
Advanced Slicing of Sequential and Concurrent Programs

Jens Krinke
FernUniversiẗat in Hagen, Germany∗

Jens.Krinke@FernUni-Hagen.de

Abstract

Program slicing is a technique to identify statements that
may influence the computations in other statements. De-
spite the ongoing research of almost 25 years, program slic-
ing still has problems that prevent a widespread use: Some-
times, slices are too big to understand and too expensive
and complicated to be computed for real-life programs. The
presented thesis shows solutions to these problems: It con-
tains various approaches which help the user to understand
a slice more easily by making it more focused on the user’s
problem. All of these approaches have been implemented in
the VALSOFT system and thorough evaluations of the pro-
posed algorithms are presented.

The underlying data structures used for slicing are pro-
gram dependence graphs. They can also be used for dif-
ferent purposes: A new approach to clone detection based
on identifying similar subgraphs in program dependence
graphs is presented; it is able to detect modified clones bet-
ter than other tools.

In the theoretical part, this thesis presents a high-
precision approach to slice concurrent procedural pro-
grams despite the fact that optimal slicing is known to be
undecidable. It is the first approach to slice concurrent pro-
grams that does not rely on inlining of called procedures.

1. Introduction

Program slicing answers the question “Which state-
ments may affect the computation at a different statement?”,
something every programmer asks once in a while. Af-
ter Weiser’s first publication on slicing in 1979, almost 25
years have passed and various approaches to compute slices
have evolved. Usually, inventions in computer science are
adopted widely after around 10 years. Why are slicing tech-
niques not easily available yet? William Griswold gave a

∗The work presented in this thesis was mainly performed at the
Universiẗat Passau, Germany. The complete thesis is available at
http://www.fernuni-hagen.de/ST/diss.php

talk at PASTE 2001 [4] on that topic:Making Slicing Prac-
tical: The Final Mile. He pointed out why slicing is still not
widely used today. The two main problems are:

1. Available slicers are slow and imprecise.

2. Slicing ‘as-it-stands’ is inadequate to essential
software-engineering needs.

Not everybody agrees with his opinion. However, his first
argument is based on the observation that research has gen-
erated fast and precise approaches but scaling the algo-
rithms for real-world programs with million lines of code
is still an issue. Precision of slicers for sequential impera-
tive languages has reached a high level, but it is still a chal-
lenge for the analysis of concurrent programs—only lately
is slicing done for languages with explicit concurrency like
Ada or Java. The second argument is still valid: Usually,
slices are hard to understand. This is partly due to bad user
interfaces, but is mainly related to the problem that slicing
‘dumps’ the results onto the user without any explanation.

The thesis [11] presented here tries to show how these
problems and challenges can be tackled. Therefore, the
three main topics are:

1. Present ways to slice concurrent programs more pre-
cisely.

2. Help the user to understand a slice more easily
by making it more focused on the user’s problem.

3. Give indications of the problems and consequences
of slicing algorithms for future developers.

Furthermore, this thesis gives a self-contained introduction
to program slicing. It does not try to give a complete sur-
vey because since Tip’s excellent survey [21]1 the litera-
ture relevant to slicing has exploded: CiteSeer recently re-
ported 257 citations of Weiser’s slicing article [24] (and 95
for [23]). This thesis only contains 187 references where at
least 108 have been published after Tip’s survey.

1Tip’s survey [21] has been followed by some others [1, 5, 2, 6].

c©2004 IEEE. To be published in the Proceedings 20th IEEE International Conference on Software Maintenance, 2004 in Chicago, USA. Personal use
of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



2. Slicing

A slice extracts those statements from a program that po-
tentially have an influence on a specific statement of inter-
est, which is the slicing criterion. Originally, slicing was de-
fined by Weiser in 1979; he presented an approach to com-
pute slices based on iterative data flow analysis [22, 24].
The other main approach to slicing uses reachability analy-
sis in program dependence graphs [3]. Program dependence
graphs mainly consist of nodes representing the statements
of a program as well as control and data dependence edges:

• Control dependence between two statement nodes ex-
ists if one statement controls the execution of the other
(e.g. at if or while statements).

• Data dependence between two statement nodes exists
if a definition of a variable at one statement might
reach the usage of the same variable at another state-
ment.

A slice can now be computed simply in three steps: Map
the slicing criterion on a node, find all backward reachable
nodes, and map the reached nodes back on the statements.

