
Sub-linear Zero-Knowledge Argument
for Correctness of a Shuffle

Jens Groth∗

University College London
j.groth@ucl.ac.uk

Yuval Ishai†

Technion and UCLA
yuvali@cs.technion.ac.il

February 4, 2008

Abstract

A shuffle of a set of ciphertexts is a new set of ciphertexts with the same plaintexts in permuted
order. Shuffles of homomorphic encryptions are a key component in mix-nets, which in turn are used
in protocols for anonymization and voting. Since the plaintexts are encrypted it is not directly verifiable
whether a shuffle is correct, and it is often necessary to prove the correctness of a shuffle using a zero-
knowledge proof or argument.

In previous zero-knowledge shuffle arguments from the literature the communication complexity
grows linearly with the number of ciphertexts in the shuffle. We suggest the first practical shuffle ar-
gument with sub-linear communication complexity. Our result stems from combining previous work on
shuffle arguments with ideas taken from probabilistically checkable proofs.

Keywords: Shuffle, zero-knowledge argument, sub-linear communication, homomorphic encryption,
mix-net.

1 Introduction

A shuffle of ciphertextse1, . . . , eN is a new set of ciphertextsE1, . . . , EN with the same plaintexts in per-
muted order. Shuffles are used in many protocols for anonymous communication and voting. It is usually
important to verify the correctness of the shuffle. Take for instance a voting protocol where the ciphertexts
are encrypted votes; it is important to avoid that some of the ciphertexts in the shuffle are substituted with en-
cryptions of other votes. There has therefore been much research on designing zero-knowledge arguments1

for the correctness of a shuffle [SK95, Abe98, AH01, FS01, Nef01, Nef03, Gro03, FMM+02, NSNK06,
OT05, NSNK05, Fur05, GL07, Wik05].

When designing shuffle arguments, efficiency is a major concern. It is realistic to have elections with
millions of encrypted votes, in which case the statement to be proven is very large. In this paper, our main
goal is to get apractical shuffle argument with low communication complexity. A theoretical solution to
this problem would be to use Kilian’s communication-efficient zero-knowledge argument [Kil92] (see also
Micali [Mic00]). This method, however, requires a reduction to Circuit Satisfiability, a subsequent application
of the PCP-theorem [AS98, ALM+98, Din07], and using a collision-free hash-function to build a hash-tree

∗Research done in part while visiting IPAM. Part of work done while at UCLA supported by NSF ITR/Cybertrust grant 0456717.
†Research done in part while visiting IPAM. Supported by BSF grant 2004361, ISF grant 1310/06, and NSF grants 0205594,

0430254, 0456717, 0627781, 0716835, 0716389.
1By zero-knowledgearguments[BCC88] we refer to computationally-sound zero-knowledge proofs [GMR89].

1

that includes the entire PCP. Even with the best PCP constructions known to date (cf. [BSGH+05]), such an
approach would be inefficient in practice.

OUR CONTRIBUTION. We present a sublinear-communication 7-move public coin perfect zero-knowledge
argument of knowledge for the correctness of a shuffle of ElGamal ciphertexts [ElG85]. (The protocol is
presented in the common random string model, but can also be implemented in the plain model at the cost of
a slightly higher constant number of rounds.) All shuffle arguments previously suggested in the literature have
communication complexityΩ(N)κ, whereN is the number of ciphertexts in the shuffle andκ is a security
parameter specifying the finite group over which the scheme works. Our shuffle argument has communication
complexityO(m2 + n)κ for m andn such thatN = mn. (The constant in the expression is low as well, see
Section 8 for a more precise efficiency analysis.) Withm = N1/3 this would give a size ofO(N2/3)κ bits,
but in practice a smaller choice ofm will usually be better for computational reasons. Our shuffle argument
moderately increases the prover’s computational burden and reduces the amount of communication and the
verifier’s computational burden in comparison with previous work.

