
Software Engineering Projects in Distant Teaching

Philipp Bouillon Jens Krinke
FernUniversität in Hagen

Germany

Stephan Lukosch

Abstract

Software engineering education is most often complemented by a software engineering project
where a team of students has to develop a large software system. At a distance teaching uni-
versity such projects challenge the students in communication, coordination, and collaboration,
because team members work in different places, many miles away from each other. We present
an ECLIPSE-based unified platform that leverages available tools and solutions and discuss the
problems involved. Besides using plug-ins that support the students during implementation, our
platform integrates a collaborative distant education environment and a software project manage-
ment system that eases the students’ collaboration in the software engineering project.

1: Introduction

Teaching software engineering at a university is a multi-level education starting with teaching
programming up to teaching advanced topics. Software engineering education has to be accompa-
nied with hands-on experience, typically in software engineering projects where the students have
to work in teams to develop a complete software system. Such projects have the goals that students
(1) design, validate, verify, implement, and maintain software systems, (2) understand processes
and models, and (3) obtain and improve team and communication skills. A major requirement
is that the projects are realistic, i.e. the system to be implemented is of a non-trivial size and the
students use realistic (or even better, real) tools.

At the FernUniversität in Hagen, the first distance teaching university in Germany, most software
engineering courses are taught completely as distant learning courses (online or via snail-mail).
However, the software engineering projects in the graduate level have to pay special attention to
problems arising from the distribution of our students, because the students are not working to-
gether at the same place, but rather they are all working at home, possibly hundreds of miles away
from the others. At present, the students visit the university in Hagen to form their teams and to
be introduced to the project circumstances. Then they return to their respective homes, implement
their part within the IDE of their choice, and discuss their work and communicate via a system
called CURE (Collaborative Universal Remote Education environment) [6], the CSCL (Computer-
Supported Collaborative Learning) platform of the FernUniversität. To allow for the collaboration
of a group during the project, the group must be supported in terms of communication, coordi-
nation, and collaboration. Those areas are often used to classify groupware. Communication
essentially means the exchange of information between the students. Coordination is used to syn-
chronize shared tasks, while collaboration finally addresses the achievement of group goals. From
the description given above, several problems for the FernUniversität arise:

c©2005 IEEE. To be published in the Proceedings 18th IEEE Conference on Software Engineering Education & Training,
2005 in Ottawa, Canada. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



Communication. Students at the FernUniversität usually use electronic means to communicate,
i.e. mail, instant messaging, and telephone. However, as all students have individual working
habits, most communication is asynchronous.

Coordination. Because of the distance between the students, a high need for coordination arises to
manage tasks and to allow for collaboration. Synchronization processes are often supported
by communication means or by shared artifacts (e.g. a shared project plan).

Collaboration. Because students do not work on campus (or even better, in central computer
pools), they also have to use electronic means for collaboration. Even worse, because of
asynchronous communication, they need support to find out what has been done in the project
and what needs to be done.

Henceforth, we will use the term cooperation as a substitute for communication, collaboration, and
coordination.

We created a uniform environment based on ECLIPSE which allows for students located in dif-
ferent areas to collaborate in a team to produce a large software system. To accomplish this goal,
we incorporate existing tools into ECLIPSE and provide some gluing-code which allows for the
plug-ins to work together. “Traditional” universities will benefit from the IDE as well, because the
processes taught and supported by the IDE also apply. For example, two of the major problems
of software engineering projects at universities, communication and project management [4], are
eased with this environment.

Section 2 gives an overview about the current situation in teaching software engineering with
Eclipse including a detailed description of the problems involved. Our approach of an Eclipse
based IDE to support distant teaching is depicted and discussed in Section 3. Section 4 presents
future work while finally Section 5 concludes the article with a summary.

2: The situation today

Already at undergraduate level, a computer science student will be taught how to write a program
in at least one programming language. Those lectures usually aim to instill an understanding of
the concepts of the programming language so that the student will technically be able to develop
large-scale programs without further guidance by the lecturer. To improve the understanding of
large-scale software systems, theoretical software engineering lectures are held which confront the
students directly with the complexity of large systems.

