Unions of Slices are not Slices

Andrea De Lucia Mark Harman & Robert Hierons Jens Krinke
Research Centre on Department of Information Lehrstuhl Softwaresysteme,
Software Technology, Systems and Computing, Universi&t Passau,
University of Sannio, Italy Brunel University, UK Germany
delucia@unisannio.it mark.harman@brunel.ac.uk krinke@fmi.uni-passau.de
Abstract work of Bieman and Ott [2] and Ott and Thuss [16, 17],

slicing is used to assess the functional cohesion in a func-

Many approaches to slicing rely upon the ‘fact’ that the tion. The approach is essentially to define metrics which
union of two static slices is a valid slice. It is known that derive their cohesion score from the level of overlap be-
static slices constructed using program dependence graphtween the ‘important’ slices of the function. This overlap
algorithms are valid slices [19]. However, this is not true represents the portion of the function which contributes to
for other forms of slicing. For example, it has been estab- all the important variables and thus can be thought of as
lished that the union of two dynamic slices is not necessar-the cohesive part. Of course, this overlap is an intersection,
ily a valid dynamic slice [8]. In this paper this result is but other metrics, such as coverage [16] rely upon union,
extended to show that the union of two static slices is notas does work on coupling [9], which is derived from and
necessarily a valid slice, based on Weiser's definition of a inspired by the original work on cohesion measurement.
(static) slice. We also analyse the properties that make the The reason all these approaches safely use the union of
union of different forms of slices a valid slice. slices is due to the fact that the algorithm used to build a
slice preserves control and data flow dependences of the
original program (most of them are indeed based on the Pro-
gram Dependence Graph, PDG [6]). Indeed, according to
Horwitz et al., two PDG slices of the same program can be
seen as two non-interfering versions of the program which

the results of two or more slices to produce a slice which a .ean be safely integrated [10]. However, despite these im-
P 9 portant results, we show that the union of static slices is

glomerates the results of each individual slice. For example,nOt necessarila valid slice, based on Weiser's definition of

in decomposition slicing [7], the decomposition slice (and slice

its complement) can be expressed as a union of static slices, — L
Unioning of slices is not merely relied upon in static slic-

each of which shares the same variable, but differs uponthe ~.". ; . ST
. T . ing, it is also used in the construction of dynamic slices and
point for which it is constructed. The parallel algorithm

of Danicic et al. [5] explicitly relies upon union of slic- in. the approximation of the more pregise .‘realizable’ static
ing. Other, well-known algorithms for static slicing, such slice, expressed as a umon_of dynamic slices [1].' Hov_vever,
as Weiser's [23] and the HRB inter-procedural algorithm although PDG based algorlthms_ er_1ab|_e the Va.“d union of
[11] also, implicitly rely upon the ‘fact that the union of two static s_Ilc;es of a program, unioning is not vahdlfor other
. . N . . forms of slicing. For example, it has been established that
two slices on two different criteria is a slice on the union of the union of two dynamic slices is not necessarily a valid
the two criteria (which we call the ‘distributive law’ in this q ic slice I8 In thi Iso identify furth
paper). This has only been proved for program dependence ynamic siice [8]. n IS paper we aso 1den ity urther
graph based slicing of programs without procedures [19]. conditions for the validity of_ unioning other forms of slices,
Also, in the application of slicing algorithms to software such as dyngmm and cond|t|ongd sllces:
engineering problems, the approaches often rely, either ex- The remainder of the Paper 1s organ'|zeq as fpl]qws. n
plicitly or implicitly upon the belief that the union of two Se'ct|on ZWE.ShO\'N thqt accordmg'to V\(elserstefln|t|qn, the
slices is a valid slice. For example, Canfora et al. [4] use union of static slices is not a valid slice, while Section 3

the union of slices to identify reusable functions and in the d|§cusses the conqmon for th? yal|d|ty (.)f. unioning .Sta.t'C
slices. Section 4 discusses validity conditions for unioning

lwhich this paper demonstrates is questionable. other forms of slices, while concluding remarks and future

1. Introduction

Many approaches to slicing rely upon the ability to union

(©2003 IEEE. To be published in the Proceedings of the 7th European Conference on Software Maintenance and Reengineering, 2003 in Bengvento, Italy.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for crieating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE.

