, and map the reached nodes back on the statements.

The extension of the PDG forinterprocedural programs
introduces more nodes and edges: For every procedure a
procedure dependence graphis constructed, which is basi-
cally a PDG withformal-inand-out nodes for every formal
parameter of the procedure. A procedure call is represented
by acall node andactual-inand-out nodes for each actual
parameter. The call node is connected to the entry node by a
call edge, theactual-innodes are connected to their match-
ing formal-innodes viaparameter-inedges, and theactual-
outnodes are connected to their matchingformal-outnodes
via parameter-outedges. Such a graph is calledInterproce-
dural Program Dependence Graph (IPDG). TheSystem De-
pendence Graph (SDG)is an IPDG, wheresummary edges
between actual-in and actual-out have been added repre-
senting transitive dependence due to calls [10].

To slice programs with procedures, it is not enough to
perform a reachability analysis on IPDGs or SDGs. The re-
sulting slices are not accurate as thecalling contextis not
preserved: The algorithm may traverse a parameter-in edge
coming from a call site into a procedure, traverse some
edges there, and finally traverse a parameter-out edge go-
ing to a different call site. The sequence of traversed edges
(the path) is anunrealizable path: It is impossible for an ex-
ecution that a called procedure does not return to its call
site. We consider an interprocedural slice to bepreciseif all
nodes included in the slice are reachable from the criterion
by arealizablepath. Precise interprocedural slices can effi-
ciently be computed by a two-pass algorithm that relies on
summary edges [10].

The next section will discuss empirical results and re-
lated work on how context-sensitive program slicing com-
pares to context-insensitive slicing. Section 3 contains a
new form of program slicing that restricts the slice to obey
a specified calling context. That approach is used for an ex-
periment in Section 4 to argue about context-sensitivity and
context. The counter-intuitive results of the experiment are
explained before the last section draws conclusions.

c©2004 IEEE. To be published in the Proceedings Fourth IEEE International Workshop on Source Code Analysis and Manipulation, 2004 in Chicago, USA.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE.



2. Previous Results

There has been some debate whether the increased preci-
sion is worth the increased complexity of context-sensitive
program analysis. There is no final conclusion as every pro-
gram analysis differs. For pointer analysis, context-sensitive
and context-insensitive analyses exist, however, many au-
thors claim that context-sensitive pointer analysis is too ex-
pensive for only a small increase in precision [9, 8].

The case is different for program slicing: For slicers
that use a Weiser-style algorithm based on data flow equa-
tions, context-sensitive slicing is expensive. The experi-
ments presented in [4, 16] show that unlimited context-
sensitive Weiser-style slicing is not affordable; Mock et al
[16] limit the depth of the considered context to two. This
means that the slicing algorithm only returns for a chain
of two call sites to the correct call site and is context-
insensitive after that. With this limited context-sensitivity
the conducted experiments show no large increase in pre-
cision. These results are in contrast to at least three ex-
periments done with PDG-based slicing. The first, done by
Agrawal and Guo [1], presented results stating that context-
sensitive slicing is faster and more precise than context-
insensitive slicing. However, their results are doubtful be-
cause this approach has been shown to be incorrect in the
second large study performed by Krinke [12]. There, the ex-
periments showed that context-sensitive slicing in the style
of Horwitz et al [10, 19] is always much more precise than
context-insensitive slicing. On average, the slices computed
by the context-insensitive slicing algorithm are 67% larger
than the ones computed by the context-sensitive algorithm.
Moreover, the context-insensitive algorithm is even slower;
on average, it needs 23% more time. The third large scale
study performed by Binkley and Harman [6] had similar
results based on a very large set of test cases. Their algo-
rithm is also based on PDGs and uses the original two-pass
algorithm [10] implemented in the CodeSurfer slicing tool
[3]. Their results showed that context-insensitive slices are
on average 50% larger than their context-sensitive counter-
parts. The results are not directly comparable to Krinke’s
results, because of different ways to measure slice sizes.