Pure theoretical study of software engineering does not suffice to gain a feeling for cooperation
problems which arise during the development of a software project. Computer science students
tend to focus on the technical problems involved and trust that social conflicts will not arise in their
project development process. To remedy this situation, many universities, including the FernUni-
versität, offer practical software engineering courses where a group of students has to develop a
larger software system as a team. To facilitate those practical courses, a variety of tools exist. For
ECLIPSE, there are as yet not many plug-ins that support collaboration processes. Some plug-ins,
however, exist that integrate available instant messaging solutions like the IM-Plug-in1 or Pepe-
Max2. But collaboration is much more than just instant messaging; other plug-ins and projects like
Jazz [3] seek to integrate collaborative capabilities into ECLIPSE. However, its focus is synchro-
nous communication and collaboration of teams working in close proximity; a situation different

1http://eimp.sourceforge.net/d/
2http://pepemax.jabberstudio.org/

2



than the one found in distant teaching. On the other hand, the cooperative learning platform of the
FernUniversität already provides support for synchronous and asynchronous communication and
collaboration. This system, called CURE [6], facilitates collaborative learning in distributed teams
using standard browsers over the Internet. CURE is based on the room-metaphor which is com-
monly used to structure collaboration [5, 8]. Additionally, CURE combines ideas from web-based
working spaces (wiki) [7] with communication and coordination tools. Those tools include an e-
mail system, document management and a calendar with an appointment synchronizer. Students
at the FernUniversität are already used to this system so an integration into our new platform for
software engineering projects is sensible.

Any software engineering project within distant teaching is always distributed software engineer-
ing (DSE). DSE is supported by project management or groupware solutions ranging from com-
munication and collaboration support to software-centric solutions typically found in open source
projects, e.g. SourceForge3 or GForge4. These seem to be a good infrastructure for software en-
gineering projects and indeed, some universities use GForge for that purpose. However, we have
decided to use a commercial variant, CodeBeamer5 from Intland, due to its improved usability and
increased functionality.

The third major requirement is supervision, observation, and grading. The teacher must be able
to supervise the groups’ advances, guide the students through the project, and quickly identify
problems to offer help or intervene. For this purpose and for the later grading, she must be able
to analyze the communication in the group, the rendered documents, and the developed software.
There exists some support to analyze software inside and outside ECLIPSE which can be used by
the teacher. The JRefleX project [10] provides plug-ins for collaboration analysis and evolution
analysis.

So, new plug-ins have to be developed and existing plug-ins have to be grouped together and
glued, so that they are aware of each other and facilitate the collaborative working of students in
software engineering projects.

3: An IDE for distant teaching

The first question that arises when discussing a new IDE which is supposed to support teamwork
for students that are not close together is: Which functionality is needed? Although the question is
rather simple, the answer is not. Students (as well as professionals) all pursue a different method-
ology when working: Some tend to prefer working in the night, some get up early to get some
work done before breakfast, some tend to plan first and then implement, while again others may
implement and then test it. So, how can an IDE help to support the preferred working technique of
a programmer without making the team depend on a certain methodology? The key issues in this
setting are communication, coordination, and collaboration. As previously discussed, two systems
will have a major role in software projects at the FernUniversität: The CURE and the CodeBeamer
system; both facilitate cooperation.

3.1: Cooperation in CURE

CURE [6] facilitates collaborative learning in distributed teams over the Internet. Users can ac-
cess shared information independent of their current location. Distributed teams can use CURE

3http://www.sourceforge.org/
4http://www.gforge.org/
5http://www.intland.com/

3



Figure 1. Eclipse with CURE and CodeBeamer View

to organize and manage their own shared learning processes by cooperatively editing the learn-
ing material presented in their shared spaces. They can then communicate via synchronous and
asynchronous means. A group is defined as the set of all users of a shared workspace. Shared
workspaces and their access rights in CURE are modeled by using the room-metaphor. The access
to a working space is thus managed by the key-metaphor. To become a member of a group which
accesses a certain working space (that is: room), a user must possess the appropriate key for that
room. By combining rooms, keys, the rights associated with keys, and the operations defined on
keys, various forms of group forming are supported in CURE. So, users can create rooms for specific
groups and purposes. Room owners can restrict access rights. A room contains pages, resources and
cooperation tools, which are created, manipulated, navigated and read by users of the room. A sim-
ple wiki syntax is used to write the content of pages including formatted text, images, and TEX for
expressing mathematical formulas. Each room may have its own chat and room mailbox that are
kept persistent. All users in a room can simply chat with all other online users in that room, or view
and send mails to the discussion threads in the room’s mailbox. An integration of NetMeeting6 and
DyCE [9], a component based groupware framework, allows for the synchronous cooperation of
the users. Previous experience with CURE in software engineering projects showed that students
just use the asynchronous features of CURE. This has two reasons: (1) synchronous communication
is rare (as explained above) and (2) students reverted to widespread instant messaging solutions.

