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Abstract

We describe the theory behind a practical voting scheme based on
homomorphic encryption. We give an example of an ElGamal-style
encryption scheme, which can be used as the underlying cryptosystem.
Then, we present efficient honest verifier zero-knowledge proofs that
make the messages in the voting scheme shorter and easier to compute
and verify, for voters as well as authorities, than in currently known
schemes. Finally, we discuss various issues connected with the security
of a practical implementation of the scheme for on-line voting. Notably,
this includes minimizing risks that are beyond what can be handled
with cryptography, such as attacks that try to substitute the software
running on client machines.

1 Introduction

Voting schemes are one of the most important examples of advanced crypto-
graphic protocols with immediate potential for practical applications. Such
protocols should of course have security properties similar to those of ordi-
nary paper based elections, but the fact that digital communication is used
may also open up new possibilities. Informally, the most important goals
for electronic voting schemes are:

e Privacy: only the final result is made public, no additional information
about votes will leak.

e Robustness: the result reflects all submitted and well-formed ballots
correctly, even if some voters and/or possibly some of the entities
running the election cheat.



e Universal verifiability: after the election, the result can be verified by
anyone.

Other properties may be considered as well, such as receipt-freeness. In
a receipt-free election, voters are not able to prove that they voted for a
particular candidate after the election, thereby discouraging vote-buying or
coercing.

Various fundamentally different approaches to electronic voting are known
in the literature: one may use blind signatures and anonymous channels[13],
where the channels can be implemented using MIX nets (see [20, 1] for
instance) or be based on some physical assumption. The idea in such a
scheme is that a voter prepares a ballot in cleartext, i.e., a message stating
for whom he votes. He then interacts with an authority that can verify
that he is eligible to vote and has not already voted. If this is the case, the
authority issues a blind signature on the ballot. Informally, this means that
the voter obtains the authority’s digital signature on the ballot, without the
authority learning any information about the contents of the ballot. On
the other hand, a voter cannot obtain such a signature without interacting
with the authority, and is therrefore prevented from voting several times.
Finally, all voters send their ballots to another authority that is responsible
for counting votes. In order to preserve the privacy of voters, this must be
done through an anonymous channel. Such a channel can be implemented
based on cryptography, using a so-called MIX network or it may be based
on physical assumptions. After all ballots have been received, votes can be
counted directly. Ballots without the relevant authority’s signature are, of
course, ignored.

Another approach is to use several servers to count the votes and have
voters verifiably secret share votes among the servers [8, 6]. In such a scheme,
the voter interacts with all servers. Each server gets a share of each voter’s
ballot. These shares are constructed with respect to a threshold ¢ in such
a way that the servers together have complete information on each ballot,
but any set of at most ¢ servers has no information at all. The voter must
convince all servers that the shares were correctly constructed, and so he
is prevented from voting twice or voting incorrectly. Once the votes have
been cast, the set of all servers can interact and compute the result of the
election without any side information becoming public.

A final approach is to use homomorphic encryption]9, 11]. In such a
system, a voter simply publishes an encryption of his vote, represented as
a number. This encryption is done using a public-key cryptosystem, i.e.,
there is a public key known by everyone that can be used for encrypting



each vote. When submitting his encrypted vote, the voter must identify
himself to prove that he is eligible to vote and has not voted before. Fur-
thermore, he must prove knowledge of the fact that his encryption contains
a valid vote. Because all individual votes will remain encrypted and the
proof is zero-knowledge, this does not violate privacy. On the other hand,
because we use homomorphic encryption, the election result can be com-
puted efficiently. This is because the cryptosystem comes with a method by
which two encryptions of, say, numbers a and b can be combined to produce
a new encryption that is guaranteed to contain a + b. By repeated use of
this method, all votes can be “implicitly added” together without decrypting
anything. This will produce an encryption of the result and so finally all that
is needed is to decrypt this. This can be done securely assuming that the
private key needed for this has been secret-shared among a set of authorities,
each running a server responsible for helping computing the result. Each
server holds a share of the private key. The shares have to be constructed
w.r.t. a threshold value ¢ so that no information about the private key leaks
as long as at most t severs are corrupt, or are broken into by a hacker. On
the other hand, if at least ¢t + 1 servers behave correctly, then a decryption
operation can be executed. This is also known as threshold decryption.

If the total number of servers participating is n, then we can set t to
just below n/2, i.e. t = [(n —1)/2]. Then, we are guaranteed that if a
majority of the servers are in operation and are not corrupted, the election
result, and only that will be decrypted. In practice, one may imagine that
some public institutions and political parties could be running these servers
in order to create broad trust in the process.

The last approach seems the most practical out of the three we have dis-
cussed: anonymous channels are quite difficult to implement. Even the best
implementations (based on MIX nets) require that all votes have been cast
before any processing can be done, and so they may introduce a significant
delay in getting the final result. The second approach requires each voter to
interact with every authority, and is therefore hardly practical either. Hence
this paper deals only with variants of the approach based on homomorphic
encryption.

2  Which Cryptosystems Can We Use?

the introduction above shows that the approach on which we concentrate
here requires a homomorphic public-key cryptosystem with threshold de-
cryption. In addition, some other technical properties come in handy; we



discuss those in more detail below.

In [9], the use of ElGamal encryption is suggested. This is possible, but
leads to efficiency problems if the number of candidates is large. Most of
these problems can be solved by using Paillier’s cryptosystem [21], or the
generalization suggested by Damgard and Jurik in [11]. In that case the
zero-knowledge protocols and threshold decryption presented in [4, 11] are
also required.

In this paper, we suggest an alternative cryptosystem, which may be of
interest for various reasons: it is based on a different intractability assump-
tion (a general form of the Decision Diffie-Hellman assumption) and has
other properties that neither Paillier nor ElGamal can satisfy at the same
time.

