
Effects of Context on Program Slicing

Jens Krinke

FernUniversität in Hagen, Fachbereich für Elektrotechnik und Informationstechnik,
58084 Hagen, Germany

Abstract

Whether context-sensitive program analysis is more effective than context-insensitive analy-
sis is an ongoing discussion. There is evidence that context-sensitivity matters in com-
plex analyses like pointer analysis or program slicing. Empirical data shows that context-
sensitive program slicing is more precise and under some circumstances even faster than
context-insensitive program slicing. This article will add to the discussion by examining if
the context itself matters, i.e. if a given context leads to more precise slices for that context.
Based on some experiments, we will show that this is strongly dependent on the structure
of the programs.

The presented experiments require backward slices to return to call sites specified by
an abstract call stack. Such call stacks can be seen as a poor man’s dynamic slicing: For
a concrete execution, the call stack is captured, and static slices are restricted to the cap-
tured stack. The experiments show that for recursive programs there is a large increase in
precision of the restricted form of slicing compared to the unrestricted traditional slicing.

The same experiments also show that a large part (more than half) of an average slice is
due to called procedures.

Key words: Program Analysis, Program Slicing

1 Introduction

A slice extracts those statements from a program that potentially have an influence
on a specific statement of interest which is the slicing criterion. Originally, slicing
was defined by Weiser in 1979; he presented an approach to compute slices based
on iterative data flow analysis [1,2]. The other main approach to slicing uses reach-
ability analysis in program dependence graphs (PDGs) [3]. Program dependence
graphs mainly consist of nodes representing the statements of a program as well as
control and data dependence edges:

† This article appears in the Journal of Systems and Software. The original publication is
available at http://dx.doi.org/10.1016/j.jss.2006.02.040

Preprint submitted to Elsevier Science 30 June 2006



• Control dependence between two statement nodes exists if one statement con-
trols the execution of the other (e.g. through if- or while-statements).
• Data dependence between two statement nodes exists if a definition of a variable

at one statement might reach the usage of the same variable at another statement.

A slice can now be computed in three simple steps: Map the slicing criterion on a
node, find all backward reachable nodes, and map the reached nodes back on the
statements.

The extension of the PDG for interprocedural programs introduces more nodes and
edges: For every procedure a procedure dependence graph is constructed, which is
basically a PDG with formal-in and -out nodes for every formal parameter of the
procedure. A procedure call is represented by a call node and actual-in and -out
nodes for each actual parameter. The call node is connected to the entry node by
a call edge, the actual-in nodes are connected to their matching formal-in nodes
via parameter-in edges, and the actual-out nodes are connected to their matching
formal-out nodes via parameter-out edges. Such a graph is called Interprocedural
Program Dependence Graph (IPDG). The System Dependence Graph (SDG) is an
IPDG, where summary edges between actual-in and actual-out have been added
representing transitive dependence due to calls [4].

To slice programs with procedures, it is not enough to perform a reachability analy-
sis on IPDGs or SDGs. The resulting slices are not accurate as the calling context is
not preserved: The algorithm may traverse a parameter-in edge coming from a call
site into a procedure, traverse some edges there, and finally traverse a parameter-
out edge going to a different call site. The sequence of traversed edges (the path) is
an unrealizable path: It is impossible for an execution that a called procedure does
not return to its call site. We consider an interprocedural slice to be precise if all
nodes included in the slice are reachable from the criterion by a realizable path.
Precise interprocedural slices can efficiently be computed by a two-pass algorithm
that relies on summary edges [4].

The next section will discuss empirical results and related work on how context-
sensitive program slicing compares to context-insensitive slicing. Section 3 con-
tains a new form of program slicing that restricts the slice to follow a specified
calling context. That approach is used for some experiments in Section 4 to argue
about context-sensitivity and context. The results of the experiments are explained
before the last section draws conclusions.

2 Previous Results

There has been some debate whether the increased precision is worth the increased
complexity of context-sensitive program analysis. There is no final conclusion as

2



every program analysis differs. For pointer analysis, context-sensitive and context-
insensitive analyses exist, however, many authors claim that context-sensitive pointer
analysis is too expensive for only a small increase in precision [5,6].

The case is different for program slicing: Three large experiments with PDG-based
program slicing have shown that context-sensitive slicing is much more precise
and can even be faster than context-insensitive slicing. The first, done by Agrawal
and Guo [7], presented results stating that context-sensitive slicing is faster and
more precise than context-insensitive slicing. However, their results are doubtful
because this approach has been shown to be incorrect (slices can be too small)
in the second large study performed by Krinke [8]. Krinke’s experiments showed
that context-sensitive slicing in the style of Horwitz et al [4,9] is always much
more precise than context-insensitive slicing. On average, the slices computed by
the context-insensitive slicing algorithm are 67% larger than the ones computed by
the context-sensitive algorithm. Moreover, the context-insensitive algorithm is even
slower; on average, it needs 23% more time. The third large scale study performed
by Binkley and Harman [10] had similar results based on a very large set of test
cases. Their algorithm is also based on PDGs and uses the original two-pass al-
gorithm [4] implemented in the CodeSurfer slicing tool [11]. Their results showed
that context-insensitive slices are on average 50% larger than their context-sensitive
counterparts. The results are not directly comparable to Krinke’s results, because
of different ways to measure slice sizes, however, the results are similar.

