
KClone: A Proposed Approach to Fast Precise Code Clone Detection

Yue Jia1, David Binkley2, Mark Harman1, Jens Krinke1 and Makoto Matsushita 3

1King’s College London 2Loyola College in Maryland 3 Osaka University
Strand, London 4501 North Charles Street 1-5 Yamadaoka, Suita
WC2R 2LS, UK Baltimore, MD 21210-2699, USA Osaka 565-0871, Japan

Abstract

In all applications of clone detection it is important to
have precise and efficient clone identification algorithms.
This paper proposes and outlines a new algorithm, KClone
for clone detection that incorporates a novel combination of
lexical and local dependence analysis to achieve precision,
while retaining speed. The paper also reports on the initial
results of a case study using an implementation of KClone
with which we have been experimenting. The results indi-
cate the ability of KClone to find types-1,2, and 3 clones
compared to token-based and PDG-based techniques. The
paper also reports results of an initial empirical study of the
performance of KClone compared to CCFinderX.

1 Introduction
Previous work has concentrated on three types of clones,

known as Type-1, Type-2 and Type-3 [2]. Type-1 clones are
those created by verbatim copy-and-paste. Type-2 clones
augment this with some vairable, type or function identi-
fiers changes but no statement additions, deletions, or re-
ordering. Type-3 clones allow additions, deletions, or re-
orderings.

Previous work can be categorised according to how it
handles these three types of clone:

• Type-1: This kind of clone can be detected easily.

• Type-2: This kind of clone can also be detected but
not as easily. A widely studied subset of this type in-
volves two code fragments f1 and f2 where uniformly
replacing identifiers in f1 yields f2.

• Type-3: One or more statements can be modified,
added, or removed. Furthermore, the structure of code
fragment may be changed and it may even look or be-
have slightly different from the original. This kind of
clone is hard to detect.

Increasing degrees of algorithmic sophistication are re-
quired to identify the higher type clones. This increased
algorithmic sophistication has, hitherto, brought with it a
computational cost.

Definition 1 (Inclulsive) A clone detection approach, C,
is inclusive with respect to a set of n clone detection ap-
proaches C1, ..., Cn if the clones found by C are a superset
of those found by C1, ..., Cn.

Fast algorithms typically fail to identify some Type-2
and most Type-3 clones, but scale to large systems, while
those that target Type-3 clones using dependence-based al-
gorithms may find Type-3 clones, but at a high computa-
tional cost. Thus, the current state of the art presents the
software engineer with a classic ‘speed-quality’ trade off.

This paper argues that it is possible to have the best of
both worlds; fast, inclusive clone detection is achievable,
with the result that it will be possible to find Type-1,2 and 3
clones in large real world systems. The paper proposes and
outlines a new algorithm, KClone, for clone detection that
incorporates a novel combination of lexical and local depen-
dence analysis. The local nature of the dependence analysis
allows KClone to achieve inclusiveness without sacrificing
speed. In this paper we argue that KClone is inclusive with
respect to CCFinderX and Duplix.

Unlike Types-1 and 2, which have a precise definition,
Type-3 clones are less precisely defined [2]. For example,
there needs to be some limit on the extent to which two frag-
ments of code can differ while still being considered clones
of one another. This can be captured using a statement gap
distance or based on a measure such as the Levenshtein edit
distance[6].

For example, Figure 1 shows an example clone class that
KClone detected in the Java project NetBeans-Javadoc.
The three code fragments are selected from three different
source files and the duplicated code is indicated by the mark
“++”. The duplicated code is not exactly the same; some



Code fragment A

++ public ServiceType getExecutor(){
JavadocType.Handle javadocType =

(JavadocType.Handle)getProperty(PROP EXECUTOR);
++ JavadocType type = null;
++ if (javadocType != null){
++ type = (JavadocType)javadocType.getServiceType();}
++ if (type == null){

if (isWriteExternal()){
return null;}

++ return(JavadocType)Lookup.getDefault().lookup(org.netbeans.
++ modules.javadoc.settings.ExternalJavadocSettingsService.class);}
++ return type;}