work directions are outlined in Section 5. P Py P> Ps=PUP,
1| x=2; X=2; X=2; X=2;
2. Unioning slices 2| x=x+1;| x=x+1; X=x+1;
3|y=x
Weiser has formally defined a slice as any subset of a 41 x f 2 _ _ R _
program, which preserves a specific behavior in respect to a 2 X=X+ L o X=X+ 1] x =x+ 1;
criterion. The criterion, also called tisticing criterion, is y=x y=X y=x y=Xx

a pairc = (s,V) consisting of a statemestand a subsey
of the variables of the analyzed program. Figure 1. Two slices with the same criterion.
Definition 1 (Weiser-style Slice) A slice Slicéc) of a pro-

gram P on a slicing criterion ¢ is any executable program P Py P2 P=PUP,
P, where 1| x=2; X=2; X=2: X=2:
. . . 2 | Xx=x+1;| x=x+1; X=X+1;
1. F is obtained by deleting zero or more statements from 5 y=X; y=X; y=X;
P, 4| x=2;
2. whenever P halts on a given input I, Will halt for S| x=x+1; x=x+1;| x=x+1;
that input, and 6z=X z=X, z=x;
3. P will compute the same values as P for the variables
of V oninput I. Figure 2. Two slices with two criteria.

The most trivial (but irrelevant) slice of a progranis
always the prograr® itself. Slices of interest are as small does not hold, according to Weiser’s definition. This is sur-
as possible, hopefully minimal. prising, because this law is widely believed in the ‘folk-
In this section we show that the union of two static slices lore’ of slicing and is implicitly and explicitly relied upon
is not a static slice. This is the case, both for two slices con-in many approaches to slicing.
structed for different criteria and also for two different valid Consider the example in Figure 2. In this example, two
slices, constructed for the same criterion, each of which sat-minimal slices are constructed for two different variables,
isfies Weiser’s definition. For the sake of simplicity, we use y andz, but the union of these two slicesrist a slice on
the end of the program as the statement part of slicing crite-{y, z}.
ria. This does not affect the validity of our considerations.
Consider the example in Figure 1. In this example, two
slices are constructed for the final value of the variable x.
That is, each slice is constructed by statement deletion and
each must preserve the final value of the variable Of The problem embodied by these examples is that the
course, garticular algorithm for slicing would only pro- constructed slices do not take into account the data depen-
duce a single (unique) slice for a single criterion. However, dences. That is, in both examples, statement 5 is data de-
Weiser’s definition allows for many possible valid slices. In Pendent on statement 4 and not on statement 2. The data
this example, both slices are minimal (minimal slices are flow from statement 2 ikilled before it reaches statement

not unique [22]). Observe that the union of the two slices is 5, but the killing statement is not included in either slice.

not a slice on x. Therefore a dependence is inserted into the unioned code,
This result is interesting from a theoretical point of view, Which is not present in the original program.

but is less important practically speaking, because, any de- Fortunately, all the approaches that make use of union

terministic algorithmd would only construct a single slice Of static slices rely on slicing algorithms that do preserve a

for a single criterion and therefore there would be no prac- subset of the direct data and control dependence relations of

tical ramifications from this observation. the original program. For example, in Figure 3 both slices
However, by a similar argument, it can be shown that the On variables andz are dependence preserving and the re-

union of two static slices for two different criteria is also not Sulting union is a valid slice.

a static slice for the union of the two criteria; slicing is not ~ Reps and Yang have proved that a slice in a procedure-

3. Unioning static slices

distributive. More formally, the law less program computed by a dependence graph based algo-
. .) rithm is a valid slice [19]. Also, according to Horwiet
SlicgP,V UW) = SlicgP,V) U Slice P,W) al. two program dependence graph based slices of the same
2All the currently published algorithms for static slicing [20% deter- program can be seen as two non-interfering versions of the
ministic. program and then can be safely integrated [10]. Kumar and

P Py P, Ps=PUP,
1| x=2; X=2; X=2;
2 | X=x+1;| x=x+1; X=x+1;
3ly=x y=X; y=X;
4| x=2; X=2; X=2;
5| x=x+1; X=X+1;| x=x+1;
6| z=x; Z=X; Z=X;

Figure 3. Preserving slices for two criteria.

Horwitz [14] present a modified definition of a slice based
on semantic effectésimilar to thesemantic dependencoé
[18]), which basically inverts the definition of a slice: A
statemenk of programP has a semantic effect on a state-
menty, iff a programP’ exists, created by modifying or
removingx from P, and some input exists such tha® and

P’ halt onl and produce different values for some variables
used ay. This definition does not allow ‘problematic’ slices
like in Figure 1 or 2. However, such a slice may be a super-
set of a Weiser’s slice because a statement like=" x; ”

has a semantic effect according to their definition.