The results for PDG-based slicing contradict the ones for Weiser-style slicing. For
slicers that use a Weiser-style algorithm based on data flow equations, context-
sensitive slicing is expensive. The experiments presented by Atkinson et al [12]
and Mock et al [13] show that unlimited context-sensitive Weiser-style slicing is
not affordable; Mock et al [13] limit the depth of the considered context to two.
This means that the slicing algorithm only returns for a chain of two call sites to
the correct call site and is context-insensitive after that. With this limited context-
sensitivity the conducted experiments show no large increase in precision. These
results are in contrast to the three experiments above done with PDG-based slicing.
Therefore, Krinke [8] also experimented with PDG-based slicing algorithms that
rely on explicit context-sensitivity and handle it similar to Weiser-style algorithms.
The performed experiments limit the depth of the context similar to the approach
of Mock et al.: The analysis is context-sensitive for the last k stack frames and
context-insensitive for the rest. To assess the results with limited context, Krinke
compared the size of the computed slices against the ones computed by the context-
insensitive and the (unlimited) context-sensitive algorithm. He considered the size
of the slices computed by the context-insensitive algorithm as 0% precision and the
size of the slices computed by the unlimited context-sensitive algorithm as 100%
precision. For experiments done with different limits, he reported increasing num-
bers of precision. For example, even a limit k = 1 (the analysis is context-sensitive
for the current stack frame) results in an average precision of 63% and a limit k = 6
already reaches 98% precision. However, Krinke’s results in this experiment sup-

3



ports Mock’s and Atkinson’s results that slicing algorithms which handle calling
context explicitly are too expensive for large contexts, because every procedure has
to be analyzed once for each calling context of the procedure. In PDG-based slic-
ing that uses algorithms similar to Horwitz et al’s [4], each procedure has to be
analyzed only once or twice.

Binkley [14] defines calling-context slices to include those statements that influ-
ence the criterion in a specific calling context, but no other calling context. This
algorithm is used in regression test selection and optimization. However, Binkley
does not report empirical data on his algorithms. His algorithm is very similar to
the one presented next, but imprecise as shown at the end of the next section.

3 Context-Restricted Slicing

The results of the PDG-based slicing studies suggest that context matters in slic-
ing algorithms, and that context-sensitive algorithms have an enhanced precision
with decreased computation time. This may lead to the assumption that the context
itself is the reason for precision. This leads us to the creation of a “poor man’s dy-
namic slicer”. During debugging, the programmer is not interested in all possible
executions, but in one specific, e.g. if we want to find out why a program crashed
at a certain point. Because static slicing does not consider a specific execution but
all possible executions, it does not suit such debugging tasks very well. Instead,
dynamic slicing [15] has been developed; it computes slices which are specific to
one particular execution. Because of this restriction, dynamic slices are more pre-
cise than static slices. However, the computation of dynamic slices is expensive,
because the necessary information has to be computed for every execution of a
statement, i.e. the time needed to compute dynamic slices is dependent one the
length of the execution and not (only) on the size of the program as in static slicing.

As yet, no ready-to-use dynamic slicer is available. Instead, one has to rely on one
of the available static slicers like CodeSurfer [11], Sprite [12,13], or Unravel [16].
This results in the following scenario: If a crashed program is debugged, we can
normally extract the current call stack that leads to a crash. A simple adaptation
of the slicing algorithm could force the computed slice to follow the extracted call
stack by requiring called procedures to return to the calling procedure as found
in the call stack. To do that, we will first revisit the formal definitions of inter-
procedurally realizable paths and later adapt the definitions to context-restricted
interprocedurally realizable paths.

A program analysis is context-sensitive, if it only considers interprocedurally real-
izable paths. One way to describe those paths is via context-free language reacha-
bility as done by Reps [17]: The intraprocedural program dependence graph can be
seen as a finite automaton and the intraprocedurally realizable paths are words of

4



its accepted language. Therefore, reachability in the program dependence graph is
an instance of regular language reachability. The problem in interprocedural reach-
ability is the proper matching of call edges to return edges. This can be achieved
by defining a context-free language on top of the IPDG. First, we assume that call
and actual parameter nodes are marked with a label for their call site c. Edges in
the IPDG are now marked according to their source and target nodes:

• Call edges between a call node m at call site c and a node n in procedure p are
marked with “(c”.
• Parameter-in edges between an actual-in parameter node m at call site c and a

formal-in node n in procedure p are also marked with “(c”.
• Parameter-out edges between a formal-out node in procedure p and an actual-out

node n at call site c are marked with “)c”.
• All other edges are marked with ε.

Let Σ be the set of all edge labels in an IPDG G. Every path in G induces a word
over Σ by concatenating all the labels of the edges that are on the path. A path is an
interprocedurally matched path if it is a word of the context-free language defined
by:

M → MM

| (cM)c ∀(c∈ Σ

| ε

This grammar assures the proper matching of calls and returns by simulating an
abstract call stack.

Interprocedurally matched paths require their start and end node to be in the same
procedure. Interprocedurally realizable paths with start and end node in different
procedures have only partially matching calls and returns: Dependent on whether
the end node is lower or higher in the abstract call stack, the paths are right-balanced
or left-balanced. A path is an interprocedurally right-balanced path if it is a word
of the context-free language defined by:

R → RR

| M

| (c ∀(c∈ Σ

| ε

Here, every )c is properly matched to a (c to the left, but the converse need not hold.
A path is an interprocedurally left-balanced path if it is a word of the context-free

5



language defined by:

L → LL

| M

| )c ∀(c∈ Σ

| ε

An interprocedurally realizable path starts as a left-balanced path, and ends as a
right-balanced path:

I → LR

Interprocedural reachability between nodes in PDGs and context-sensitive slices
are now defined based on interprocedurally realizable paths:

Definition 1 (Interprocedural Reachability) A node n is interprocedurally reach-
able from node m, iff an interprocedurally realizable path from m to n in the IPDG
exists, denoted as m→?