We present the system from a general point of view: let R be a ring,
fix some g € R and let G =< g >. We will assume that one can compute
addition and multiplication efficiently in R and that a number T can be
computed easily, so that T' > ord(g)?. This just requires that some upper
bound on ord(g) is publicly known. As for intractability assumption, we
assume that a generalized DDH assumption holds w.r.t. R and g, i.e., given
R, g, triples of form g%, b%, g® where a,b are random in [0..T] are compu-
tationally indistinguishable from triples of form ¢¢,b%, ¢¢ where a,b,c are
random in [0..7]. Note that the choice of T" ensures that the distribution
of elements such as g% is statistically close to uniform in < g > as long as
ord(g) is large.

It is now clear that we can define an ElGamal style cryptosystem where
the public key is R,g,h = g* where z is random in [0..7], and where the
private key is . The message space is < g >, and to encrypt a message m,
choose r € [0..T] at random and output E(m,r) = (¢", mh"). Decryption of
a ciphertext (u,v) takes place by computing v(u®)~!. Clearly, this system
is semantically secure under the generalized DDH assumption.

This system is not homomorphic as we required above. As a first step to
solve this problem, we can redefine the system by fixing an element w €<
g >, and letting the message space be instead Z,,4(,). Now, we can define
E(m,r) = (¢",w™h"). This does not affect the semantic security, but of
course implies that we have the homomorphic property E(m,r)E(m’,r'") =
E(m+m' mod ord(w),r+7"). But as the case was with the ElGamal variant
used in [9], we now have the problem that to decrypt, we must find discrete
logarithms to the base w, since the basic decryption from above only allows
us to compute w™.

The point is that in some rings, one can find elements for which com-
puting the discrete logarithm is in fact easy. Suppose we have w = a + .
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using the standard binomial expansion. Since i will typically be exponen-
tially large, this is normally not going to be useful towards computing 3.
But if « is nilpotent, that is o/ = 0 for some small j, then most of the terms
in the expansion disappear, and it may be feasible to compute <.

As a concrete example of this, we can use let R = Z7 ., where n = pq
is an RSA modulus where ged((p — 1), (¢ — 1)) = 2. We let g have Jacobi
symbol 1 and maximal order, that is ord(g) = n*(p — 1)(¢ — 1)/2. Now,
n € R is nilpotent, since of course n*1 = 0. So we set w = n + 1. By
classical algebra and number theoretic results, we have ord(w) = n® and
that discrete logarithms base w are easy to compute, along the lines just
sketched. A concrete algorithm can be seen in [11]. The threshold decryption
only requires that we can compute securely u* mod n**! given u and a secret
sharing of x. A protocol for this is given in [11].

Some comments on how our scheme differs from earlier systems: our
scheme can be described as simply the ElGamal solution from [9], but trans-
planted to a ring where it happens to be easy to compute discrete logs base
the fixed element w. The Paillier and Damgard-Jurik schemes also use the
ring Z7 ., and (implicitly) the special properties of the element n+1, but as
mentioned these are known results from algebra. The distinguishing feature
of Paillier /Damgard-Jurik is that they propose a way to use the factorization
of n as the trapdoor that makes decryption possible, while we use a secret
discrete logarithm. Therefore, when keys are generated, a trusted party
could choose n and g but then immediately delete the factorization. Then
the private key x and the sharing of it can be generated independently of
the factorization, perhaps in a distributed way. It also means that one can
define several instances of the same system using the same n, i.e., several
different public h-values. If one or more private keys are compromised, this
does not affect the security of the other keys.

We note a couple of facts for later use: The cryptosystem satisfies a
root opening assumption. If we are given the decryption of a ciphertext
(u®,v¢) for some e < p,q, then we can also find the message m contained in
the ciphertext (u,v). The reason for this is that theplaintext corresponding
to (uf,v®) must be em mod n®, and so we can find m because e is always
invertible modulo n?.

Another observation is that when using standard techniques, the zero-
knowledge protocols for proving various claims on encrypted values from [11]



can all be transplanted to our cryptosystem quite easily - basically because
the plaintext space is the same, and both systems are homomorphic.

3 Zero-Knowledge Proofs

In this section, we take a closer look at how the correctness of encrypted votes
can be proved in zero-knowledge. We present an efficient zero-knowledge
proof of knowledge for demonstrating the correctness of the vote in the case
where each voter may select only one option or candidate. We then extend
the proof system to cover the more complex elections where the voter on
the same ballot may cast several votes with the restriction that they all are
on different candidates.

We define two election parameters M and L. M is a strict upper bound
on the number of voters participating in the election. L is the number of
candidates or options each voter may choose from. Included in this number
may be dummy candidates representing unused votes, blank votes or invalid
votes.

In theory, only O(log L) bits are needed to convey the choice of the voter.
This possibility was investigated in [12] where the tally servers transform the
encrypted votes into encrypted votes in a more usable format. In practice,
their scheme places too large a workload on the tally servers though. Cur-
rently, the best choice seems to be to represent votes in a format that can
use the homomorphic property of the cryptosystem directly.

We represent the candidates by numbers j € {0,...,L — 1}. A vote
on candidate j is represented as the number M7. Notice that in this
way the sum of several votes will be a number on the form voM% + ... +
v ML= where v; is the number of votes on candidate j. With this choice
of vote representation the message space for the cryptosystem must be of
size Q(Llog M).

When the number of candidates is large, the ciphertexts are correspond-
ingly large, and in the cryptosystems we know the computational complex-
ity of the encryption process is large too. The encryption process is not the
heaviest part in generating a vote though. Looking closer at the schemes
proposed in the literature [9, 11, 4] it turns out that the zero-knowledge
proofs used to prove the correctness of the encrypted votes involve several
encryptions. The really heavy part of generating a vote and tallying a vote,
both in terms of communication complexity and computational complexity,
is producing and verifying the zero-knowledge proof associated with it. It
is therefore highly interesting to find efficient zero-knowledge proofs for the



correctness of encrypted votes.