4. Unioning other forms of slices

In static slicing, the union of two dependence-preserving
slices constructed for different criteria can only augment the
slice of either. That is, the union of the two slices is simply
an unnecessarily large slice of each of the contributing slic-
ing criteria. By contrast, the union of two dynamic slices
[13], even where they are dependence-preserving, can in
terfere, to alter the semantics of one of the two slices. Con-
sider the example in Figure 4: the sli€g is constructed
with respect to variable x and inpat= 1, while sliceP,
is constructed with respect to variable x and input 2.
The union of the two slic®; fails to preserve the semantics
of the program with respect to inpat= 1 and then cannot
be considered a valid dynamic slice for this input. Hall [8]
noticed thi$ and proposed a method called simultaneous
dynamic slicing to compute dynamic slices that simultane-
ously preserve the semantics of the original program for all
the different input of the contributing slices.

Indeed, the problem with the union of dynamic slices is
that they belong to different execution traces (one for each
input) and definitions on an execution trace might kill defi-
nitions of a different execution trace. For example, in Fig-
ure 4 the definition of x at statement 7 in the union slice kills
the definition of x at statement 2 on any input, while in the
original program this does not happen for input 1.

It is worth noting that the problem derives from the fact

3The contribution of our example, is that it is a much simpler demon-
stration of the problem than the example used by Hall.

P P, P Ps=PLUP,
1| read (n);
2| x=1; x=1; x=1;
3ly=2 y=2; y=2;
4 | if(n==1)
5| y=1
6 | if(y==2) if(y==2) | if(y==2)
7 X=2; X =2; X=2;

Figure 4. Dynamic slices for two criteria.

that there is a dynamic dependence between statement 5 and
statement 6 on the execution trace for input 1 and not

on the execution trace for inpat= 2. As statement 6 only
affects the computation of x on the execution trace for input
n = 2, neither sliceP;, nor sliceP, include statement 5. In
this way, in the union slice the data dependence between
statements 5 and 6 on the execution trace for impytl is

lost, thus resulting in an erroneous result for the variable x.
It is also important to remark that statement 5 transitively
depends on statement 1 that defines the value of the input
variable n. Such dependences are lost in current dynamic
slicing algorithms whenever the dependent statement does
not affect the computation of the variable of interest and
then is lost in the union of the dynamic slices too.

The same problem is likely to affect other forms of slic-
ing, such as quasi-static slicing [21] and conditioned slicing
[3], where slices are constructed with respect to a subset of
the execution tracés

Therefore, to build valid unions for forms of slices com-

puted with respect to subsets of execution traces, we need

to consider other properties than just preserving program
dependences. It is likely that the union is a valid slice if
the two slices are constructed with respect to the same sub-
set of execution traces. For example, we should get valid
union slices of two dependence preserving dynamic slices
constructed with respect to two different variables but the
same input, or of two conditioned slices constructed with
respect to the same condition on the input variables.

5. Conclusions/future work

This short paper raises some questions about set oper-
ations on slicing, in particular various forms of union of
slices. It has shown that the union of two static slices is
not (necessarily) a valid static slice. This complements the
work by Hall [8], on simultaneous slicing which shows that
the union of dynamic slices is not a dynamic slice.

4In quasi-static slicing the subset of execution traces is identified by
assigning a value to a subset of the input variables, while in conditioned
slicing a condition on the input variables is used.

Despite our results showing that the union of static slices [2] J. M. Bieman and L. M. Ott. Measuring functional cohesion.

is not necessarily a valid static slice, current PDG based
static slicing algorithms (which rely upon the union of

slices) are correct. It is not the same for other forms of
slices computed with respect to a subset of the execution
traces. For example, the union of two dynamic slices is
not necessarily a valid dynamic slice, even if the slices pre-

(3]

serve the program dependences. An approach to get valid [4]

union slices is to propose algorithms that take into account
simultaneously the execution traces of the slicing criteria,

as in the simultaneous dynamic slicing algorithm proposed [5)

by Hall [8].

It is worth noting that the goal of some authors [1] is
to union dynamic slices to achieve an approximation of a

(6]

static slice, rather than a slice that preserves the semantics

of the original program on the different program input used
to build the single dynamic slices. Although, the proposed
approach is interesting from a performance point of view
(the union slice can be constructed in a much faster and

IEEE Transactions on Software Engineering0(8):644—
657, Aug. 1994.

G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. In M. Harman and K. Gallagher, editdrdpr-
mation and Software Technology Special Issue on Program
Slicing volume 40, pages 595-607. Elsevier Science B. V.,
1998.

G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca.
Slicing large programs to isolate reusable functionsE Uk
ROMICRO Conferencgages 140-147, 1994,

S. Danicic, M. Harman, and Y. Sivagurunathan. A parallel
algorithm for static program slicindgnformation Processing
Letters 56(6):307-313, Dec. 1995.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimizatida@M Trans-
actions on Programming Languages and Syst&{8):319—
349, July 1987.