The results for PDG-based slicing contradict the
ones presented by Mock et al [16]. Therefore, Krinke
[12] also experimented with PDG-based slicing algo-
rithms that rely on explicit context-sensitivity and handle it
similar to Weiser-style algorithms. The performed experi-
ments limit the depth of the context similar to the approach
of Mock et al. To assess the results with limited context,
Krinke compared the size of the computed slices against
the ones computed by the context-insensitive and the (un-
limited) context-sensitive algorithm. He considered the
size of the slices computed by the context-insensitive algo-
rithm as 0% precision and the size of the slices computed

by the unlimited context-sensitive algorithm as 100% pre-
cision. For experiments done with different limits, he
reported increasing numbers of precision. For exam-
ple, even a limit of one results in an average precision
of 63% and a limit of 6 already reaches 98% preci-
sion.

Binkley [5] defines calling-context slicesto include
those statements that influence the criterion in a spe-
cific calling context, but no other calling context. This
algorithm is used in regression test selection and optimiza-
tion. However, Binkley does not report empirical data on
his algorithms. His algorithm is very similar to the one pre-
sented next, but imprecise as shown at the end of the next
section.

3. Context-Restricted Slicing

The results of the PDG-based slicing studies suggest
that context matters in slicing algorithms, and that context-
sensitive algorithms have an enhanced precision with de-
creased computation time. This may lead to the assumption
that the context itself is the reason for precision. This leads
us to the creation of a “poor man’s dynamic slicer”. Dur-
ing debugging, the programmer is not interested in all pos-
sible executions, but in one specific, e.g. if we want to find
out why a program crashed at a certain point. Because static
slicing does not consider a specific execution but all possi-
ble executions, it does not suit such debugging tasks very
well. Instead, dynamic slicing [11] has been developed; it
computes slices which are specific to one particular execu-
tion. Because of this restriction, dynamic slices are more
precise than static slices. However, the computation of dy-
namic slices is expensive and has to be redone for every per-
formed execution.

As yet, no ready-to-use dynamic slicer is available. In-
stead, one has to rely on one of the available static slicers
like CodeSurfer [3], Sprite [4, 16], or Unravel [15]. This re-
sults in the following scenario: If a crashed program is de-
bugged, we can normally extract the current call stack that
leads to a crash. A simple adaptation of the slicing algorithm
could force the computed slice to obey the extracted call
stack by requiring called procedures to return to the call-
ing procedure as found in the call stack.

A program analysis is context-sensitive, if it only con-
siders interprocedurally realizable paths. One way to de-
scribe those paths is via context-free language reachability
as done by Reps [18]: The intraprocedural program depen-
dence graph can be seen as a finite automaton and the in-
traprocedurally realizable paths are words of its accepted
language. Therefore, reachability in the program depen-
dence graph is an instance of regular language reachability.
The problem in interprocedural reachability is the proper
matching of call edges to return edges. This can be achieved

2



by defining a context-free language on top of the IPDG.
First, we assume that call and actual parameter nodes are
marked with a label for their call sitec. Edges in the IPDG
are now marked according to their source and target nodes:

• Call edges between a call nodem at call sitec and a
noden in procedurep are marked with “(c”.

• Parameter-in edges between an actual-in parameter
nodem at call sitec and a formal-in noden in pro-
cedurep are also marked with “(c”.

• Parameter-out edges between a formal-out node in pro-
cedurep and an actual-out noden at call sitec are
marked with “)c”.

• All other edges are marked withε.

Let Σ be the set of all edge labels in an IPDGG. Every path
in G induces a word overΣ by concatenating all the labels
of the edges that are on the path. A path is an interproce-
durally matchedpath if it is a word of the context-free lan-
guage defined by:

M → MM
| (cM)c ∀(c∈ Σ
| ε

This grammar assures the proper matching of calls and re-
turns by simulating an abstract call stack.