In the zero-knowledge proof, the prover (the voter) wants to convince the
verifier (the tally servers) of the correctness of the encrypted vote. For this
purpose, we use X-protocols that are a type of 3-move honest verifier zero-
knowledge proofs that work in the following way: The prover and verifier
know a common input z and the prover knows a witness w such that (z,w) €
R where R is some relation. The prover sends an initial message a to the
verifier, is then given a randomly chosen challenge e, and responds with an
answer z. On basis of (a,e,z), the verifier decides whether to accept the
claim that = € L where L is the language specified by the relation R. We
call such a proof system a >-protocol when it satisfies the following criteria:

e Completeness: Given w so that (x,w) € R the prover can make an
honest verifier accept with overwhelming probability.

e Special soundness: Given x and two acceptable proofs (a,e,z) and
(a,€',2") with the same initial message but different challenges it is
possible to extract a witness w so that (z,w) € R. Note that special
soundness makes a Y-protocol a system for proofs of knowledge.

e Special honest verifier zero-knowledge: Given x € L and any challenge
e it is possible to simulate a proof (a, e, z) with the same probability
distribution as the distribution of real proofs with any witness and
conditioned on using the challenge e.

Using the Fiat-Shamir heuristic 3-protocols can be made non-interactive by
using a cryptographic hash function h and letting the challenge be created as
e = h(x,a). In the random oracle model, the resulting hash value h(z,a) is
completely random and we therefore have a non-interactive zero-knowledge
proof of knowledge for x € L.

Very efficient Y-protocols exist for basic properties such as three cipher-
texts being encryptions of plaintexts a,b,c so that ¢ = ab, a ciphertext
being an encryption of 0, two ciphertexts containing a,b so that a = b, etc.
For more complex cases such as a ciphertext containing a vote on the form
MJ,0 < j < L, it is possible to build a zero-knowledge proof from the more
basic 3-protocols. However, the basic Y-protocols, while being efficient, do
need a few extra encryptions in the process. When several basic proofs are
needed, it all adds up to the use of several encryptions, which, in the context
of voting, as mentioned before, can be heavy to deal with both in terms of
communication and computational complexity.



The ideas behind the basic Y-protocols are quite general though and
can be used not only in connection with homomorphic public key encryp-
tion schemes but also with homomorphic commitment schemes. To im-
prove the efficiency of the needed zero-knowledge proof for correctness of
the vote, Lipmaa suggests in [18] to create a commitment to the vote and
prove knowledge of the commitment and the ciphertext holding the same
content. Using a homomorphic integer commitment scheme this carries two
advantages: The commitments do not need to be unconditionally binding as
do the ciphertexts and so they can be much lighter to work with. By using
an integer commitment scheme, we can potentially use special properties of
this ring, in our case that of unique factorization.

Before proceeding, let us be more precise about the kind of commitment
scheme we deal with. First, there is the key generation phase in which a
public key is generated. In our case, the election authorities will be the ones
generating the key. From now on we will just assume that some key K has
been generated, and accordingly there is an associated message space M g,
a randomizer space R, an opening space Bx D Ry, a commitment space
Ck, a commitment function comg(-,-) : Mg X Rg — Cx and a verification
function verg(-,-,-) : Mg x Bg x Cx — {0,1}.

Given the key, we can commit to an element m € Mg by selecting at
random according to some distribution specified by the commitment scheme
r € Rk and letting the commitment be ¢ = com i (m;r) € Cx. This (m,r,c)
satisfies verg(m,r,c) = 1.

To open a commitment, we reveal m € Mg, r € By so that
verg(m,r,c) = 1. Note that we do allow for openings not corresponding to
correctly formed commitments since the opening space and the randomizer
space do not need to be identical. However, we still require that the binding
property be satisfied, i.e., that nobody can find a commitment in Cx and
two correct openings of it with different messages mq and meo.

In order for the commitment schemes to be useful in our voting proto-
col we have some additional requirements. One important thing is that the
spaces associated with the commitment scheme shall be abelian groups!,
and furthermore that the message space is the entire set of integers. That
means we have groups Mg =Z,(Rk,+) < (Bk,+) and (Cx,-).

Homomorphic property: The commitment schemes we look at must be

!We assume that both the group and the elements in the groups we work with can be
represented in a suitable manner, the binary operations and inversions can be computed
efficiently, and that we can readily recognize whether an element belongs to a particular

group.



homomorphic, meaning that for all mq, mg € Z and all 71,79 € Bg:

comp (my;ry)comp(me;re) = comg (my + ma; 1 + 132).

Root opening: We demand that for any ¢ € C, if we can find e € Z \ {0}
and m € Z, z € By so that comg(m;z) = ¢ then we can compute an open-
ing of c.

An example of such a commitment scheme is the following variant of the
Damgard-Fujisaki commitment scheme from [10]. Here, the key consists of
n chosen as a product of two large safe primes, and two squares g, h so that
log, h and logy, g is not known to the sender who is making the commitment.

A commitment to an integer m is formed by choosing r at random
from a sufficiently large interval of integers and letting the commitment
be com,, g p)(m;7) = g"™h" mod n.

To open a commitment ¢ we produce b, m,r such that 1 = > mod n and
c=bgmh".

The ElGamal style encryption scheme we presented before satisfies these
requirements too, except for the root opening property. It satisfies a weaker
root opening property. Given a valid ciphertext (u,v) we may extract the
plaintext of (u,v) from an opening of (u®,v¢), where 0 < e < p,q. In
addition, we can simply check whether a ciphertext is valid by computing
the Jacobi symbols of u and v. In the following, any homomorphic public-key
cryptosystem with the above properties will work, even if the root opening
property is only satisfied for e € {0,...,2" — 1}, where ¢ is some security
parameter. Therefore, we describe the protocols in general terms in what
follows. We shall always write pk for the public key of the cryptosystem,
and let Cp; be the corresponding ciphertextspace, consisting of only valid
ciphertexts.

Given a homomorphic integer commitment scheme, we can now use the
following Y-protocol for proving knowledge that a commitment and a ci-
phertext contain the same element modulo n where the message space for
the cryptosystem is Z,,.

Proof of commitment and encryption holding same element mo-
dulo n

Common input: A commitment ¢ € Cx and an encryption E € Cypy.
Private input for the prover: m € Z,, r. € Rg and rg € Ry, so that
c=comg(m;r.) and E = Ep(m;rEg).