R n.

As noted earlier, we consider an interprocedural slice to be precise if all nodes
included in the slice may reach the criterion by an interprocedurally realizable path:

Definition 2 (Slice in an IPDG) The (backward) slice S (n) of an IPDG G = (N, E)
at node n ∈ N consists of all nodes on which n (transitively) depends via an inter-
procedurally realizable path:

S (n) = {m ∈ N | m→?

R n}

These definitions cannot be used in an algorithm directly, because it is impractical
to check if paths are interprocedurally realizable.

Accurate slices can be calculated with a modified algorithm on SDGs [4]: The ben-
efit of SDGs is the presence of summary edges that represent transitive dependence
due to calls. Summary edges can be used to identify actual-out nodes that are reach-
able from actual-in nodes by an interprocedurally realizable path through the called
procedure without analyzing it. The idea of the slicing algorithm using summary
edges [4,9] is to first slice from the criterion ascending into calling procedures (i.e.
traverse paths along R), and then to slice from all visited nodes descending (i.e.
along L) into called procedures.

Now, we restrict an interprocedurally realizable path to a call stack s. A call stack s
is represented by a list of call sites ci: s = 〈c1, . . . , ck〉. A path matches a call stack

6



s if it is a word of the context-free language induced by s = 〈c1, . . . , ck〉:

I → L

| L(ck M

| L(ck−1 M(ck M
...

| L(c1 M . . . (ck M

This requires the path to return to the chain of call sites in the call stack if there is
no matching call.

Definition 3 (Context-Restricted Slice) The (backward) slice S (n, s) of an IPDG
G = (N, E) at node n ∈ N restricted to the call stack s consists of all nodes on which
n (transitively) depends via an interprocedurally realizable path that matches the
call stack s:

S (n, s) = {m ∈ N | m
s
→?

R n}

Here, m
s
→?

R n denotes that there exists an interprocedurally realizable path from
m to n matching s. Note that a context-restricted slice requires the criterion n to be
in a procedure called from the topmost call site ck of s = 〈c1, . . . , ck〉.

The algorithm in Figure 1 computes a context-restricted slice. It is a variant of
Krinke’s context-sensitive slicing algorithm [8], which is a variant of Horwitz et
al’s algorithm [4,9] and utilizes summary edges. Here, the first pass that computes
the slices stopping at parameter-in or call edges has been changed such that it is
repeated once for every call site ci of the specified call stack. In each iteration,
every node reachable via intraprocedural edges is added to the work-list W. If a
parameter-out edge is traversed, the reached node is added to the work-list Wdown,
which is processed in the second pass. If parameter-in or call edges are traversed,
the reached node has to be part of the current call site ci. If that is the case, the
reached node is added to the work-list Wup, which is used as the initial work-list
W for the next iteration that processes call site ci−1. All intraprocedural edges are
traversed in the current iteration. Both passes can be matched to the definition of
the context-free language for restricted interprocedurally realizable paths: The first
pass basically traverses the paths along the (ck M, (ck−1 M(ck M, etc. but skips the M
along summary edges. The second pass traverses the paths along L and M like
Horwitz et al’s algorithm [4,9].

The presented algorithm in Fig. 1 computes context-restricted slices which are de-
fined almost identical to Binkley’s calling-context slices [14]. The algorithm he
presented basically computes a slice without the ascending first pass for each call

7



Input: G = (N, E) the given SDG
n ∈ N the given slicing criterion
s = 〈ci, . . . , ck〉 the given call stack

Output: S ⊆ N the slice for the criterion n

Wup = {n}
Wdown = ∅

S = {n}

first pass, ascending slice
for i = k . . . 1 do

handle the calling context site by site
W = Wup

Wup = ∅

while W , ∅ work-list is not empty do
W = W/{n} remove one element from the work-list
foreach m→ n ∈ E do

if m < S then
if m→ n is a parameter-out edge (m

po
→ n) then

delay the further traversal until the second pass
Wdown = Wdown ∪ {m}
S = S ∪ {m}

elsif m→ n is a parameter-in or call edge (m
pi,cl
→ n)

and the call site of m is ci then
traversal will continue in the next iteration
Wup = Wup ∪ {m}
S = S ∪ {m}

else
W = W ∪ {m}
S = S ∪ {m}

second pass, descending slice
while Wdown , ∅ work-list is not empty do

Wdown = Wdown/{n} remove one element from the work-list
foreach m⇀ n ∈ E do

if m < S then

if m⇀ n is not a parameter-in or call edge (m
pi,cl
→ n) then

Wdown = Wdown ∪ {m}
S = S ∪ {m}

return S the set of all visited nodes

Fig. 1. Context-Restricted Slicing (in SDGs)

8



site in the calling context: Starting with the criterion, a (descending second pass)
slice is computed ignoring edges that lead into a calling procedure, but traversing
edges that lead into called procedures. The reached formal-in nodes are extracted
from the computed slice, and mapped to the corresponding actual-in nodes at the
next call site of the current calling context (this is the ascending step). The call
site is removed from the calling context, and the set of actual-in nodes is used as
the slicing criterion for the next iteration, which is repeated until the calling con-
text is empty. This algorithm is imprecise, because it mixes the descending and the
ascending steps. Consider the following example:

1 int main() {

2 a = ...;

3 return f(a);

4 }

5

6 int f(x) {

7 if (...)