Interprocedurally matched paths require their start and
end node to be in the same procedure. Interprocedurally re-
alizable paths with start and end node in different proce-
dures have only partially matching calls and returns: De-
pendent on whether the end node is lower or higher in
the abstract call stack, the paths are right-balanced or left-
balanced. A path is an interprocedurallyright-balanced
path if it is a word of the context-free language defined by:

R → RR
| M
| (c ∀(c∈ Σ
| ε

Here, every)c is properly matched to a(c to the left, but the
converse need not hold. A path is an interprocedurallyleft-
balancedpath if it is a word of the context-free language
defined by:

L → LL
| M
| )c ∀(c∈ Σ
| ε

An interprocedurally realizable pathstarts as a left-
balanced path, and ends as a right-balanced path:

I → LR

Interprocedural reachability between nodes in PDGs and
context-sensitive slices are now defined based on interpro-
cedurally realizable paths:

Definition 1 (Interprocedural Reachability)
A noden is interprocedurally reachablefrom nodem, iff an
interprocedurally realizable path fromm to n in the IPDG
exists, denoted asm →?

R n.

As noted earlier, we consider an interprocedural slice to
be preciseif all nodes included in the slice are reachable
from the criterion by an interprocedurally realizable path:

Definition 2 (Slice in an IPDG)
The (backward) sliceS(n) of an IPDGG = (N,E) at node
n ∈ N consists of all nodes on whichn (transitively) de-
pends via an interprocedurally realizable path:

S(n) = {m ∈ N | m →?

R n}

These definitions cannot be used in an algorithm directly,
because it is impractical to check if paths are interprocedu-
rally realizable.

Accurate slices can be calculated with a modified algo-
rithm on SDGs [10]: The benefit of SDGs is the presence
of summaryedges that represent transitive dependence due
to calls. Summary edges can be used to identify actual-out
nodes that are reachable from actual-in nodes by an inter-
procedurally realizable path through the called procedure
without analyzing it. The idea of the slicing algorithm us-
ing summary edges [10, 19] is to first slice from the cri-
terion ascendinginto calling procedures, and then to slice
from all visited nodesdescendinginto called procedures.

Now, we restrict an interprocedurally realizable path to
a call stacks. A call stacks is represented by a list of
call sitesci: s = 〈c1, . . . , ck〉. A pathmatches a call stack
s if it is a word of the context-free language induced by
s = 〈c1, . . . , ck〉:

I → L
| L(ck

M
| L(ck−1M(ck

M
...
| L(c1M . . . (ck

M

This requires the path to return to the chain of call sites in
the call stack if there is no matching call.

Definition 3 (Context-Restricted Slice)
The (backward) slice S(n, s) of an IPDGG = (N,E) at
noden ∈ N restricted to the call stacks consists of all
nodes on whichn (transitively) depends via an interproce-
durally realizable path that matches the call stacks:

S(n, s) = {m ∈ N | m
s
→?

R n}

Here,m
s
→?

R n denotes that there exists an interprocedu-
rally realizable path fromm to n matchings. Note that
a context-restricted slice requires the criterionn to be in
a procedure called from the topmost call siteck of s =
〈c1, . . . , ck〉.

3



Input: G = (N,E) the given SDG
n ∈ N the given slicing criterion
s = 〈ci, . . . , ck〉 the given call stack

Output: S ⊆ N the slice for the criterionn

W up = {n}
W down = ∅
S = {n}

first pass, ascending slice
for i = k . . . 1 do

handle the calling context site by site
W = W up

W up = ∅
while W 6= ∅ worklist is not emptydo

W = W/{n} remove one element from the worklist
foreachm → n ∈ E do

if m /∈ S then
if m → n is a parameter-out edge (m

po→ n) then
delay the further traversal until the second pass
W down = W down ∪ {m}
S = S ∪ {m}

elsif m → n is a parameter-in or call edge (m
pi,cl→ n)

and the call site ofm is ci then
traversal will continue in the next iteration
W up = W up ∪ {m}
S = S ∪ {m}

else
W = W ∪ {m}
S = S ∪ {m}

second pass, descending slice
while W down 6= ∅ worklist is not emptydo

W down = W down/{n} remove one element from the worklist
foreachm ⇀ n ∈ E do

if m /∈ S then

if m ⇀ n is not a parameter-in or call edge (m
pi,cl→ n) then

W down = W down ∪ {m}
S = S ∪ {m}

return S the set of all visited nodes

Figure 1. Summary Information Slicing (in SDGs)