6http://www.microsoft.com/windows/netmeeting/

4



The instant messaging tools still fit on the screen with the student’s IDE. In contrast, using CURE
always enforced a context switch to the browser. Therefore, we developed an ECLIPSE plug-in that
integrates a CURE View into ECLIPSE. A sample screen is shown in Figure 1. The middle view
shows a page of a room and the tree view on the right shows the rooms currently available to the
user. A software project is mapped to a room, while its pages represent the sub projects, milestones,
and various other topics.

3.2: Project Management

Software projects in distant teaching need a strict project management. Experience shows teams
using CURE for project management had better results than teams using implicit project manage-
ment. However, project management with CURE is very cumbersome in comparison to project
management tools. For this purpose we have chosen CodeBeamer, a server based software devel-
opment solution with comprehensive collaborative features for development teams. It is a ready-to-
use solution with light-weight project management based on trackers. These trackers can be used
to manage requirements, tasks, bugs etc. and can be visualized in diagrams (e.g. gantt charts). This
approach eases the traceability for the participating students and the teacher. The tracking system
is able to present the list of things that have been worked on lately or that have to be tackled with
next. CodeBeamer comes with a plug-in that integrates the trackers with ECLIPSE.7 This service is
provided by a server located at the FernUniversität and thus it can be accessed by any team mem-
ber currently taking the software engineering course; besides the plug-in there is no software to be
installed by the student. Figure 1 shows CodeBeamer’s trackers in the bottom view.

3.3: Phases of a project

Besides the two major components described above, we have evaluated some available plug-
ins for usage in a (distant teaching) software engineering project. There is varying support for
the different phases of a software project, which we will present next. It is worth noting that
the mentioned phases are coarse grained and flexible to accommodate traditional or agile process
models during the project.

Phase 1: The creation of the project. When creating a project, a supervisor must be able to
enter a project description and mark the milestones at which certain parts of the project have to be
completed. A common project description can be put to a project room in CURE, which is accessible
by the project group members. A more comprehensive description, i.e. including milestones, is
achieved by using the task tracker of CodeBeamer, where every task can have an end date. It would
be desirable to automatically enter those dates into a team-calendar which is shared by each team
member, allowing for the addition of team-internal dates. We have not found a plug-in that provides
calendar functionality. The optimal solution for this kind of (simple) calendar would be to integrate
ECLIPSE with MS Outlook or IBM Lotus Notes since these are the applications used by most people
to organize their meetings. Present open-source project management and/or cooperation solutions
provide their own calendars which cannot be synchronized with others. Currently, there are even
two calendars in the university’s platform, one in the administration and e-learning platform and
one in CURE; both are independent and cannot be synchronized. Neither one is used extensively by
the students due to the lack of synchronization possibilities.

7We originally planned to use GForge as a free alternative, however, due to its architecture it is not easily integrateable
into ECLIPSE.

5



Phase 2: Requirements analysis. In the beginning of a project, most activities imply discussing
issues and documenting requirements. To allow for a vivid discussion among team members, both,
synchronous and asynchronous communication must be provided and the final requirements docu-
ment should be produced in the same environment without the need to constantly switch between
applications. Therefore, a chat and mail functionality, as well as wiki-pages where team members
can jot down their ideas is ideal. Most of this is available in CURE where students can discuss the
requirements and can use the wiki pages to produce their resulting document. The CURE plug-in
provides chat, mail, and wiki in the same style as the standalone CURE system. As CURE further-
more provides a document versioning system, it is also possible to retrieve older versions of any
kind of document and thereby reconstruct how they evolved. The student team also has to generate
tasks from the requirement. Together with the milestones given by the teacher, the students have to
plan their project. For each requirement and each task the students have to generate a tracker entry.
This approach eases the traceability for the students and the teacher. The tracking system is able to
present the list of things that have been worked on lately or that have to be tackled next. Besides
CodeBeamer, there are other tracker plug-ins, for example those that integrate BugZilla.