Initial message: Pick d € Z as a shadow? of em, v, € Ry as a ran-
dom shadow of er. and 7"35 € Rpr as a random shadow of erp. Let
ac = comg(d;r,,) and ap = E,i(d mod n;r;). The initial message is
(ac,ag).

Challenge: The challenge consists of e chosen at random from {0, ..., 2! —
1}.

Answer: Set D =em+d,z. =1, +ere,zg = 'z + erg. The answer to the
challenge is (D, z¢, zg).

Verification: The verifier checks that (D,z.,2p) € Z X Rig X Ry,
comg (D; z¢) = acc® and Epi(D mod n; zg) = apE°.

Having an integer commitment to the vote, the next question is how to
prove that it has the correct form. Lipmaa [18] suggests selecting M as a
prime and using a zero-knowledge proof of knowledge to demonstrate that
the following three commitments ¢, = comp (v;ry),co = comp(M* Jv;ry),
ce = comy(MP";0) satisfy a multiplicative relationship. This implies that
the absolute value of the content in c,, |v], is a divisor in M*. Subsequently
using a range proof, see [18] or Boudot’s article [2], we can then prove that
v > 0. Combining these two pieces of information we see that v is of the
desired form.

This idea can be improved upon. Proving that a committed integer is
positive is not that simple. In [18], the fact that all positive integers can be
written as a sum of four squares, and, of course, no negative number can
be written as such a sum, is used. In other words four commitments are
provided and it is proven that all of them contain squares. The commitment
to the vote v is the product of these four commitments, by the homomorphic
property giving us that the commitment contains a non-negative integer.

2Let us informally explain the concept of shadowing and random shadowing. In this
proof we will at some point reveal D = d + em where e € {0,...,2" — 1}. To preserve
the zero-knowledge property we must therefore choose d such that revealing D does not
give away any knowledge about m. In the particular case here we know that m € Z,
and 0 < e < 2. Thus by selecting d at random from {—28T2t . 28211 wwhere k = |n),
we ensure that the secrecy of m is preserved. Similarly we will at some point reveal an
element z. = r. + er. € Rx. This should not give away knowledge about r.. In addition
r.. should be chosen such that we cannot distinguish it from a properly chosen random
element from Ryx. We call r. chosen in this way a random shadow for er.. We can speak
of computational, statistical and perfect shadowing depending on how the shadow hides
the underlying element. In the protocols we know of the most common case is statistically
hiding shadows and random shadows.

10



According to [18], the range proofs in [2] are 20% more efficient but still in
the same ball park.

As an alternative, we propose letting M be the square of a prime. Any
legal vote is now a square, and we simply have to prove it a square in order
to show that it is non-negative. So let M = p? with p prime and provide a
commitment ¢, to M7. We show that ¢, contains the square of the contents
of a commitment ¢, to p/. Furthermore, we prove that the content of ¢,
multiplied by the content of another commitment ¢; equals p“~!. All in all
this proves that ¢, contains a vote of the correct form, and it replaces the
somewhat complex range proof with a single squaring proof.

Further improvements can be achieved but they require that we dig into
the proof system we use for proving multiplicative relationships between
commitments. Let us therefore first present a general ¥-protocol for making
proofs of the contents of some commitments having a multiplicative rela-
tionship with each other.

Proof of multiplicative relationship

Common input: ¢g, ¢, ¢ € Ck.

Private input for the prover: a,b € Z,rq,r,7c € Rk such that ¢, =
comp(a;rq), cp = comp (b;rp), cc = comp(ab;re).

Parallel proof: Make in parallel with the rest of the protocol a proof of
knowledge of commitment opening of ¢, or ¢, using a Y-protocol.

Initial message: Select d such that it shadows ea. Choose rg,rq € Ry
as random shadows of er, and —(ea + d)ry + er., and send ¢4 =
comp (d;rq) and cgp = comp (db;rgy) to the verifier.

Challenge: Select at random e € {0,...,2¢ — 1}.
Answer: Respond with f =ea+d,z1 =erq +1rq,2z0 = fry —erc — rgp.

Verification: Accept if and only if f € Z,21,20 € Rg,comg(f,z1) =
cac and cqpctcomp (05 z2) = c{: and the parallel proof of knowledge is
acceptable.

The proof of this being a >-protocol is standard and we do not go through
it here. We would, however, like to point out the little detail that we allow
the parallel proof to be a proof of knowledge of an opening of c¢.. The
reason for this is that we make a multiplication proof where we already
know the opening of ¢, = comp (p”~';0) and thus we can save ourselves
from having to do the parallel proof. The price for this change is that the

11



root opening assumption on the commitment scheme needs to be slightly
stronger than usual. Usually, one only requires that knowing an opening of
¢® for a commitment ¢ with e € {1,...,2" — 1} makes it possible to open ¢
itself. We require that knowing an opening of ¢/ with f € Z \ {0} makes it
is possible to find an opening of c.

Another thing worth noting is that in the proof of the commitment c,
containing M7 the commitment ¢, to p’/ is involved in two multiplication
proofs. It is used both in the multiplication proof that shows it is a factor
in p“~! and in the multiplication proof where it is shown that the square
of its content is contained in c¢,. Selecting the same challenge e in both
the multiplication proofs, something that we can do and still preserve zero-
knowledge because the proof system is special honest verifier zero-knowledge,
allows us to recycle d, ¢q, f and z; in the two proofs.

As a final improvement, we shall see that we do not at all need ¢, in the
proof of the correctness of the vote. We may entirely skip this commitment
and jump directly to proving that the encryption of the vote contains the
square of the content in ¢,. This is due to the fact that on the commitment
side, we use ¢, to hold M7 as the result of squaring the content of ¢;. How-

ever, we ma 11 F— e
, y as well use ¢; = ¢;

' d directly since this by the homomorphic
property of commitments is a commitment to ep* + dp’ and thus contains
the interesting p* = M7 itself.

It is time to combine all our ideas into an actual protocol.

Proof of knowledge for a ciphertext containing a valid vote
Common input for prover and verifier: Prime p such that M = p? and an
encryption E € Cpy.