8 b = f(0);

9 return x;

10 }

The corresponding PDG is shown in Figure 2. We compute the backward slice
for variable b in line 8 (node 12) within the calling context 〈⊥, 3〉 (⊥ represents
the invocation from the runtime system). Binkley’s algorithm starts by computing
a slice that traverses the parameter-out edge between nodes 12 and 13 due to the
recursive call of function f (nodes 7–13). It then extracts the formal-in node 8 for
x in line 6, and maps it to the actual-in node 4 for a in line 3, because the current
call site is 3. The subsequent iteration adds nodes 1–4 and thus, line 2 to the slice.
However, this line should not be in the slice, because line 2 never has an influence
on line 8.

The algorithm in Figure 1 starts with the first iteration at node 12 within the context
〈⊥, 3〉. It also encounters the parameter-out edge between nodes 12 and 13 due to
the recursive call, but delays the further traversal to the second pass. It encounters
the call edge between nodes 3 and 7 and delays the further traversal to the second
iteration. Thus, the first iteration inserts nodes 7 and 9–12 into the slice. The next
iteration (call site ⊥) continues at node 3 and adds nodes 1 and 3 to the slice. As no
interprocedural edges are encountered and the calling context has been completely
traversed, the first pass is complete. The second pass starts at node 13 and adds
nodes 8 and 13 to the slice. The encountered interprocedural edges are ignored and
thus, the second pass is complete. The final slice consists of nodes 1, 3, and 7–13.
It does not include line 2 (node 2).

9



3

x_in = a

x_in = 0

8: call f(0)

f_out = x

f_out

x = x_in

Intraprocedural control dependence

Interprocedural dependence (control and data)

Intraprocedural data dependence

Summary (transitive dependence) edge

main_out

1: int main()

2: a = ...

3: call f(x)

6: int f(x)

7: if (...)

8: b = f_out

1

2

4 5

7

8

9

10

11 12

13

6

Fig. 2. A PDG example

4 Evaluation

We have implemented the above algorithm (Fig. 1) in our slicing infrastructure
[18,8,19] and performed an initial experiment to validate the presented approach
for context-restricted slicing [20]. This initial experiment is presented next. A larger
evaluation follows that contrasts some of the results of the initial experiment.

10



ctags patch

unique stacks 186 85

slices 4136 2569

average size context-sensitive slice 2100 7109

average size context-restricted slice 1914 7021

average size context-sensitive slice 20% 34%

average size context-restricted slice 19% 34%

average size reduction 9% 1%
Table 1
Average sizes of context-sensitive and -restricted slices

4.1 Initial Experiment

The initial experiment performed two case studies, based on the programs ctags
and patch. For each of the programs we performed one characteristic execution in
a debugger. On every execution of a procedure, we dumped and extracted the cur-
rent call stack s = 〈c1, . . . , ck〉, where c1 is the call of main from the runtime system
and ck is the call site that called the currently executing procedure. This produced
one set of call stacks for each program’s execution. We then computed backward
slices for each formal-in ∗ parameter node of the intercepted procedure for each
call stack. We computed each slice twice, once using context-restricted slicing and
once using traditional context-sensitive slicing. The results are shown in Table 1
for the two test cases ctags (left column) and patch (right column). The first two
rows show the number of unique call stacks extracted from the test execution, and
the number of computed slices. The remaining rows show the average slice size
measured in SDG nodes and as a percentage of the SDG.

The results do not confirm the expected effect: context-restricted slices do not have
a much higher precision than context-sensitive slices in this scenario. Though the
context-restricted slice is 9% smaller for ctags than the context-sensitive slice, the
percentage of the complete program just decreases from 20% to 19%. For the other
test patch, the average size for the context-restricted slice is just 1% smaller, and
the difference in percentage of the complete program is negligible.

So the question is why there is just a small size reduction? Our hypothesis is that
this is related to unrestricted called procedures. Context-restricted slices only re-
strict the calling-context of calling procedures in the call stack, i.e. active proce-
dures. The context of called procedures is not restricted (as long as called pro-
cedures are handled context-sensitively), because such calls happened before the

∗ We used formal-in nodes to omit effects of the current procedure and to maximize the
differences between restricted and non-restricted slices.

11



ctags patch

average size context-sensitive slice 924 2916

average size context-restricted slice 463 1701

average size context-sensitive slice 9% 14%

average size context-restricted slice 4% 8%

average size reduction 50% 42%
Table 2
Average sizes of for truncated slices

current call stack and the called procedures are no longer active. We believe that
a large part of an average slice is due to called procedures. To investigate this,
we repeated the experiment with truncated backward slicing. A truncated (back-
ward) slice does not contain nodes from called procedures; it does not descend into
them. To compute it, the second pass of the slicing algorithm is left out (because
it computes exactly those nodes). A truncated (backward) slice is computed by al-
ways ignoring the parameter-out edges, as this would process called procedures
during backward traversal. The algorithm in Figure 1 can be adapted to the trun-
cated version accordingly: We remove the second pass and the first branch of the
if-elsif-then-cascade. With this modification, we repeated the experiment; Table 2
shows the result. We can see that the average truncated slice is much smaller than
a non-truncated slice. For ctags, the size went down from 2100 to 924 nodes of
the SDG (a 56% reduction), and for patch, it went down from 7109 to 2916 nodes
(a 59% reduction). This illustrates that the majority of nodes in a slice are nodes
of called procedures (another experiment in Section 4.2.5 will support this obser-
vation). The numbers for context-restricted slices now support our hypothesis: For
ctags, the context-restricted slice is on average half the size of a context-sensitive
slice, and for patch, it is still 42% smaller.