The algorithm in Figure 1 computes a context-restricted
slice. It is a variant of Krinke’s context-sensitive slicing al-
gorithm [12], which is a variant of Horwitz et al’s algo-
rithm [10, 19]. Here, the first pass that computes the slices
stopping at parameter-in or call edges has been changed
such that it is repeated once for every call siteci of the
specified call stack. In each iteration, every node reachable
via intraprocedural edges is added to the worklistW . If a

parameter-out edge is traversed, the reached node is added
to the worklistW down, which is processed in the second
pass. If parameter-in or call edges are traversed, the reached
node has to be part of the current call siteci. If that is the
case, the reached node is added to the worklistW up, which
is used as the initial worklistW for the next iteration that
processes call siteci−1. All intraprocedural edges are tra-
versed in the current iteration.

4



The presented algorithm computes context-restricted slices
which are defined almost identical to Binkley’s calling-
context slices [5]. The algorithm he presented basically
computes a slice without the first pass for each call site
in the calling context: Starting with the criterion, a (second
pass) slice is computed ignoring edges that lead into a call-
ing procedure, but traversing edges that lead into called pro-
cedures. The reached formal-in nodes are extracted from the
computed slice, and mapped to the corresponding actual-in
nodes at the next call site of the current calling context. The
call site is removed from the calling context, and the set of
actual-in nodes is used as the slicing criterion for the next it-
eration, which is repeated until the calling context is empty.
This algorithm is imprecise, because it mixes the first pass
with the second. Consider the following example:

1 int g() {
2 a = ...;
3 return f(a);
4 }
5
6 int f(x) {
7 if (...)
8 b = f(0);
9 return x;

10 }

The corresponding PDG is shown in Figure 2. We com-
pute the backward slice for variableb in line 8 (node 12)
within the calling context〈⊥, 3〉 (⊥ represents the invoca-
tion from the runtime system). Binkley’s algorithm starts by
computing a slice that traverses the parameter-out edge be-
tween nodes 12 and 13 due to the recursive call of func-
tion f (nodes 7–13). It then extracts the formal-in node 8
for x in line 6, and maps it to the actual-in node 4 fora in
line 3, because the current call site is 3. The subsequent it-
eration adds nodes 1–4 and thus, line 2 to the slice. How-
ever, this line should not be in the slice, because line 2 never
has an influence on line 8.

The algorithm in Figure 1 starts with the first iteration
for call site 3. It also encounters the parameter-out edge be-
tween nodes 12 and 13 due to the recursive call, but delays
the further traversal to the second pass. It encounters the call
edge between nodes 3 and 7 and delays the further traver-
sal to the second iteration. Thus, the first iteration inserts
nodes 7 and 9–12 into the slice. The next iteration (call site
⊥) continues at node 3 and adds nodes 1 and 3 to the slice.
As no interprocedural edges are encountered and the calling
context has been completely traversed, the first pass is com-
plete. The second pass starts at node 13 and adds nodes 8
and 13 to the slice. The encountered interprocedural edges
are ignored and thus, the second pass is complete. The fi-
nal slice consists of nodes 1, 3, and 7–13. It does not in-
clude line 2 (node 2).