Private input for the prover: 0 < j < L and rg € Ry such that £ =
Epp(M7;rE).

Initial message: Choose first r, 1, at random from R i and form commit-

ments ¢, = comp (p’;7q) and ¢, = comg (p"=I 71 1y).

Choose d such that it shadows p/. Choose v such that it shadows
eMJ +dp’. Choose rq,7qp, ry € Rk and r’y € Ry as random shadows
of erq, (ep? + d)ry, (ep? + d)r4, erp respectively.

Send ¢y = comg(d;rq), cap = comK(dpL_j_l;rdb),cv = comp (dp’ +
v;74) and Ey = Ep(dp’ + v mod n; r7) to the verifier.

Challenge: Select e at random from {0,...,2¢ —1}.
Answer: Send f =ep? +d, 21 = erq+rq, 20 = fryy—Tap, 23 = frotry,za=

erg + 1!, and D = eM7 + dp’ 4 7 to the verifier.

12



Verification: Check that cq,cqp,cy € Cx,Ey € Cpi, f, D € Z,21,22,23 €
Rk and z4 € Rpy.
Verify that comx (f;z1) = cqcs,capcomp (p*—1;0)comp (0, 29) = c{j,
comg(D; z3) = c{;c7 and Ep,(D;z4) = E°E,.

Theorem 1 The proof system above is a X-protocol for proving that E is a
ciphertext holding a vote on the correct form. It is statistical special honest
verifier zero-knowledge if the commitment scheme is statistically hiding and
the shadows are statistically hiding.

Proof. Theorem 1 follows as a corollary to Theorem 2 proven later.

O

Compared to the scheme from [11], which until now is the most efficient
voting scheme based on homomorphic encryption, we asymptotically get an
improvement in the order log L both in terms of communication complexity
and computational complexity on the voter’s side. Furthermore we note that
the constants in this scheme are smaller than the constants in the schemes
of both [11] and [18].

An additional advantage of the approach is that it can be extended to
cover the situation where each voter is allowed to cast several votes in the
same session. We define a new election parameter N to be the number
of candidates a voter may vote for. Moreover, we demand that the votes
must be cast on different candidates. A simple approach would be to cast
N votes and proving them all to be different, but we can do much better
than this. The first thing we notice is that it is sufficient for the voter to
provide an encryption of the sum of his votes and proving this sum correct.
We write the candidates in increasing order 0 < j; < ... < jy < L. We
encrypt M7t 4 ...+ MIN and wish to have a Y-protocol for proving that a
ciphertext E contains a vote of this form.

To do so, we may form commitments ci,...,cy to p/t, ..., p?N, and fur-
thermore make commitments ¢}, ...,cy to p2=1=1 . pl=1=in=1 Using
multiplication proofs we can demonstrate knowledge that for i = 1,..., N,

the contents of ¢; and (c;)? multiplied with each other equals the content
of ¢jy1, where we let ey = Epk(pL;O). This shows that all the com-
mitments ¢y, ...,cy, except for a sign difference, contain powers of p, that
all the exponents are different, and that the exponents lie in the interval
{0,...,L —1}.

We can proceed by forming commitments cf,...,c% to M7t ... MIN.
We prove for i = 1,..., N knowledge that the contents of ¢, ...} contain
the square of the content of ¢y,...,cy. Finally, we form the commitment
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¢ ---c%. This is a commitment to the intended vote, which proofs show

contains an element on the form M7t +.. .+ MIN where 0 < j; < ...jn < L.
What is left is to encrypt this vote to a ciphertext £ and prove knowledge
of the equality with the content of ¢/ --- .

We can make similar improvements as we did in the voting scheme for
the single candidate scenario. We note that the commitments cq,...,cy are
all involved in two multiplication proofs and obtain a more efficient proof
system by using the same challenge e in all the proofs allowing us to recycle
the d, cq, f, z1 parts in the multiplication proofs.

Furthermore, we do not need to start each multiplication proof with a
parallel proof of knowledge for some opening. Throughout the proofs, we
do have knowledge of an opening to the commitment to the product of the
contents, since we know how to open cyy1 = comy (p¥;0) of course. The
multiplication proof involving ¢y and ¢, proves knowledge of how to open
cy. This in turn means that the multiplication proof involving c¢y_1 and
cy_1 proves knowledge of how to open cy_1, etc.

Finally, since we use the same challenge in all the proofs, we may avoid
supplying the commitments ¢f,...,c5 in a manner similar to the single
candidate scheme .

Let us write the entire scheme down

Proof of knowledge for a ciphertext containing a valid vote on
multiple candidates

Common input: Prime p such that M = p? and F € Cpk-

Private input for the prover: 0 < j; < ... < jy < L and rg € Ry such
that ¥ = Epk(Mjl + ...+ MjN;TE).

Initial message: Choose at random ry,... JINS T, oo Ty from R, and
form commitments ¢; = comg (p’t;r1),...,cny = comi(PPN;rN), ¢ =
jo—j1—1. ./ /o L—jNn—1. ./
comg (P70 r)), ...y = comig (pPTINTH rYy).

Choose dy,...,dy such that they shadow ep’l,... ep/~, and v such
that it shadows ep?! + dipt + ... + ep?N + dyp'N.

Choose rg,,...,rqy as random shadows of erq,...,ery. Choose
Tdybs - - - Tdy b as Tandom shadows of —p(ep?t+dy )} +erq, ..., —p(ep’~ +
dN)TEV + ern41, where 7y41 = 0. Choose 7 as a random shadow of
(ep* +dy)ry + ...+ (ep! +dy)ry,and 7, € Rpi as a random shadow

of erg.
Send  ¢q, = comg(di;ray);-- -, Cdy = comi(dn;Tay),
cap = comg(dip? I ran), . cage = comg (dnptTIN ra),
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¢y = comp(v;7y) and Ey = Epi(dip™ + ... + dyp’™ + v mod n;r’,) to
the verifier.

Challenge: Select e at random from {0,...,2" — 1}.