However, we still expected a larger reduction because of the following observation:
For ctags, we determined that on average, every procedure is called from three
different call sites, and for patch, we measured 4.8 different call sites. We also
measured the average size of the call stacks, which is 8.5 for ctags and 4.2 for
patch. These numbers suggest that a context-sensitive truncated slice would visit
many more procedures than a context-restricted one. However, values around 50%
suggest that there are not so many alternative call stacks that can lead to a specific
point of execution. To examine this effect in detail, we performed a larger evaluation
which is presented next.

12



LOC proc. nodes edges summary %

agrep 3968 90 11922 35713 12343 26

ansitape 1744 76 6733 18083 12746 41

assembler 3178 685 13393 97908 114629 54

bison 8313 161 25485 84794 29739 26

cdecl 3879 53 5992 17322 9089 34

compiler 2402 49 15195 45631 58240 56

ctags 2933 101 10042 24854 20483 45

diff 13188 181 46990 471395 612484 57

flex 7640 121 38508 235687 144496 38

football 2261 73 8850 30474 17605 37

gnugo 3305 38 3875 10657 2064 16

patch 7998 166 20484 104266 83597 44

rolo 5717 170 37839 264922 170108 39

simulator 4476 283 9143 22138 5022 18

average 5072 161 18175 104560 92332 38
Table 3
Details of the test programs

4.2 Second Experiment

After the initial experiment we performed a larger evaluation based on the programs
we have already used for previous evaluations [8,19]. The details of the analyzed
programs are shown in Table 3. The programs stem from three different sources:
ctags, patch and diff are the GNU programs. The rest are from the benchmark
database of the PROLANGS Analysis Framework (PAF) [21]. The ‘LOC’ column
shows lines-of-code (measured via wc -l), the ‘proc.’ column the amount of proce-
dures (the number of entry nodes in the PDG) and the ‘nodes’ and ‘edges’ columns
show the number of nodes and edges in the IPDG. The ‘summary’ column contains
the number of summary edges in the corresponding SDG to give an impression
of the effect of calling context. The last column gives the percentage of the edges
which are summary edges.

The goal was to check the validity of the results of the initial experiment for non-
truncated slicing. Because a larger scale evaluation was not possible with the ap-
proach of the initial experiment, this evaluation has been done differently. Instead
of extracting call stacks from executions, we generated possible call stacks from
the static call graph of the programs. For recursive programs this causes a problem,

13



depth 1 2 3 4 5 6 7 8 9 10 11 12

assembler

stacks 1 4 48 115 270 408 525 566 566 566 566 566

slices 153 439 1078 2661 3996 5509 5964 6149 6149 6149 6149 6149

avg. rest. 11 1066 3329 4222 4508 4714 4808 4868 4868 4868 4868 4868

avg. size 11 1066 3828 4507 5128 5488 5589 5628 5628 5628 5628 5628

reduction 0% 0% 13% 6% 12% 14% 14% 14% 14% 14% 14% 14%

cdecl

stacks 1 8 13 426 911 1129 1163 1163 1163 1163 1163 1163

slices 101 393 757 2312 3969 4761 4895 4895 4895 4895 4895 4895

avg. rest. 824 826 843 817 844 867 877 877 877 877 877 877

avg. size 824 842 869 1156 1289 1363 1378 1378 1378 1378 1378 1378

reduction 0% 2% 3% 29% 35% 36% 36% 36% 36% 36% 36% 36%

patch

stacks 1 64 375 684 1096 1420 1775 2057 2246 2385 2397 2397

slices 325 1612 5078 8291 11473 13880 15869 17321 18583 19124 19184 19184

avg. rest. 11 7010 8365 8622 8801 8894 8990 9048 9097 9113 9116 9116

avg. size 11 7196 8938 9346 9567 9687 9765 9808 9832 9844 9845 9845

reduction 0% 3% 6% 8% 8% 8% 8% 8% 8% 7% 7% 7%

simulator

stacks 1 5 26 73 250 815 2310 3522 8952 8952 8952 8952

slices 64 149 382 824 1990 4158 9327 14535 28437 28437 28437 28437

avg. rest. 11 156 1334 2607 3387 3659 3758 3994 4188 4188 4188 4188

avg. size 11 156 1878 3198 3918 4288 4476 4510 4600 4600 4600 4600

reduction 0% 0% 29% 19% 14% 15% 16% 11% 9% 9% 9% 9%
Table 4
Context-restricted vs. traditional slicing (non-recursive programs)

because they have an infinite number of possible call stacks. Therefore, we limit
the depth of the generated call stacks, i.e. calls are ignored after a predefined depth
has been reached. Again, we selected the formal-in nodes of the procedure reached
by the current call stack as slicing criteria. Tables 4, 5, 6, and 7 show the results
of the evaluation for non-truncated slicing in three groups. Each program has five
rows: The first row contains the number of generated call stacks for the depths 1
to 12. The second row shows the number of computed slices. The third row gives