7] K. B. Gallagher and J. R. Lyle. Using program slicing in

cheaper way than a static slice), more experimental work is 8]

required to see the effects of using union slices that do not
preserve the semantics of the original program in software

maintenance tasks, such as program comprehension.

The considerations expressed for the union of dynamic
slices also applies to other forms of slices, such as con-
ditioned slices and quasi-static slices. For example, it is
likely that a conditioned slice computed on the disjunction
of the conditions of two conditioned slicing criteria is a
valid slices, but the union of the corresponding conditioned
slices is not necessarily a valid one. Therefore, it remains
a problem for future work ta@emonstratehat the particu-
lar algorithmic manner in which existing slicing algorithms

(9]

(10]

(11]

union slices, leads to unions which turn out always to be [12]

valid slices, themselves.

The paper also suggests some other questions about set

operations on slices, which the authors would like to en-
courage the slicing community to consider, for example:

1. Is the union of two dataflow minimal slices [15, 22] a
dataflow minimal slice and, if not, is it even a slice?

2. Do results for backward slicing also apply to forward

[11] slicing?

3. Is the union of chops [12] defined Wyhop(sy,t1) U
Chop(sy,t1) U Chops,tz2) U Chop(s,t2) a valid chop
on the union of the chopping criter@hops; U sy, t1 U
t2)?

References

[1] A. Bes®des, C. Faray Z. M. Szalp, J. Csirik, and

T. Gyimothy. Union slices for program maintenance.
In International Conference on Software Maintenance
(ICSM'02), pages 12-21, 2002.

(13]

(14]

(15]

(16]

(17]

software maintenancdEEE Transactions on Software En-
gineering 17(8):751-761, Aug. 1991.

R. J. Hall. Automatic extraction of executable program sub-
sets by simultaneous dynamic program slicidgitomated
Software Engineerind2(1):33-53, Mar. 1995.

M. Harman, M. Okunlawon, B. Sivagurunathan, and
S. Danicic. Slice-based measurement of coupling. In R. Har-
rison, editor, 18' ICSE, Workshop on Process Modelling
and Empirical Studies of Software Evolutjdoston, Mas-
sachusetts, USA, May 1997.

S. Horwitz, J. Prins, and T. Reps. Integrating non—interfering
versions of programsACM Transactions on Programming
Languages and Systenid (3):345-387, July 1989.

S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural
slicing using dependence grapA&€M Transactions on Pro-
gramming Languages and Systerti®(1):26-61, 1990.

D. Jackson and E. J. Rollins. A new model of program de-
pendences for reverse engineering. Pimceedings of the
ACM SIGSOFT '94 Symposium on the Foundations of Soft-
ware Engineeringpages 2-10, Dec. 1994.

B. Korel and J. Laski. Dynamic program slicingnforma-

tion Processing Letter29(3):155-163, Oct. 1988.

S. Kumar and S. Horwitz. Better slicing of programs with
jumps and switches. IRroceedings of FASE 2002: Funda-
mental Approaches to Software Engineeringlume 2306

of LNCS pages 96-112. Springer, 2002.

M. R. Laurence, S. Danicic, M. Harman, R. M. Hierons, and
J. Howroyd. Equivalence of conservative, linear, free pro-
gram schemas is decidabl€heoretical Computer Science

to appear.

L. M. Ott and J. J. Thuss. The relationship between slices
and module cohesion. IRroceedings of thel1h ACM
conference on Software Engineerjmzages 198-204, May
1989.

L. M. Ott and J. J. Thuss. Slice based metrics for estimating
cohesion. IrProceedings of the IEEE-CS International Met-
rics Symposiumpages 71-81, Baltimore, Maryland, USA,
May 1993. IEEE Computer Society Press, Los Alamitos,
California, USA.

(18]

(19]

(20]

[21]

[22]

(23]

A. Podgurski and L. A. Clarke. A formal model of pro-
gram dependences and its implications for software test-
ing, debugging and maintenanckEE Trans. Softw. Eng.
16(9):965-979, Sept. 1990.

T. Reps and W. Yang. The semantics of program slicing.
Technical Report Technical Report 777, University of Wis-
consin, 1988.

F. Tip. A survey of program slicing technique3ournal of
Programming Language$8(3):121-189, Sept. 1995.

G. A. Venkatesh. The semantic approach to program slic-
ing. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementatiopages 26—28, Toronto,
Canada, June 1991. ProceedingsSIGPLAN Notices
26(6), pp.107-119, 1991.

M. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstrac-
tion method PhD thesis, University of Michigan, Ann Ar-
bor, MI, 1979.

M. Weiser. Program slicindEEE Transactions on Software
Engineering 10(4):352-357, 1984.