Code fragment B

++ public ServiceType getExternalExecutorEngine(){
++ ExternalJavadocExecutor service = null;
++ if (executor != null){
++ service = (ExternalJavadocExecutor)executor.getServiceType();}
++ if (service == null){
++ return (ServiceType)Lookup.getDefault().lookup(org.netbeans.
++ modules.javadoc.ExternalJavadocExecutor.class);}
++ return service;}

Code fragment C

++ public ServiceType getSearchEngine(){
JavadocSearchType.Handle searchType =

(JavadocSearchType.Handle)getProperty(PROP SEARCH);
++ JavadocSearchType type = null;
++ if (searchType != null){
++ type = (JavadocSearchType)searchType.getServiceType();}
++ if (type == null){

if (isWriteExternal()){
return null;}

++ return(JavadocSearchType)Lookup.getDefault().lookup(org.netbeans.
++ modules.javadoc.search.Jdk12SearchType.class);}
++ return type;}

Figure 1. An example detected by KClone

variable names and types have been changed, some lines
are deleted, and some new lines insert. As a result, these
types of clone are difficult to detect.

A good clone detector should scale to large programs,
while considering sufficient semantic-level information to
detect all three types of clone. This requires that the man-
agement of necessary semantic information should be in-
expensive in terms of time and memory. KClone aims to
achieve this goal.

The rest of this paper is organized as follows. Section 2
describes the general structure of clone detection algorithms
and presents an overview of the KClone algorithm proposed
in this paper. Section 3 explains the experimental setting
as well as the initial results and the paper concludes with
Section 4.

2 Algorithm Description

Although various clone detection techniques use differ-
ent data representations and matching algorithms, they all
follow a similar three-step process:

Step 1 Transform the code into an internal representation.

Step 2 Detect parts that denote clone pairs.

Step 3 Aggregate clone pairs into clone classes.

Of these steps, Step 2 is the most time consuming, while
the representation has the greatest impact on inclusiveness.
The key to KClone’s fast and inclusive clone detection is to
divide Step 2 into two phases: first, a fast lexical analysis
detects basic clone pairs (BCPs). Only Type-1 or Type-2
clones are identified by this step. However, the detected
contiguous code sequences help detect Type-3 clones. The
second phase of the detection extends the BCPs into (fi-
nal) clone pairs while avoiding the construction of ‘expen-
sive’ data structures such as Abstract Syntax Trees (ASTs)
or Program Dependence Graphs (PDGs). Using these two
phases, KClone attains the efficiency of token and text-
based methods, while attaining the inclusiveness of more
semantics-based methods.

KClone’s three steps are now described in more detail.
First, Step 1 filters out uninteresting statements and then
extracts necessary “light-weight” information from the re-
maining statements. Uninteresting statements include com-
ments, blank lines, C/C++ preprocessor directives (e.g.,
#include) and in Java the directives “import” and “pack-
age”. In this paper, the term statement is used to refer to a
single textual line of code, rather than a programming lan-
guage statement construct in the formal language sense of
the word.

From the remaining interesting statements, three values
are extracted: structure-code, control links, and data depen-
dence links. Structure-code represents the structure of each
statement by storing the token identifiers of each lexeme
found in a statement. This effectively captures the code’s
structure, while allowing for certain common changes such
as variable renamings. For each statement, the control-link
identifies the previous and next statements (in the source
code ignoring nesting, etc.) that contain a control keyword
(e.g., while).

Finally, for each token that represents a variable, the
data-dependence-link (hereafter simply data-link) identifies
the previous and next statement that references (uses or de-
fines) the same variable. This is a local computation of
dependence, from which KClone derives comparable in-
clusiveness to dependence-graph-based approaches to clone
detection.