14



1 2 3 4 5 6 7 8 9 10 11 12

bison

1 13 96 279 681 1274 1892 2481 3070 3659 4248 4837

460 1218 2956 6200 12683 21119 28634 35421 42217 49018 55814 62615

6 468 1031 1756 2088 2132 2065 1942 1748 1530 1347 1203

6 521 1594 3027 4209 4973 5550 5993 6300 6520 6688 6819

0% 10% 35% 42% 50% 57% 63% 68% 72% 77% 80% 82%

ctags

1 9 30 59 98 140 276 550 1420 3406 6430 9784

124 405 722 1048 1829 3315 6535 12807 24815 44065 69443 96853

11 513 976 1205 1728 2098 2293 2358 2374 2361 2327 2280

11 516 1005 1248 1808 2190 2479 2570 2612 2617 2629 2645

0% 1% 3% 3% 4% 4% 8% 8% 9% 10% 12% 14%

flex

1 6 66 331 755 1409 2147 2934 3707 4480 5253 6026

325 1116 4137 15142 37036 69558 107889 148848 189573 230376 271182 311959

6 1746 4182 4657 4454 4207 4081 3997 3833 3572 3225 2886

6 2105 6766 7930 8919 9931 10917 11623 12164 12519 12768 12951

0% 17% 38% 41% 50% 58% 63% 66% 69% 72% 75% 78%

rolo

1 43 145 322 611 1177 2148 3640 5614 8378 12257 16220

282 2325 7876 18821 34433 65986 120443 208543 329441 498120 737676 987589

6 727 3365 6103 8384 9679 10415 11110 11517 11672 11643 11421

6 8390 11214 11902 12217 12492 12719 12916 13028 13113 13190 13226

0% 91% 70% 49% 31% 23% 18% 14% 12% 11% 12% 14%
Table 5
Context-restricted vs. traditional slicing (simple recursive programs)

the average size of the context-restricted slices and the fourth row the average size
of the traditional slices. The fifth row gives the size reduction in percentage. For
football it was not possible to compute all slices above the depth 9 due to the
combinatorial explosion of call stacks, thus the given numbers are approximations
(we computed only a fraction of all possible slices for depths 10–12).

The set of programs are separated into two groups: the group of non-recursive pro-

15



1 2 3 4 5 6 7 8 9 10 11 12

agrep

1 29 128 226 268 328 564 1460 5664 28472 160488 942920

203 961 2523 3619 4093 5203 8897 22829 88553 446945 2.5mio 14mio

8 1412 1922 2088 2141 2267 2002 938 328 125 72 58

8 2628 3446 3615 3691 3872 4167 4443 4592 4644 4658 4662

0% 46% 44% 42% 42% 42% 52% 79% 93% 97% 99% 99%

ansitape

1 8 25 86 324 604 1461 4771 20613 98738 489363 2.4mio

87 322 879 1879 3878 5881 10201 24151 87834 400334 1.9mio 9.7mio

11 108 580 883 1068 1116 940 547 216 94 67 61

11 397 1728 2313 2506 2451 2040 1232 641 428 380 370

0% 73% 66% 62% 57% 55% 54% 56% 66% 78% 82% 84%

compiler

1 3 11 42 215 545 1561 5016 18837 79417 341336 1.5mio

46 121 320 1063 4468 11362 31112 96320 347428 1.4mio 6.0mio 26mio

10 98 2114 4141 6218 6471 6659 5912 4917 4223 3917 3926

10 98 4014 6959 8084 8289 8383 8430 8459 8478 8488 8493

0% 0% 47% 41% 23% 22% 21% 30% 42% 50% 54% 54%

diff

1 47 121 205 419 773 1680 3621 7285 12839 22711 38711

506 2145 4500 9412 18603 42572 83828 169857 303865 549369 947379 1.7mio

7008 7136 7233 7462 7719 8205 8373 8354 8499 7934 7494 6623

7008 7837 8587 9447 9706 9605 9699 9845 10229 10760 11402 12066

0% 9% 16% 21% 21% 15% 14% 15% 17% 26% 34% 45%
Table 6
Context-restricted vs. traditional slicing (complex recursive programs)

grams (assembler, cdecl, patch, and simulator) and the group of recursive
programs. The second group is further split into two subgroups: The first group
consists of programs where every recursive component contains a single recursive
call (the recursive component may consist of multiple procedures, but only one
procedure is called from outside the component and can be identified as the source
of the recursion). The other group consists of programs with a complex recursion
structure. This separation is important, as each group has its own properties that

16



1 2 3 4 5 6 7 8 9 10 11 12

football

1 9 163 641 1197 5426 71933 1.1mio 18mio 3 · 108 5 · 109 7 · 1010

86 346 2140 5039 11080 85272 1.2mio 20mio 322mio 5 · 109 8 · 1010 13 · 1011

11 1243 2186 2333 2563 2023 1131 786 718 711 710 710

11 1951 2573 2777 3514 4442 4582 4592 4592 4592 4592 4592

0% 36% 15% 16% 27% 55% 75% 83% 84% 85% 85% 85%

gnugo

1 14 62 165 273 611 1887 7167 29039 119583 494031 2.0mio

30 183 499 1251 1925 4339 13929 53303 215269 881427 3.6mio 14mio

11 942 1326 1386 1328 847 446 276 223 206 199 195

11 1711 1938 2014 2030 2047 2056 2058 2059 2059 2059 2059

0% 45% 32% 31% 35% 59% 78% 87% 89% 90% 90% 90%
Table 7
Context-restricted vs. traditional slicing (complex recursive programs)—continued

influence the evaluation. For the group of non-recursive programs we can generate
all possible call stacks if the depth limit is large enough. This has the effects that
after a certain depth, the number of (generated) call stacks is constant (assembler
has a maximal depth of 8, cdecl 7, patch 11, and simulator 9). For the group of
recursive programs with a single recursive call per recursive component (called the
simple recursive programs), it is not possible to generate all call stacks. However,
after a certain depth has been reached, the increase of the number of call stacks is
almost linear, because every added level of depth only adds a constant number of
call stacks. This group consists of bison, ctags, flex, and rolo. The last group
with complex recursive structures (called the complex recursive programs) is prob-
lematic for the analysis, because the increase is now polynomial. The reason is that
for every added level of depth, the number of call stacks is multiplied by the num-
ber of recursive calls. This group consists of agrep, ansitape, compiler, diff,
football, and gnugo.