Answer: Send f; = ep’'+dy,. .., fn = ep!N+dy, 21,1 = €ri+ray, .., 21N =
erN + Tdy, 22,1 = PIT] — €2 = Tdyby .- 22N = PNy — €'N41 —
Tdyb: 23 = f17“1 +...+fN7“N—|—ny,Z4 = erE—l—rﬁ/,D =e(M + ...+
MIN +dip?t + ...+ dnp’N + 7 to the verifier.

Verification: Check that cq,,...,¢cq,,Cdps---sCiyp &y € Crx,Ey € Cpp,
fl, .. .,fN,D S Z,zl,l,. -3 R1,Ns”2,1,---,22,N,%3 € Ri and z4 € Rpk.
Verify that comg(fi;211) = cg¢f,...,comg(fN;21,N) = CanCis
cSeqpeomp (05 20.1) = (c/l)pfl,...,c?VHCdNbcomK(O; ZoN) = (c?v)pr,

com(D; z3) = c{l e c{\}\’cﬂ,, where cy i1 = comg (p*;0). Finally check

that E,,(D mod n;z4) = E°E,.

Theorem 2 The proof system above is a ¥-protocol proving that E encrypts
a correct vote on multiple candidates. If the commitments are statistically
hiding and the shadows and random shadows are statistically hiding, then
the proof system is statistical special honest verifier zero-knowledge.

Proof.
Completeness: Easy to see.
Special Soundness: Assume that we have two acceptable proofs to two
different challenges e and €’ to the same initial messages. This means we have
answers fiooo s N 2L, - s 2INS 22,052, 22N, 23, D) 24 and
Floee s TN 200+ 21N 2505 -+ 5 29 s 23, D', 2 to the respective challenges
satisfying the criteria specified in the verification step.

Starting with the encryption side of the proof we have

Epi(D; 24) = E°E, A Epi(D'; %) = E€E,,.

This gives us

Epp(D — D'; 24 — 2}) = E*°.

Using the root opening assumption of the homomorphic cryptosystem we
may now extract the plaintext of £. We call this plaintext v.
Going to the commitments we see that

!
comp (f1;21,1) = ca,¢§ A comg (f15211) = ca,cf -
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This gives us
e—e’

comg (f1 — f1iz1,1 — 211) = ¢
Using the root opening assumption on the commitment scheme we may from
this extract an opening of ¢;. In a similar manner we can extract openings
of co,...,cny. We call the contents of the commitments for aq,...,an.
From the other part of the multiplication proofs we see that

Nri1caybcom (0, 2o n) = (cy)PIN A C?\I/HCdNbcomK(O,zé’N) = ()P
giving us
comi (05 20,8 — 24 n)come (p=;0)°7¢ = (cy)PUN=In),

We now know an opening of the commitment on the left hand side. We have
i # fn since 1 = comg(0;0), and the left hand side cannot be opened as
zero by the binding property of the commitments. Accordingly we argue
by the root opening assumption on the commitment scheme that we can
extract an opening of c'N. The opening must furthermore be non-zero since
the left hand side opens to something non-zero. We can now in a quite

similar manner go backwards finding non-zero openings of ¢y _,,...,c}. We
call the contents of the commitments for by,...,bq.
We now have openings of the commitments ci,...,cn,¢, ...,y and

E. Furthermore, by the binding property of the commitment scheme, these
openings must be the only ones that the prover can produce. Therefore, we
can now speak of the content of ¢1,...,cn,c),..., ¢y and E in the rest of
the proof.

What is left to argue is that the opening of the encryption satisfies the
requirements of the proof. In that case, we have extracted a witness for the
vote being on the correct form.

We get from
comg (fn — fni21n — 21n) = ¢y ©-
that ,
fN—ffvzaN(e—el)#aNzifN_JiN €z
e—e

From

!

(c'N)p(fN_fm = comp (0; 2o N — zé’N)comK(pL; 0)~°.

we see that
p(fn — )by = (e — €)p".
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This implies that

anby = pL_l.

This means that |ay| = p/¥ where 0 < jy < L. In a similar fashion, we
deduce |a1| = pt,...,|lay_1| = p -1 with 0 < j; < ...jn_1 < jN.

We proceed to the link between the commitments and the encryption.
We have

com(D; z3) = c{l . -c{\],vcﬂf Acom(D'; 2%) = c{l e c{{,vcﬂ,
implying that
com(D — D'; z3 — 23) = c{rf{ . -c{\],VifN.

Recall that for all ¢« we have a; = ! i_]; . This means that the equation above

gives us

D—D = (e—e)p¥ +...+p¥N).
On the encryption side the equation
Epp(D — D' 24 — 2) = B¢
shows that the content v satisfies
D — D' = (e—¢')v mod n.
Since (e — €’) is invertible modulo n we deduce that
pPL 4 . pPN = v mod n.

In other words, the witness (v, rg) consists of a correctly formed vote on the
form M7t 4 ... 4+ MIN where 0 < j; < ... < jy < L, and the randomness
involved in the encryption. This concludes the demonstration of the special
soundness.

Special honest verifier zero-knowledge: Given the common input and

a challenge e € {0,...,2" — 1} we wish to simulate a proof of the encryption
containing a vote on the right form.

We start by picking at random rq,...,7n,7],..., 7y from Rg. We
form the commitments ¢; = comy (p%;71),...,eny = comg(pN ~Liry),c) =
comg(1;7)), ...,y = comg(1;77). Due to the hiding property of the
commitment scheme these commitments are indistinguishable from prop-
erly formed initial message commitments to pJt,...,pN and p2=—1 ..,
plin—1,
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We now pick fi, ..., fy as shadows for ep’!, ..., ep/¥ and D as a shadow
for fip”t + ...+ fyp’~. With this choice of fi,..., fy,D they are indis-
tinguishable from the fy,..., fy and D of a real proof by the definition of
shadows.

We may also pick 211,...,21,n8,22,1,...,22N,23 € Rg and 24 € Ry
as random shadows so that they are indistinguishable from those in a real
proof.