The efficiency of the Step 2 comes from dividing it into
two phases: The first phase applies a modified string suffix
algorithm and identifies BCPs (basic clone pairs). These
continuous statement sequences are sufficient to capture
many Type-1 and Type-2 clones. The second phase then ex-
tends BCPs to detect Type-3 clones by growing each BCP
to include ‘nearby’ statements. This is particularly effective



when the copied code has been edited or has had intervening
statements interjected.

In more detail, Phase 1 of Step 2 identifies BCPs created
by simple copy-and-paste operations. These are often the
core of the clones where the copied code is subsequently
edited. Phase 1 begins with an adaptation of the suffix com-
parison algorithm used widely in text searching [3, 5, 7] as
well as text and token based clone detectors [1, 4]. The
adaptation, uses token identifiers in place of the tokens as
the comparison unit. It also uses a fixed length suffix for
each statement. In the current implementation, the suffix is
composed of the token values from five contiguous state-
ments. When two statements have the same suffix then they
form a BCP.

Phase 2 extends the results of Phase 1 to detect larger
Type-1 and 2 clones as well as Type-3 clones. This is
done using the control and data links to efficiently by-
pass potentially interjected or modified code. Phase 2 is
invoked for each BCP and repeatedly extends the frag-
ments that make up the BCP using one of six extension
functions, including extend-backwards, extend-forwards,
extend-control-back, extend-control-forward, extend-data-
back, and extend-data-forward until no functions can be ap-
plied to BCPs. Extension terminates in one of three situ-
ations: the (structure of the) linked-to statements are not
equal, the linked-to statements are more than a specified dis-
tance away from the current clone, or when the ‘window of
text’ under consideration reaches the start or end of its file.

For example, the extension function extend-backwards
checks the statements immediately before the two code
fragments A and B of a BCP. If they match (i.e., they have
the same structure-code), then the algorithm adds these
statements to the clone pair.

The four ‘more complex’ extension functions require a
distance function, dist that returns the difference in the line
numbers of two statements (or maxint when one of the
statements is NULL). This occurs only if one of the next
lines occurs at the end of the file or previous lines at the
beginning of the file.

These four functions are also parameterized by one of
more of three integers: cg, dg, and w. The control-gap, cg,
is a threshold controlling the largest gap that the extension
will consider when following a control links. Similarly, the
data-gap, dg, is the largest gap considered when following
a data link. Finally, window size, w, controls the number
of statements considered when performing the data exten-
sion. This final parameter limits the extension as follows:
when extending a clone pair backwards (forwards), only
data-links of variables in the first (last) w statements are
considered. In the experiment, the values cg = 3, dg = 5,
and w = 5 were used.

The four remaining functions for extending a clone pair
are all similar. Control-back for extending a clone pair

backwards using the control link is considered as an ex-
ample. It considers control statements within the control-
gap distance cg of the first statements of two code frag-
ments A and B. Looking back using the control-link, if
a match is found the clone pair is extended back to include
the matching statements. If multiple matches exist, the ‘far-
thest’ (from the beginning of the clone pair) is chosen.

Conceptually, the efficiency of KClone can be attributed
to a combination of lexical and dependence techniques. To
begin with, the use of ‘light weight’ lexical analysis sup-
ports fast detection of Type-1 and Type-2 clones (similar to
other fast lexical clone detectors). For example, KClone
first uses fixed-length suffix analysis to find (small) BCPs,
which are then extended to final clone pairs. Previous appli-
cations of suffix analysis have not bounded the suffix length.
This can be very expensive when a large part of the program
is a potential suffix.

The lexical analysis also gathers sufficient dependence
information in the control and data links to quickly detect
Type-3 clones, giving precision at reasonable cost. Al-
though the search for Type-3 clones inherently involves
O(n2) comparisons to correctly jump over interjected code,
KClone exploits the control and data links to reduce the
value of n. For example, in the case of control predicates
n is not ‘all statements within the gap distance’, but only
‘all control statements within the gap distance’. This allows
significant code to be ignored during extension.