13

x_in = a

int f(x)

a = ...

if (...)

x_in = 0

call f(0)

b = f_out

f_out = x

int g()

call f(x)

g_out

f_out

x = x_in

Intraprocedural control dependence

Interprocedural dependence (control and data)

Intraprocedural data dependence

Summary (transitive dependence) edge

1

2

3

4 5

6

7

8

9

10

11 12

Figure 2. A PDG example

4. Experiment

We have implemented the above algorithm in our slic-
ing infrastructure [14, 12, 13] and performed two case stud-
ies, based on the programsctags andpatch . For each of
the programs we performed one characteristic execution in
a debugger. On every execution of a procedure, we dumped
and extracted the current call stack. This produced one set
of call stacks for each program. We then computed back-
ward slices for each formal-in parameter node of the in-
tercepted procedure for each call stack. We computed each
slice twice, once using context-restricted slicing and once
using traditional context-sensitive slicing. The results are
shown in Table 1 for the two test casesctags (left col-
umn) andpath (right column). The first two rows show
the number of unique call stacks extracted from the test ex-
ecution, and the number of computed slices. The remaining
rows show the average slice size measured in SDG nodes
and as a percentage of the SDG.

5



ctags patch
unique stacks 186 85
slices 4136 2569
average size context-sensitive slice 2100 7109
average size context-restricted slice 1914 7021
average size context-sensitive slice 20% 34%
average size context-restricted slice 19% 34%
average size reduction 9% 1%

Table 1. Average sizes of context-sensitive
and -restricted slices

The results do not confirm the expected effect: context-
restricted slices do not have a much higher precision than
context-sensitive slices. Though the context-restricted slice
is 9% smaller forctags than the context-sensitive slice,
the percentage of the complete program just decreases from
20% to 19%. For the other testpatch , the average size for
the context-restricted slice is just 1% smaller, and the dif-
ference in percentage of the complete program is negligi-
ble.

So the question is why there is just a small size reduc-
tion? Our hypothesis is that this is related to unrestricted
called procedures. Context-restricted slices only restrict the
calling-context of calling procedures. The context of called
procedures is not restricted (as long as called procedures
are handled context-sensitively). We believe that a large
part of an average slice is due to called procedures. To in-
vestigate this, we repeated the experiment withtruncated
backward slicing. A truncated (backward) slice does not
contain nodes from called procedures; it does not descend
into them. To compute it, the second pass of the slicing
algorithm is left out (because it computes exactly those
nodes). A truncated (backward) slice is computed by al-
ways ignoring the parameter-out edges, as this would pro-
cess called procedures during backward traversal. The algo-
rithm in Figure 1 can be adapted to the truncated version ac-
cordingly: We remove the second pass and the first branch
of the if-elsif-then-cascade. With this modification, we re-
peated the experiment; Table 2 shows the result. We can
see that the average truncated slice is much smaller than a
non-truncated slice. Forctags , the size went down from
2100 to 924 nodes of the SDG (a 56% reduction), and for
patch , it went down from 7109 to 2916 nodes (a 59% re-
duction). This illustrates that the majority of nodes in a slice
are nodes of called procedures. The numbers for context-
restricted slices now support our hypothesis: Forctags ,
the context-restricted slice is on average half the size of
a context-sensitive slice, and forpatch , it is still 42%
smaller. However, we still expected a larger reduction be-
cause of the following observation: Forctags , we deter-
mined that on average, every procedure is called from three

ctags patch
average size context-sensitive slice 924 2916
average size context-restricted slice 463 1701
average size context-sensitive slice 9% 14%
average size context-restricted slice 4% 8%
average size reduction 50% 42%

Table 2. Average sizes of for truncated slices

different call sites, and forpatch , we measured 4.8 dif-
ferent call sites. We also measured the average size of the
call stacks, which is 8.5 forctags and 4.2 forpatch .
These numbers suggest that a context-sensitive truncated
slice would visit many more procedures than a context-
restricted one. However, values around 50% suggest that
there are not so many alternative call stacks that can lead
to a specific point of execution. A further investigation of
this topic is planned.

It must be noted that both programs had no function
pointers. It is expected that for programs making heavy use
of function pointers the results may be different, because
function pointers have a strong influence on the precision of
static slices. The same is expected for object oriented pro-
grams due to dynamic binding.