Slicing has found its way into various applications.
Nowadays it is probably mostly used in the area of software
maintenance and reengineering. Specifically, applications
are Debugging, Testing, Program Differencing and Integra-
tion, Impact Analysis, Function Extraction and Restructur-
ing, or Cohesion Measurement. It has even been used for
debugging and testing spreadsheets or type checking pro-
grams.

2.1. Slicing Sequential Programs

Example 1 (Slicing without Procedures)Figure 1 shows
a first example where a program without procedures shall
be sliced. To compute the slice for the statementprint a ,
we just have to follow the shown dependences backwards.
This example contains two data dependences and the slice
includes the assignment toa and the read statement forb.

read a

read b

a = 2*b

print a

read c

Figure 1. A procedure-less program

In all examples, we will ignore control dependence and
just focus on data dependence for simplicity of presentation.
Also, we will always slice backwards from theprint a
statement.

Slicing without procedures is trivial: Just find reachable
nodes in the PDG [3]. The underlying assumption is that all
paths arerealizable. This means that a possible execution of
the program exists for any path that executes the statements
in the same order.

read a

read b

a = 2*b

print a

proc Q():

a = a+1Q()

Q()

proc P():

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Trace:

P: read a

P: read b

Q: a = a+1

P: a = 2*b

Q: a = a+1

P: print a

Figure 2. A program with two procedures

Example 2 (Slicing with Procedures)Now, the example
is extended by adding procedures in Figure 2. If we ignore
the calling context and just do a traversal of the data depen-
dences, we would add theread a statement into the slice
for print a . This is wrong because this statement clearly
has no influence on theprint a statement. Theread a
statement only has an influence on the first call of procedure
Qbut a is redefined before the second call to procedureQ
through the assignmenta=2*b in procedureP.

Such an analysis is calledcontext-insensitivebecause the
calling context is ignored. Paths are now considered real-
izable only if they obey the calling context. Thus, slicing
is context-sensitiveif only realizable paths are traversed.
Context-sensitive slicing is solvable efficiently—one has to
generate summary edges at call sites [7]: Summary edges
represent the transitive dependences of called procedures at
call sites.

Within the implemented infrastructure to compute PDGs
for ANSI C programs, various slicing algorithms have been
implemented and evaluated. One of the evaluations of
this thesis (presented in [10]) shows that context-insensitive
slicing is very imprecise in comparison to context-sensitive
slicing. On average, slices computed by the context-
insensitive algorithm are 67% larger than the ones com-
puted by the context-sensitive algorithm. This shows that
context-sensitive slicing is highly preferable because the
loss of precision is not acceptable. A surprising result is
that the simple context-insensitive slicing isslowerthan the
more complex context-sensitive slicing (23% on average).
The reason is that the context-sensitive algorithm has to
visit many fewer nodes during traversal due to its higher
precision. Both algorithms usually visit a node or an edge
only once, the context-sensitive algorithm has to visit a few
nodes twice.

2



read a

b = d

a = 2*b

print a

thread Q:thread P:
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

d = c

read c
.
.
.
.

Trace #1:

P: read a

Q: d = c

P: b = d

P: read c

P: a = 2*b

P: print a

Trace #2:

P: read a

P: b = d

P: read c

Q: d = c

P: a = 2*b

P: print a

Figure 3. A program with two threads

2.2. Slicing Concurrent Programs

Now, let’s move on to concurrent programs. In concur-
rent programs that share variables, another type of depen-
dence arises:interference. Interference occurs when a vari-
able is defined in one thread and used in a concurrently ex-
ecuting thread.

Example 3 (Slicing Concurrent Programs) In the exam-
ple in Figure 3 we have two threadsP andQthat execute in
parallel. In this example, there are two interference depen-
dences: One is due to a definition and a usage of variable
d, the other is due to accesses to variablec .

A simple traversal of interference during slicing will make
the slice imprecise because interference may lead to unre-
alizable paths again. In the example in Figure 3, a simple
traversal will include theread c statement into the slice.
But there is no possible execution where theread c state-
ment has an influence on the assignmentb=d . A matching
execution would requiretime travelbecause the assignment
b=d is always executed before theread c statement. A
path through multiple threads is now realizable if it con-
tains a valid execution chronology. However, even when
only realizable paths are considered, the slice will not be as
precise as possible. The reason for this imprecision is that
concurrently executing threads maykill definitions of other
threads.