4.2.1 Non-recursive programs

For the group of non-recursive programs, Fig. 3 shows the gain in precision for non-
truncated context-restricted slicing in comparison to non-truncated unrestricted slic-
ing dependent on the predefined depth of the call stacks. The y-axis shows the how
much smaller the average restricted slice is as a percentage of the average unre-
stricted slice. The x-axis is for the predefined depth, ranging from a call stack of
depth one to depth 12. For the depth one, there is never a difference because the

17



Fig. 3. Size reduction for non-recursive programs (in %)

call stack consists of the single call from the runtime system to the main proce-
dure. All four programs have an increasing size reduction, which is constant after
the predefined depth exceeds the largest possible call stack depth in the programs
(assembler has a maximal depth of 8, cdecl 7, patch 11, and simulator 9).
Three of the programs have only a small gain (assembler, patch, and simulator)
between 7% and 14%. The fourth program (cdecl) has a larger gain of 36%. It is
interesting to see that for patch, which has been used in the initial experiment,
the gain is now larger than before. This shows that the program parts of patch
that have not been executed during the initial part of the program are much more
sensible to context-restricted slicing than the executed parts.

4.2.2 Simple recursive programs

Fig. 4 shows the gain in precision for the simple recursive programs. It is interesting
to see that two programs almost have identical gains in size reduction: flex and
bison. Even more interesting to note is that both programs are similar applications,
one is a scanner generator and the other is a parser generator. Both programs have
large gains in size reduction for larger depths. Because the recursive components
dominate the numbers (as the number of non-recursive call-stacks is small in com-
parison to the recursive call stacks), both programs contain recursive components
where the average restricted slice is much smaller than the average unrestricted
slice. This is different for the other two programs. The program ctags has only
a slow increase in the size reduction. For the call stack depth 12, the average size
reduction is 14%. Note that this is again larger than in the initial experiment. Most
notable is the last simple recursive program, rolo. It has a steep decrease in size re-
duction for larger call stack depths and is similar to the size reduction of ctags for
large depths. This indicates that there is only a small difference in size between re-

18



Fig. 4. Size reduction for simple recursive programs (in %)

Fig. 5. Size reduction for complex recursive programs (in %)

stricted and unrestricted slices in ctags’ and rolo’s recursive components. Again
because the effect of the recursive components dominate.

4.2.3 Complex recursive programs

Fig. 5 shows the gain in precision for the last group of complex recursive programs.
Because of the polynomial growths in the number of generated call stacks, it was
only possible to analyze the programs up to a certain predefined depth. The analy-
ses would take to much time for even larger depths. Otherwise, the results are quite
similar to the results of the simple recursive programs. Most of the programs have
a decreasing size reduction first, before the dominating effect of the recursive struc-

19



tures causes the size reduction to increase. It is not possible to predict whether diff
will have a larger or smaller size reduction for larger depths.

4.2.4 Interpretation of the results

The presented data suggests that the previous results of the initial experiment are
in contrast to the results of the larger evaluation. There are two things to consider:
First, the initial experiment was based on two programs that turned out to have a
small average size reduction anyway. Both programs patch and ctags have the
smallest average size reduction of their group. Second, the large evaluation clearly
shows a strong effect of the chosen call stack as slicing criterion on the results of
restricted slicing. This suggests that call stacks and criteria in practice will have dif-
ferent properties than artificially generated call stacks and criteria. For example, if
a program contains function pointers, many artificially generated call stacks do not
occur in practice. Future research will study the effects of the differences between
artificially generated and really occurring call stacks.

4.2.5 Truncated slicing

Moreover, another larger evaluation confirms the second part of the initial experi-
ment and the drawn conclusions. Table 8 shows a comparison of the average sizes
of non-truncated and truncated slices. Here, we have computed for every program
all non-truncated and truncated slices (again, for each formal-in parameter as cri-
terion). The first columns shows the name of the program, the second the number
of nodes in the SDG, and the third the number of computed slices. The next two
columns show the average size of a non-truncated slice as the number of nodes in
the slice and the percentage of all nodes. The same is given for truncated slices
in the next two columns. The last two columns presents the absolute and the rela-
tive difference. It is easy to see that the truncated slices are always much smaller
than the non-truncated slices. The size reduction ranges from 50.7% (football)
to 85.3% (simulator).

Because there is always a large size reduction for truncated slicing, the claim that
a large share (at least half) of the average slice is due to called procedures and not
calling procedures still holds.

5 Conclusions

The presented approach of context-restricted slices can efficiently be implemented
in current static slicing tools that are based on PDGs. For debugging, context-
restricted slicing can be used as a poor man’s dynamic slicer. In most cases, a

20



nodes slices non-truncated truncated abs. rel.