Example. Figure 2 shows an example Type-3 clone
found by KClone in the 11KLOC C program WelTab.
Lines marked by ++ denote cloned code. In this case,
after copy and paste, Line 10 of code Fragment A was
edited. Depending on the gap distance used, textual-based
approaches may miss Lines 12 and 13.

When KClone is applied to this example, it first identi-
fies Lines 1 to 5 of both code fragments as (structurally)
equivalent and thus as a BCP. This BCP is expanded to
cover Lines 1 to 9 by the function extend-forward which
stops because the two Lines numbered 10 in the two frag-
ments are not equal. Next, the function extend-control-
forward identifies, through the control-link, that Line 11 of
Fragment A matches Line 12 of Fragment B. After extend-
ing the clone pair to include these two statements, extend-
forward adds Line 12 of A and Line 13 of B. At this point,
the expansion stops because none of the surrounding code
(not shown in figure 2 for brevity) is structurally equivalent.
Note that in this example, even if the control-links are ig-
nored, the extension would still have uncovered that Lines
11-12 of A match Lines 12-13 of B through the data-link
for variable buffer.

After dependence analysis the third and final step aggre-
gates clone pairs into clone classes. This can be done in
several ways. KClone uses transitive paring to group clones
together: if code Fragments A and B form a clone pair and



Code Fragment A Code Fragment B
1 ++ if (buffer[0] != ‘1’ 1 ++ if (buffer[0] != ‘1’
2 ++ && buffer[0] != ‘ ’ 2 ++ && buffer[0] != ‘ ’
3 ++ && buffer[0] != ‘0’ 3 ++ && buffer[0] != ‘0’
4 ++ && buffer[0] != ‘+’) { 4 ++ && buffer[0] != ‘+’) {
5 ++ if (nread != 1) printf(“\n”); 5 ++ if (nread != 1) printf(“\n”);
6 ++ printf(“%s”,buffer); 6 ++ printf(“%s”,buffer);
7 ++ nwrite++; 7 ++ nwrite++;
8 ++ }; 8 ++ };
9 ++ if (buffer[0] == ‘1’) 9 ++ if (buffer[0] == ‘1’){

10 printf(“\f ”); 10 if (nread != 1) printf(“\f ”);
11 ++ if (buffer[0] == “ ’) { 11 };
12 ++ if (nread != 1) printf(“\n”); 12 ++ if (buffer[0] == “ ’) {
13 13 ++ if (nread != 1) printf(“\n”);

Figure 2. Software clone example illustrating the dependence analysis

Figure 3. Example of un-proposed clone. (Black lines are common clone lines, gray lines are found
only by the first detector, and those in outline are found only by the second.)

code Fragments B and C form a clone pair, then A, B, and
C are placed in the same clone class. Forming clone classes
benefits programmers, by grouping common clones.

3 Illustration of Results

KClone is implemented in C and finds clones in C,
C++, and Java programs. We plan to release a copy of
KClone to the community in due course. After loading a
project’s source into memory, KClone preprocesses all the
files before running first the syntactic and then the depen-
dence analysis. Detection outputs all clone pairs and all the
clone classes. This section reports initial result concerning
KClone’s performance with regard to inclusion, speed and
memory.

3.1 Inclusion Study
To see the way in which KClone achieves inclusiveness,

we performed a comparison between CCFinder and Duplix
using the WelTab program and the benchmark clone pairs
reported by Bellon and Koschke [2] (see Figure 3). Two ob-
servations can be made. First, the grey bars in the two show
clone lines found by either KClone (on the left) or by Du-
plix (on the right), but missed by CCFinder. As expected,
given the past performance of Duplix, manual inspection of
these clone lines confirmed that they all correspond to Type-
3 clones. The results provide evidence that KClone is good
at identifying these hard-to-identify Type-3 clones.