We compute £, = Ep,(D; 2z4)E~¢ and ¢, = cffl ...c;VchomK(D; 23).
We set ¢g, = comg (fi521,1)¢1 - -5 cay = comg (fn; z1,n)cy” and cqp =
. -1 — _ . -1 —
comg (0; 22.1) c’fflc2 o Cdyp = comp (0; 22, N) C%NCNG_H.

With these choices, we have a simulated proof that due to the hiding
property of the commitment scheme and the semantic security of the cryp-
tosystem looks entirely like a normal proof with challenge e. This means that
we have demonstrated the special honest verifier zero-knowledge property
of the proof system.

Finally, we see from the proof of special honest verifier zero-knowledge
that if the commitments cq,...,cn,d,. .., ¢y are statistically hiding and
that all the shadows and random shadows are statistically hiding, then the
entire proof system is statistical special honest verifier zero-knowledge.

O

The possibility of a voter voting on less than N candidates is obtained
by including N dummy candidates. If we remove the exponentiation to the
power p and let ¢}, ...,y be commitments to pi2=3 .. pYTIN instead, we
get a proof system for the correctness and knowledge of the vote where the
voter does not need to vote on different candidates. Here, p must, of course,
be chosen large enough to accommodate for the larger number of votes a
candidate can obtain.

So far, we have presented methods to make the zero-knowledge proofs
that accompany an encrypted vote easy to form for the voter. On the server
side, things are also much easier since the verification of these proofs is much
easier than the more involved ¥-protocols used in [11]. We present a further
speedup by presenting a randomized verification algorithm where we only
need to compute one commitment instead of several of them.

One thing that is common in the verification procedure of the proofs we
have presented above is that we compute two elements in Cg in two different
ways, for instance as com g (f, z1) and ac®, and then, after this computation,
we check whether they are identical. Since the computations involved in the
computation of the two elements may be complicated, for instance requiring
large exponentiations, we wish to reduce the time used in this process. When
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having many such pairs of elements, we may reduce the computational time
involved in the verification of the proofs, taking advantage of the fact that
we are working in a group.

Let us say we are given multiple pairs (c1,d1,...,cn,dy) in Cx. We
wish to check that the elements are pairwise identical. Choose s1,..., s, at
random from {0,...,2" —1}. Here ¢ may be a smaller security parameter
than in the X-protocols since the computation happens only on the verifier’s
side and thus the prover is incapable of trying actively to cheat. Provided
Ck is a group with no non-trivial elements of order less than 2 we have with
probability at least 1 — 217 that ¢j'...c3n £ d5' ... do if Ji: ¢; # d;.

The reason why this is interesting is the homomorphic group structure of
the commitments we are investigating. Note that the proofs we presented are
in a form where one side has the form of a commitment ¢; = com g (m;;r;),
with m; and r; known to the verifier. Let us say that cq,...,c, are com-
mitments. We can compute ¢j'...cim as comg (symy + ... + Spmp; s +
...+ 8prp). If the binary operations in the groups Mg and R are faster
to compute than the binary operations in Cx this makes verification more
efficient.

Furthermore, depending on the groups in use we may take advantage of
exponentiation techniques allowing us to compute di*...d;" roughly at the
price of one exponentiation. This was the emphasis in [5] where a somewhat
similar technique for fast batch verification of signatures was investigated.

Since the probability of catching any cheating grows exponentially with ¢,
we can typically choose t reasonably small. Accordingly, the extra computa-
tional effort required to compute the additional exponentiations to s1,..., S,
is dwarfed by the savings we get by not having to verify each commitment
opening by itself.

The technique is presented in quite general terms above since indeed it
can be used in many contexts. Furthermore note that it works in all contexts
where the message space is some group without small annihilators, not just
where the message space is the integers.

In the voting scheme for multiple candidates, the verification procedure
after some calculating becomes the following:

Verification: Check that cq,,...,¢cq,,Cdib,---+Cinp:Cy € Crx, Ey € Cpp,
fi,oo s INND €221 a, ..., 2N, 2215+ -, 22N, 23 € R and z4 € Ry

Select at random s1, ..., SN, 8], ..., 8, s € {0,...,2 —1}. Verify that

comg(sifi+...+snfnv+sD+ esﬁvpL;s1z1,1 +...+sy2N
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/ /
+81221 + ... + Sy22.N + 23)

_ SN/ .—1\s —1 \s'y esi+sf1_e(s2—s))+sf2
_Cvcdl ...ch(cdlb) 1...(CdNb) Ncl 02
e(sn=sy_)+sIN 1 \pfis) ! \PfN$
CN (c)PIor e (e )PIVew

Finally, check whether E,;(D mod n; z4) = E°E,,.

4 Securing an Implementation in Practice

We have had the opportunity to work with practical aspects of implement-
ing an e-voting system in connection with the EU project, e-Vote. Sev-
eral challenges beyond the scope of the cryptographic protocols have been
identified and solutions have been found. These challenges are partly due
to security aspects special to voting solutions, which cannot be solved by
technical means alone, and partly due to standard problems with providing
a satisfactory combination of security and usability of the authentication
mechanisms used. We dedicate some subsections to the individual problems
and solutions.

We use the bulletin board model. All entities, persons as well as servers,
will have at least one public/private key pair to enforce the model. However,
we will only include the aspects of PKI having to do with authentication of
voters here.

We do not propose a total solution, but give solutions to sub-problems,
some of which can be adopted for any particular voting system according to
relevant tradeoffs for each individual system.

4.1 Taking Requirements Seriously.

In the newspapers, a considerable amount of the debate on electronic vot-
ing is dedicated to suggestions for voting systems tailored at selling large
amounts of expensive equipment of one kind or the other. Examples are
chip-cards and biometric devices.

It is, however, our belief that the competition will rapidly make such
approaches obsolete. In order to have success with voting technology, it has
to be tailored to meet the requirements of election organizers and voters
rather than those of the vendors.

Shortly expressed, voting systems are like all other systems. In order
to implement a successful system it is not only necessary to understand the
requirements correctly; it is also necessary to respect them.
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4.2 Deployment of a PKI.