avg. size avg. size

agrep 11922 1403 3183 26.7% 555 4.7% 22.0% 82.6%

ansitape 6733 1082 1645 24.4% 691 10.3% 14.2% 58.0%

assembler 13393 2401 4286 32.0% 748 5.6% 26.4% 82.5%

bison 25485 3744 1859 7.3% 332 1.3% 6.0% 82.1%

cdecl 5992 697 880 14.7% 261 4.4% 10.3% 70.3%

compiler 15195 1017 6731 44.3% 2368 15.6% 28.7% 64.8%

ctags 10042 1621 2010 20.0% 704 7.0% 13.0% 65.0%

diff 46990 10130 9179 19.5% 2308 4.9% 14.6% 74.9%

flex 38508 5191 6172 16.0% 1190 3.1% 12.9% 80.7%

football 8850 818 2593 29.3% 1278 14.4% 14.9% 50.7%

gnugo 3875 281 1798 46.4% 373 9.6% 36.8% 79.3%

patch 20484 3099 7965 38.9% 1981 9.7% 29.2% 75.1%

rolo 37839 6540 7766 20.5% 2143 5.7% 14.9% 72.4%

simulator 9143 1019 3212 35.1% 472 5.2% 30.0% 85.3%

average 18175 2789 4234 26.8% 1100 7.2% 19.6% 73.1%
Table 8
Comparison of non-truncated and truncated slices

context-restricted slice is significantly smaller than a traditional slice. For truncated
slices, the size reduction is even larger. We plan to integrate and experiment with
other light-weight approaches like approximate dynamic slicing [22] that captures
whether a statement corresponding to a node in the PDG has ever been executed,
or call-mark slicing [23], where it is captured whether a procedure has ever been
executed.

The presented experiments add another aspect to the discussion about context-
sensitive or context-insensitive program analysis. For program slicing, earlier stud-
ies showed evidence that context-sensitive slicing algorithms are much more pre-
cise and can even be faster than their context-insensitive counterparts. The experi-
ment presented here shows that restricting slices to specific contexts often leads to
significant smaller slices.

Additionally, the results are only valid for C—context plays a different role in
object-oriented programming languages, and we expect much stronger results for
such languages.

21



Acknowledgments. David Binkley provided valuable comments.

References

[1] M. Weiser, Program slices: formal, psychological, and practical investigations of an
automatic program abstraction method, Ph.D. thesis, University of Michigan, Ann
Arbor (1979).

[2] M. Weiser, Program slicing, IEEE Trans. Softw. Eng. 10 (4) (1984) 352–357.

[3] J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence graph and its use
in optimization, ACM Trans. Prog. Lang. Syst. 9 (3) (1987) 319–349.

[4] S. B. Horwitz, T. W. Reps, D. Binkley, Interprocedural slicing using dependence
graphs, ACM Trans. Prog. Lang. Syst. 12 (1) (1990) 26–60.

[5] M. Hind, A. Pioli, Which pointer analysis should i use?, in: International Symposium
on Software Testing and Analysis, 2000, pp. 113–123.

[6] M. Hind, Pointer analysis: Haven’t we solved this problem yet?, in: 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’01), 2001.

[7] G. Agrawal, L. Guo, Evaluating explicitly context-sensitive program slicing, in:
Workshop on Program Analysis for Software Tools and Engineering, 2001, pp. 6–12.

[8] J. Krinke, Evaluating context-sensitive slicing and chopping, in: Proc. International
Conference on Software Maintenance, 2002, pp. 22–31.

[9] T. Reps, S. Horwitz, M. Sagiv, G. Rosay, Speeding up slicing, in: Proceedings of the
ACM SIGSOFT ’94 Symposium on the Foundations of Software Engineering, 1994,
pp. 11–20.

[10] D. Binkley, M. Harman, A large-scale empirical study of forward and backward
static slice size and context sensitivity, in: International Conference on Software
Maintenance, 2003, pp. 44–53.

[11] P. Anderson, T. Teitelbaum, Software inspection using codesurfer, in: Workshop on
Inspection in Software Engineering (CAV 2001), 2001.

[12] D. C. Atkinson, W. G. Griswold, The design of whole-program analysis tools, in:
Proceedings of the 18th International Conference on Software Engineering, 1996, pp.
16–27.

[13] M. Mock, D. C. Atkinson, C. Chambers, S. J. Eggers, Improving program slicing with
dynamic points-to data, in: Proceedings of the 10th International Symposium on the
Foundations of Software Engineering, 2002.

[14] D. Binkley, Semantics guided regression test cost reduction, IEEE Trans. Softw. Eng.
23 (8) (1997) 498–516.

22



[15] B. Korel, J. Laski, Dynamic program slicing, Information Processing Letters 29 (3)
(1988) 155–163.

[16] J. Lyle, D. Wallace, Using the unravel program slicing tool to evaluate high integrity
software, in: Proceedings of Software Quality Week, 1997.

[17] T. Reps, Program analysis via graph reachability, Information and Software
Technology 40 (11–12) (1998) 701–726.

[18] J. Krinke, G. Snelting, Validation of measurement software as an application of slicing
and constraint solving, Information and Software Technology 40 (11-12) (1998) 661–
675.

[19] J. Krinke, Advanced slicing of sequential and concurrent programs, Ph.D. thesis,
Universität Passau (Apr. 2003).

[20] J. Krinke, Context-sensitivity matters, but context does not, in: Proc. IEEE
International Workshop on Source Code Analysis and Manipulation, 2004, pp. 29–
35.

[21] B. G. Ryder, W. Landi, B. Philip, A. Stocks, S. Zhang, R. Altucher, A schema for
interprocedural modification side-effect analysis with pointer aliasing, ACM Trans.
Prog. Lang. Syst. 23 (2) (2001) 105–186.

[22] H. Agrawal, J. R. Horgan, Dynamic program slicing, in: Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation,
1990, pp. 246–256.

[23] A. Nishimatsu, M. Jihira, S. Kusumoto, K. Inoue, Call-mark slicing: An efficient
and economical way of reducing slice, in: International Conference of Software
Engineering, 1999, pp. 422–431.

23