Phase 3: Design. A variety of UML design tools exist. However, none of the available open
source tools allow for collaborative design. Very useful would be a graphical diff-view that directly
shows the user, which changes were made (i.e. by highlighting modified, added, or removed ele-
ments in the diagram). Additionally, most UML-tools are not easily usable in a software engineering
project, because they either have not enough functionality or are too complex for the novice user.
Best suited for our needs are Together8 and MagicDraw9; other tools are either not integrateable into
ECLIPSE or suffer from stability problems. Furthermore, UML design can be accompanied by a chat
window to support synchronous communication during the work (see discussion above). A promis-
ing project named GroupUML [2] is currently being developed at the TU München. GroupUML is
a tool which allows multiple users to create and edit semi-formal UML diagrams. The tool is able to
create standard UML diagrams and on the other hand supports free hand drawing and text editing.
In short, GroupUML combines the aspects of a shared whiteboard with a UML diagram editor. The
key feature of the tool is that it allows all team members to view what is currently being done.
Additionally, a team member can immediately see what has been discussed if she joins the meeting
later, because chat messages between the users are logged and kept persistently with the diagram.
Even better is that those chat messages can be linked to certain elements in the working area so that
a user can easily attribute a message to a portion of the diagram. We will evaluate this project and
see if it can be integrated into our environment. If that is the case, we will further pursue the issue.

Phase 4: Coding and unit testing. ECLIPSE is already excellently equipped for coding purposes
in JAVA. Other languages are not so well supported, yet, but this is hopefully going to change in
the future. For testing (and one way to specify), JUNIT is shipped with ECLIPSE, which our stu-
dents are required to use. Independent of the programming language, a team interface is integrated
with ECLIPSE which allows for CVS communication, so this collaborative issue is already solved
elegantly in ECLIPSE. To improve this phase, external tools like JML (a specification language for
JAVA) will be provided. We also plan to evaluate the effect of code checking plug-ins like Check-
Style or PMD, debugging aids like delta debugging [1], or others. Of course, discovered bugs are
managed in our setting with the CodeBeamer’s bug tracker.

8http://www.borland.com/together/eclipse/
9http://www.nomagic.com/

6



Phase 5: Delivery and grading. At last, after the students have delivered the software together
with the required documents, the teacher has the task to evaluate and grade the students. Criteria
for the evaluation can be many fold: (1) cooperation skills, (2) quality of the design and the imple-
mentation, (3) accordance of the final version to the documented requirements and design, and (4)
needed time. The key requirement here is traceability. In a traditional software engineering project,
where the group is given a task and delivers the final software system, it is almost impossible to
grade the students individually. This is different with the presented infrastructure: The teacher is
able to extract the needed data from the persistent communication in CURE (chat protocols, mail
archives, all versions of the wiki pages), from the CodeBeamer trackers, and from the documents
and source code stored in the CVS archive. Furthermore, she can use reverse engineering tools to
compare the architecture of the delivered software with the original design. A plug-in specifically
dedicated to this approach is JRefleX [10] which provides collaboration analysis (how has the team
worked together) and evolution analysis (how has the architecture changed over time). We plan to
evaluate JRefleX in our context.

4: Experiences and Future Work

During the evaluation of the various plug-ins we have experienced that most plug-ins provide
good solutions to single problems. However, in a setting like ours, it is not enough that support
in ECLIPSE exists, but that the various plug-ins are more integrated and aware of each other. For
example, the various instant messaging plug-ins are standalone solutions and are not interchange-
able. This would require them to be based on a framework like Koi10. There is a similar situation
in cooperation and project management solutions. Each solution comes with its own discussion
forums, calendar, document management, etc.—but it is not possible to integrate them with other
forums or calendars. This results in a situation where our infrastructure used for software engineer-
ing projects offers at least four(!) discussion forums: (1) traditional news groups, (2) a discussion
forum in the general learning platform, (3) the mail and chat solution within CURE, and (4) the
discussion forums within CodeBeamer. This situation is confusing and must be solved by a more
general, integrated solution.