After having stated some concerns in Section 4.1, we must, however say that
we see no alternative to using PKI for authentication of voters. The main
reason is that unless a public/private key pair is used, anybody who can
verify authentication information can also fake it. In particular, universal
verifiability of an election with a decent level of security is very significantly
simplified by using PKI.

If a public PKI is in place and most voters have signature keys, it will
be most natural to use that PKI. In practice, this is usually not the case
today though.

We are working with two approaches to overcome the limitation of a
potentially lacking PKI:

e Having the voters generate one-time key pairs on their web browsers
and having certificates on those keys issued on-line. In practice we
work with the model that each voter receives a cryptic user identity
and a one-time password, based on which the certificate is issued on-
line. The user identity and the password must be received through two
different channels in order to provide a decent level of security. We
consider two physical letters with some days in between as the most
realistic option.

e Using a virtual chip-card. This means that the keys of the voters are
stored in secure hardware by a pair of trusted organizations. Usage of
the keys can be requested by providing two means of authentication
to two servers located in different organizations. Again, both means
of authentication can be very cheap and simple-minded.

As for the approaches mentioned above, the first one is appropriate if there
is a long period of time between elections, and the PKI is not used for
other purposes. The last one is appropriate if regular elections tke place or
the PKI is to be used for other purposes as well. The last approach has
the advantage that voters already in the system can be notified about new
elections by means of an insecure email only. Thus the cost of arranging
additional elections is very low.

4.3 Protection against Hackers.

In [11] Damgard and Jurik proposed a scheme for protecting internet voters
against hackers. We will understand the word hacker in a broader sense
so that it includes system administrators, who can completely legitimately
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observe and control computers of voters remotely, as well as hackers breaking
in without permission.

The proposed solution is to provide each voter with a paper ballot with a
list of candidates listed in some natural ordering, and, in addition, numbered
corresponding to a permutation 7 of the candidates. The voter then enters
the number 7(c), where ¢ is the number of the candidate selected according
to the natural ordering.

If a hacker observes the voting process, he will not gain any information
about the candidate chosen, even if he has full control of the computer of
the voter. Furthermore, if he tampers with the vote, the outcome will be
uniformly distributed on all candidates.

Combining this protection with homomorphic encryption in an efficient
way is quite difficult. The scheme suggested in [11] for the generalized
Paillier system is too slow to be feasible with the current band-with on the
Internet and performance of computers.

In [16] we will propose another scheme, where we trade security and
performance. In short, by restricting the possibilities of the hacker slightly
less than for the original scheme, performance properties of the integration
with the homomorphic crypto system improves sufficiently to make this sort
of protection feasible.

The paper ballot with permutations can also contain one piece of au-
thentication information and possibly more.

4.4 Server Authentication.

Server authentication is normally obtained by a SSL connection between a
web server and a web browser.

Technically, this works well, but in practice most web browsers are
wrongly configured and most voters will be unable to tell, whether a server
has been correctly authenticated or not.

As a solution to this problem we propose that the paper ballot with
permutations and one piece of authentication information shall also contain
a piece of graphics, different for each voter. Furthermore, it will include
instructions for the voter about how to verify that the same graphics appears
on the web page from where he votes.

When the voter enters the first piece of authentication means, he will
be confronted with some graphics on the screen. If it is not identical to the
graphics on his paper ballot, he will have instructions to exit the faked web
server.
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4.5 Voters Being Looked over the Shoulder.

A concern that for example journalists have expressed to us, and that we will
have to take very seriously, is that of a voter being looked over the shoulder
while he/she votes. The person looking over the shoulder can, for example,
be a husband or an employer. This problem is not solved by the solution
that protects against hackers because also physical items can be seen by the
person looking over the shoulder.

The best solution to this problem that we have encountered was sug-
gested by the local community of Hgje Tastrup, a suburb of Copenhagen,
which had worked with the problem in connection with an early voting pi-
lot. The solution is to provide a facility where the voter can go discretely
to have his/her electronic vote replaced by a manual vote. In a transition
period, where manual voting (voting at election sites) exist side by side with
Internet voting, this can be by providing the opportunity for voters to vote
at election sites before and after they have cast their Internet vote.

In order to integrate this with a voting scheme based on homomorphic
encryption and protection against hackers, cancellation /replacement of votes
must be implemented in such a way that it cannot be detected, which votes
have been replaced. When this is combined with universal verifiability, the
need for new cryptographic primitives arises. We will treat this subject in
a separate paper.

4.6 Long Term Privacy.

The universal verifiability means that anybody can connect each voter to
the ciphertext. Security is based on the assumption that it is infeasible to
decrypt the ciphertext and see what the voter has voted. In order to protect
the privacy of the voter, not just at the time of the election but also several
years into the future, the keys used for the cryptosystem must be large.

For the same reason, we suggest proving the correctness of the vote using
a zero-knowledge proof that is statistical zero-knowledge. If this suggestion
is followed, the zero-knowledge proof will not reveal which vote has been
cast even if the commitment scheme is broken.

We summarize this: The key used for the homomorphic crypto system
must be sufficiently strong to be supposed to remain unbroken for an ex-
tended period, whereas the strength of the key for the commitment scheme
will only have to be strong enough to remain unbroken for a shorter period,
provided that the zero-knowledge proofs are statistical zero-knowledge.
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4.7 Legal Considerations.

Most countries have rather precise regulations, specifying how public elec-
tions of various types must be performed. Thus laws, but usually not consti-
tutions, may have to be changed before an electronic voting system can be
used in elections covered by these laws. For elections performed internally
in an organization other than a state, similar challenges may be encountered
- parts of the internal rules of the organization may have to be changed.

Today, most advanced countries have a signature law. It seems to be a
wise decision to study, which messages in a voting system must be secured in
particular ways in order to make the decisions imposed by election organizers
legally binding. For example, in order to provide non-repudiation, it may
be necessary to have some messages independently time stamped.

This can be reformulated in the way that the system must be designed
so that predictable conflicts can be resolved successfully in court using the
local signature law.

We refer to [19] and the national signature laws for more details.
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