5. Conclusions

The presented approach of context-restricted slices can
efficiently be implemented in current static slicing tools that
are based on PDGs. For debugging, context-restricted slic-
ing can be used as a poor man’s dynamic slicer. However,
the size reduction is not large enough for the non-truncated
slices. We plan to integrate and experiment with other light-
weight approaches like approximate dynamic slicing [2]
that captures whether a statement corresponding to a node in
the PDG has ever been executed, or call-mark slicing [17],
where it is captured whether a procedure has ever been ex-
ecuted.

The presented experiment adds another aspect to the dis-
cussion about context-sensitive or context-insensitive pro-
gram analysis. For program slicing, earlier studies showed
evidence that context-sensitive slicing algorithms are much
more precise and can even be faster than their context-
insensitive counterparts. However, the experiment of this
approach shows that restricting slices to specific contexts
does not lead to significant smaller slices.

We do not claim that this is a general result, as the ex-
periment is to small for that purpose. To draw a generally
valid conclusion, this experiment has to be repeated in a
larger scale, like done by Binkley and Harman [6] or Krinke
[12, 13]. Such an experiment has to gather more statistical
data, e.g. variance of the different slice sizes. Additionally,

6



the results are only valid for C—context plays a different
role in object-oriented programming languages, and we ex-
pect different results.

Acknowledgments.David Binkley provided valuable com-
ments.

References

[1] G. Agrawal and L. Guo. Evaluating explicitly context-
sensitive program slicing. InWorkshop on Program Anal-
ysis for Software Tools and Engineering, pages 6–12, 2001.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing.
In Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, pages
246–256, 1990.

[3] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. InWorkshop on Inspection in Software Engi-
neering (CAV 2001), 2001.

[4] D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. InProceedings of the 18th Inter-
national Conference on Software Engineering, pages 16–27,
1996.

[5] D. Binkley. Semantics guided regression test cost reduction.
IEEE Trans. Softw. Eng., 23(8):498–516, Aug. 1997.

[6] D. Binkley and M. Harman. A large-scale empirical study of
forward and backward static slice size and context sensitiv-
ity. In International Conference on Software Maintenance,
pages 44–53, 2003.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3):319–349, July 1987.

[8] M. Hind. Pointer analysis: Haven’t we solved this prob-
lem yet? In 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
(PASTE’01), 2001.

[9] M. Hind and A. Pioli. Which pointer analysis should i use?
In International Symposium on Software Testing and Analy-
sis, pages 113–123, 2000.

[10] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs.ACM Trans. Prog. Lang.
Syst., 12(1):26–60, Jan. 1990.

[11] B. Korel and J. Laski. Dynamic program slicing.Informa-
tion Processing Letters, 29(3):155–163, Oct. 1988.

[12] J. Krinke. Evaluating context-sensitive slicing and chopping.
In International Conference on Software Maintenance, pages
22–31, 2002.

[13] J. Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Universität Passau, Apr. 2003.

[14] J. Krinke and G. Snelting. Validation of measurement soft-
ware as an application of slicing and constraint solving.
Information and Software Technology, 40(11-12):661–675,
Dec. 1998.

[15] J. Lyle and D. Wallace. Using the unravel program slicing
tool to evaluate high integrity software. InProceedings of
Software Quality Week, 1997.

[16] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers.
Improving program slicing with dynamic points-to data. In
Proceedings of the 10th International Symposium on the
Foundations of Software Engineering, 2002.

[17] A. Nishimatsu, M. Jihira, S. Kusumoto, and K. Inoue. Call-
mark slicing: An efficient and economical way of reducing
slice. In International Conference of Software Engineering,
pages 422–431, 1999.

[18] T. Reps. Program analysis via graph reachability.Informa-
tion and Software Technology, 40(11–12):701–726, 1998.

[19] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the ACM SIGSOFT ’94 Sympo-
sium on the Foundations of Software Engineering, pages 11–
20, 1994.

[20] M. Weiser. Program slices: formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, 1979.

[21] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.,
10(4):352–357, July 1984.

7