Up to now, CURE has once been used alone and is currently being used together with Code-
Beamer to support students in a practical software engineering course. During the first practical
course, 6 groups of 5 to 7 students designed and implemented a synchronous collaborative game.
CURE has mainly been used to communicate and to document relevant design decisions. All groups
agreed that CURE facilitated group communication but they also admitted to have failed in docu-
menting specific tasks and responsibilities as good as they could have. Thus, the task assignments
were not completely transparent throughout the group which lead to misunderstandings during the
course. It turned out, however, that the group with the highest amount of communication in CURE
produced the best results. In the second practical course, we have currently 3 groups with 7 students
each working at extensions of the CURE platform. Those extensions will allow for synchronous
collaborative learning. Learning from our experiences during the first course, we provided Code-
Beamer, introduced it to the students and explained how important a clear task assignment is. The
groups could then decide if they wanted to use CodeBeamer or not. One of them actually decided
to use CodeBeamer while the other groups wanted to document their task assignments solely in
CURE. The group using CodeBeamer used it in the very beginning of the course and made the
fastest advancements in comparison to the other two groups, however, if this progress was made

10http://www.eclipse.org/koi/

7



because of the use of CodeBeamer has yet to be determined by a final evaluation. After the initial
phase, the coordination of that group was handled in CURE. The group members argued that for the
initial task assignments, CodeBeamer was valuable, however, after those tasks were clear, a weekly
team chat along with the data stored in the CVS repository sufficed to coordinate the remaining
tasks.

5: Conclusions

We have presented how we use ECLIPSE as the key environment for software engineering projects
in distant teaching. It mainly consists of the integration of two major components: the standard
cooperation platform of the FernUniversität, CURE, and the project management solution Code-
Beamer. CURE has been integrated by a newly developed plug-in that enables the usage of wiki,
mail, chat, and group calendar within ECLIPSE. CodeBeamer comes with a plug-in that integrates
the various trackers into ECLIPSE.

First experiences have shown CURE and CodeBeamer to support distributed software develop-
ment by improving the collaboration of the team. Together with additional plug-ins, this platform
will ease the (distant teaching) software engineering project in all phases; students will be able to
collaborate more intensively, manage their project more easily, and deliver higher quality software.
Because of the heavy use of persistent communication, trackers, and version repositories, it will be
easier for the teachers to grade their students individually.

The presented integrated development environment with CURE and CodeBeamer is currently
being used for the first time. We have reported first experiences with the IDE. A final evaluation of
the collaboration of participating groups will show if students need more tools and if they accept
the provided ones.

References

[1] Philipp Bouillon, Martin Burger, and Andreas Zeller. Automated debugging in eclipse. In Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, pages 1–5, 2003.

[2] Naoufel Boulila, Allen H. Dutoit, and Bernd Brügge. Scoop: A framework for supporting synchronous collabora-
tive object-oriented software design process. In Proceedings of the 2004 ASE Workshop on Cooperative Support
for Distributed Software Engineering Processes, pages 39–53, 2004.

[3] Li-Te Cheng, Susanne Hupfer, Steven Ross, and John Patterson. Jazzing up eclipse with collaborative tools. In
Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology eXchange, pages 45–49, 2003.

[4] Michael Gnatz, Leonid Kof, Franz Prilmeier, and Tilman Seifert. A practical approach of teaching software engi-
neering. In Conference on Software Engineering Education and Training, pages 120–128, 2003.

[5] S. Greenberg and M. Roseman. Using a room metaphor to ease transitions in groupware. In M. Ackermann,
V. Pipek, and V. Wulf, editors, Beyond Knowledge Management: Sharing Expertise, Cambridge, MA, 2002. MIT
Press.

[6] J. M. Haake, T. Schümmer, M. Bourimi, and B. Landgraf. Supporting flexible collaborative distance learning in the
CURE platform. In Proceedings of the Hawaii International Conference On System Sciences (HICSS-37), 2004.

[7] Bo Leuf and Ward Cunningham. The WIKI way. Addison-Wesley, Boston, MA, USA, 2001.
[8] H. Pfister, C. Schuckmann, J. Beck-Wilson, and M. Wessner. The metaphor of virtual rooms in the cooperative

learning environment CLear. In N. Streitz, S. Konomi, and H. Burkhardt, editors, Cooperative Buildings, LNCS
1370, pages 107–113. Springer-Verlag Berlin Heidelberg, 1998.

[9] Daniel A. Tietze. A Framework for Developing Component-based Co-operative Applications. PhD thesis, Tech-
nische Universität Darmstadt, 2001.

[10] Kenny Wong, Warren Blanchet, Ying Liu, Curtis Schofield, Eleni Stroulia, and Zhenchang Xing. Jreflex: Towards
supporting small student software teams. In Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology
eXchange, pages 50–54, 2003.

8