Example 4 In the example in Figure 4, theread a state-
ment is reachable from theprint a statement via a re-
alizable path. But there is no possible execution where the
read statement has an influence on theprint statement
when assuming that statements are atomic. Either theread
statement reaches the usage in threadQbut is redefined af-
terwards through the assignmenta=2*b in threadP, or the
read statement is immediately redefined by the assignment
a=2*b before it can reach the usage in threadQ.

Müller-Olm has shown that precise context-sensitive
slicing of concurrent programs is undecidable in general

read a

read b

a = 2*b

print a

thread Q:

a = a+1

thread P:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

read c

.

.

.

.

Trace #1:

P: read a

P: read b

P: read c

Q: a = a+1

P: a = 2*b

P: print a

Trace #2:

P: read a

P: read b

P: read c

P: a = 2*b

Q: a = a+1

P: print a

Figure 4. Another program with two threads

[16]. Therefore, we have to use conservative approxima-
tions to analyze concurrent programs. A naive approxi-
mation would allow time travel, causing an unacceptable
loss of precision. Also, we cannot use summary edges to
be context-sensitive because summary edges wouldignore
the effects of parallel executing threads. Summary edges
represent the transitive dependences of the called procedure
without interference; they cannot be extended to represent
interference, because interference is not transitive. Again,
reverting to context-insensitive slicing would cause an un-
acceptable loss of precision.

To be able to provide precise slicing without summary
edges, new slicing algorithms have been developed based
on capturing the calling context throughcall strings [18].
Call strings can be seen as a representation of call stacks.
They are frequently used for context-sensitive program
analysis, e.g. pointer analysis. The call strings are prop-
agated along the edges of the PDG: At edges that connect
procedures, the call string is used to check that a call al-
ways returns to the right call site. Thus, call strings are
never propagated along unrealizable paths.

The basic idea for the high-precision approach to slice
concurrent programs is the adaption of the call string ap-
proach to concurrent programs. The context is now cap-
tured through one call string for each thread. It is then a
tuple of call strings which is propagated along the edges in
PDGs. On the one hand, they enforce that propagation re-
turns to the right call site from a called procedure, and on
the other hand, they ensure that no time travel occurs during
the traversal between threads.

A combined approach avoids combinatorial explosion of
call strings: Summary edges are used to compute the slice
within threads. Additionally, call strings are only generated
and propagated along interference edges if the slice crosses
threads. With this approach many fewer contexts are prop-
agated.

This only outlines the idea of the approach—this the-
sis presents the foundations and algorithms for slicing se-
quential and concurrent programs in detail (also presented
in [12]). Additionally, a major part of this thesis presents
optimizations and advanced applications of slicing.

3



3. Contributions

This thesis is self-contained as much as possible. Be-
sides a thorough presentation of slicing, the accomplish-
ments of this thesis are:

• A fine-grained program dependence graph which is
able to represent ANSI C programs including non-
deterministic execution order. It is a self-contained
intermediate representation and the base of clone de-
tection and path condition computation.

• A high-precision approach to slicing concurrent
procedure-less programs. A preliminary version has
been published as [8].

• A new approach to slicing concurrent procedural pro-
grams. This context-sensitive approach reaches a high
precision, despite the fact that precise or optimal slic-
ing is undecidable. This is the first approach that does
not need inlining and is able to slice concurrent recur-
sive programs (published as [12]).

• Some variations of slicing and chopping algorithms
within interprocedural program dependence graphs
and a thorough evaluation of these algorithms. Most
of this has already been published in [10]. These al-
gorithms include call string based variants, which are
needed for slicing concurrent programs.

• Fundamental ideas and approaches for visualizing de-
pendence graphs and slices as graph based, textual and
abstract representations [14]. Experience shows that
the graphical presentation is less helpful than expected
and a textual presentation is superior in most cases.
Another, more sophisticated approach visualizes the
influence range of chops for variables and procedures.
This enables a visualization of the impact of proce-
dures and variables on the complete system.

• Some methods to make the results of slicing more fo-
cused or more abstract. Parts of this have been pub-
lished as [13] and presents an approach that can be
used to ‘filter’ slices. It basically introduces ‘barriers’
which are not allowed to be passed during slice com-
putation. The barrier variants of slicing and chopping
provide filtering possibilities for smaller slices and bet-
ter comprehensibility.

• Techniques to reduce the size of program dependence
graphs without worsening the precision of slicing.
This relies on elimination of redundant nodes and fold-
ing of strongly connected components.

• An approach to clone detection based on program de-
pendence graphs. This approach has a higher detec-
tion rate for modified clones than other approaches, be-
cause it identifies similar semantics instead of similar
texts. After publication in [9], the benefits and draw-
backs of this approach have been evaluated in a clone
detection contest.