The second observation is that there are very few clone
lines shown in outline on the left of Figure 3, but a consid-
erable number on the right. To understand the cause of this



Table 1. Running time and memory-consuming of KClone. (Interesting LoC excludes comments,
blank lines, and directives (e.g., #define and import)

Peak Memory (MB) Running time (secs)
Program LoC I LoC CCFinderX KClone CCFinderX KClone

WelTab 11K 9K 243 7 5 4
cook 80K 45K 244 30 18 10
snns 115K 70K 243 48 30 15
netbeans-javadoc 19K 8K 244 9 5 2
eclipse-ant 35K 15K 245 13 10 6
eclipse-jdcore 148K 94K 243 67 55 20

difference, it is first important to note that, while Duplix is
good at finding Type-3 clones, it is weak at finding Type-
2 clones. The clones lines shown in outline on the right of
Figure 3 are largely Type-2 clones. However, the absence of
similar regions shown in outline on the left of Figure 3 in-
dicates that these clone lines are detected by KClone; thus,
Figure 3 illustrates that KClone is good at finding all types
of clone.

3.2 Speed and Memory Study

Bellon and Koschke report the worst case for each tool
they study [2]. Paraphrasing their results, the metric-based
techniques are the most efficient: for even the largest of pro-
grams considered they take no more than 5 seconds and con-
sume no more than 50MB of memory. The text-based and
token-based techniques are also very efficient. They take 10
to 50 seconds to analyze around 100K LOC and consume
a similar 50MB of memory. However the AST and PDG
based methods are comparatively slow and require signifi-
cant memory. For example, when applied to the 115KLoC
program SNNS, CLoneDR (an AST based approach) takes
3 hours and uses 628MB of memory, while Duplix (a PDG
based approach) takes 63 hours and uses 64 MB of mem-
ory. This reflects their need to build ‘heavy weight’ data
structures.

To provide a concrete evaluation of the performance of
KClone, the memory and run-time for CCFinderX and
KClone were gathered. Beyond the pragmatic reason that
it is the only publicly available clone detector studied,
CCFinderX is also a good choice because of its good per-
formance results. Only the metric-based approaches are
faster, but they tend to uncover considerably fewer clones.

The comparison ran KClone and CCFinderX on the
same hardware and in the same software environment. It
measured the memory and time required by each. Table 1
presents the results. The memory demand of KClone is
clearly a function of the input size and considerably less
than that of CCFinderX. From the run-times presented in
Table 1 KClone takes, on average, about half of the time
of CCFinderX. This is largely due to the combination of

quickly finding basic clone pairs using the modified suffix
algorithm and then expanding them using the control and
data links. Given that its inclusiveness rivals considerably
more expensive clone detectors, we believe that these re-
sults provide evidence to support the claim that KClone
represents an attractive combination of inclusion and effi-
ciency.

4 Conclusion
This paper proposes and outlines an algorithm capable

of detecting all three clone types studied in the literature.
The novel aspect of the algorithm is the exploitation of both
textual and dependence information. The key benefit of this
combination is an improvement in both inclusiveness of all
clone types and performance. For example, the algorithm
can quickly detect Type-3 clones which are normally only
detected by slow, semantic, clone detection techniques.

References

[1] B. S. Baker. On finding duplication and near-duplication in
large software systems. In Second Working Conference on
Reverse Engineering, pages 86–95, Los Alamitos, California,
1995.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and evaluation of clone detection tools. IEEE
Transactions on Software Engineering, 33(9):577–591, 2007.

[3] M. Crochemore and W. Rytter. Jewels of stringology. World
Scientific Publishing, River Edge, NJ, 2003.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A mul-
tilinguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineer-
ing, 28(7):654–670, 2002.

[5] P. Koa and S. Alurua. Space efficient linear time construction
of suffix arrays. Journal of Discrete Algorithms, 3:143–156,
2004.

[6] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. In Soviet Physics-Doklandy,
volume 10, 1966.

[7] P. Weiner. Linear pattern matching algorithms. In FOCS:
IEEE Symposium on Foundations of Computer Science
(FOCS), 1973.