• Methods to generate path conditions for complex data
structures, procedures and concurrent programs. The
general approach of path conditions was introduced
by Snelting [19] and developed further by Robschink
[17, 20]. Path conditions provide necessary conditions
under which an influence between the source and tar-
get criterion exists.

• The design of the VALSOFT system and implementa-
tion of the data flow analysis, dependence graph con-
struction and various slicing and chopping algorithms
within it.

4. Conclusions

The presented thesis attacked important problems in pro-
gram slicing and showed some solutions. With the newly
developed slicing techniques and their evaluation it was
possible to show that highly precise and efficient slicing
is possible for sequential and concurrent programs. The
implementation in the VALSOFT system exposed that the
slicing itself is not responsible for scalability problems, but
the data flow analyses, and pointer analysis in particular,
needed to build the program dependence graphs.

In the original form, program slicing is not well suited
for program comprehension. This thesis presented ap-
proaches with new slicing techniques that generate more
comprehensible results. Methods that not only present re-
sults, but also explain them, show promising results.

Acknowledgments. I am grateful for all the support pro-
vided by my advisor Gregor Snelting. The former and cur-
rent members of the software systems group in Passau de-
serve special thanks for their help and valuable discussions.

References

[1] D. Binkley and K. B. Gallagher. Program slicing.Advances
in Computers, 43:1–50, 1996.

[2] A. De Lucia. Program slicing: Methods and applications. In
IEEE workshop on Source Code Analysis and Manipulation
(SCAM 2001), 2001. Invited paper.

[3] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3):319–349, July 1987.

4



[4] W. G. Griswold. Making slicing practical: The final mile,
2001. Invited Talk, PASTE’01.

[5] M. Harman and K. B. Gallagher. Program slicing.Informa-
tion and Software Technology, 40(11–12):577–581, 1998.

[6] M. Harman and R. Hierons. An overview of program slicing.
Software Focus, 2(3):85–92, 2001.

[7] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs.ACM Trans. Prog. Lang.
Syst., 12(1):26–60, Jan. 1990.

[8] J. Krinke. Static slicing of threaded programs. InProc.
ACM SIGPLAN/SIGFSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’98), pages 35–
42. ACM Press, 1998. ACM SIGPLAN Notices 33(7).

[9] J. Krinke. Identifying similar code with program depen-
dence graphs. InProc. Eigth Working Conference on Re-
verse Engineering, pages 301–309, 2001.

[10] J. Krinke. Evaluating context-sensitive slicing and chop-
ping. InInternational Conference on Software Maintenance,
pages 22–31, 2002.

[11] J. Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Universität Passau, 2003.

[12] J. Krinke. Context-sensitive slicing of concurrent programs.
In Proceedings ESEC/FSE, pages 178–187, 2003.

[13] J. Krinke. Slicing, chopping, and path conditions with bar-
riers. Software Quality Journal, 12(4), 2004.

[14] J. Krinke. Visualization of program dependence and
slices. In International Conference on Software Mainte-
nance, 2004.

[15] J. Krinke and G. Snelting. Validation of measurement soft-
ware as an application of slicing and constraint solving.
Information and Software Technology, 40(11-12):661–675,
Dec. 1998.

[16] M. Müller-Olm and H. Seidl. On optimal slicing of parallel
programs. InSTOC 2001 (33th ACM Symposium on Theory
of Computing), pages 647–656, 2001.

[17] T. Robschink and G. Snelting. Efficient path conditions in
dependence graphs. InProceedings of the 24th Interna-
tional Conference of Software Engineering (ICSE), pages
478–488, 2002.

[18] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. InProgram Flow Analysis: Theory and
Applications, pages 189–233. Prentice-Hall, 1981.

[19] G. Snelting. Combining slicing and constraint solving for
validation of measurement software. InStatic Analysis Sym-
posium, volume 1145 ofLNCS, pages 332–348. Springer,
1996.

[20] G. Snelting, T. Robschink, and J. Krinke. Efficient path con-
ditions in dependence graphs for software safety analysis.
Submitted for publication, 2003.

[21] F. Tip. A survey of program slicing techniques.Journal of
programming languages, 3(3), Sept. 1995.

[22] M. Weiser. Program slices: formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, 1979.

[23] M. Weiser. Programmers use slices when debugging.Com-
mun. ACM, 25(7):446–452, 1982.

[24] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.,
10(4):352–357, July 1984.

5