For practical purposes it will be natural to use the Fiat-Shamir heuristic [FS86] (i.e. compute the verifier’s
public-coin challenges using a cryptographic hash-function) to make our shuffle argument non-interactive.
The Fiat-Shamir heuristic justifies reducing the communication and verifier computation at the cost of in-
creased prover computation, since the non-interactive shuffle argument needs to be computed only once by
the prover but may be distributed to and checked by many verifiers. Letting the prover do some extra work
in order to reduce the communication and the computational burden of each verifier is therefore a good
trade-off in practice. To the best of our knowledge, our protocol is the first practical instance of a sublinear-
communication argument for any interesting nontrivial statement.

We have some further remarks on our result. Our technique also applies to other homomorphic cryptosys-
tems, for instance Paillier encryption [Pai99]; a more general treatment of a wider class of homomorphic
encryptions can be obtained along the lines of [Gro03]. For simplicity we focus just on ElGamal encryption
in this paper. Similarly to previous shuffle arguments from the literature, we will present our protocol as an
honest verifierzero-knowledge argument. There are very efficient standard techniques for converting honest
verifier zero-knowledge arguments into fully zero-knowledge arguments [Dam00, GMY06, Gro04].

TECHNIQUES. Our starting point is the honest verifier zero-knowledge shuffle argument by Groth [Gro03],
which builds on ideas by Neff [Nef01]. Borrowing some of the ideas underlying the PCP theorem, namely
the use of Hadamard codes and batch-verification techniques, we reduce the size of the shuffle argument. We
note that unlike Kilian [Kil92] we do not reduce the shuffle statement to an NP-complete language such as
SAT; instead we work directly with the ciphertexts in the shuffle statement. Moreover, while we use ideas
behind the PCP theorem we do not make use of a full-blown PCP. In particular, our argument avoids any
use of linearity testing, low-degree testing, or other forms of code proximity testing that appear in all known
PCPs.

RELATED WORK. Our work was inspired by the recent work of Ishai, Kushilevitz, and Ostrovsky [IKO07],
which introduced an approach for constructing sublinear-communication arguments using exponentially long
but succinctly described PCPs. Similarly to [IKO07] we use shorthomomorphiccommitments as the main
cryptographic building block. There are, however, several important differences between our techniques and
those from [IKO07]. In particular, the arguments obtained in [IKO07] do not address ourzero-knowledge
requirement (and are only concerned with soundness), they inherently require the verifier to useprivate coins
(which are undesirable in the context of our application), and they employlinearity testingthat subsequently
requires soundness amplification. Finally, the approach of [IKO07] is generic and does not account for the
special structure of the shuffle problem; this structure is crucial for avoiding an expensive reduction to SAT.

2

2 Preliminaries

2.1 Notation

We letΣN denote the symmetric group on{1, 2, . . . , N}. Given two functionsf, g : N → [0, 1] we write
f(κ) ≈ g(κ) when|f(κ) − g(κ)| = O(κ−c) for every constantc. We say that the functionf is negligible
whenf(κ) ≈ 0 and that it isoverwhelmingwhenf(κ) ≈ 1.

Algorithms in our shuffle argument will get a security parameterκ as input, which specifies the size of the
group we are working over. Sometimes we for notational simplicity avoid writing this explicitly, assumingκ
can be deduced indirectly from other inputs given to the algorithms.

All our algorithms will be probabilistic polynomial time algorithms. We will assume that they can sample
randomness from sets of the typeZq. We note that such randomness can be sampled from a source of uniform
random bits in expected polynomial time (inlog q).

We writeA(x; r) = y whenA, on inputx and randomnessr, outputsy. We writey ← A(x) for the
process of picking randomnessr at random and settingy := A(x; r). We also writey ← S for samplingy
uniformly at random from the setS.

When defining security, we assume that there is an adversary attacking our scheme. This adversary is
modeled as a non-uniform polynomial time stateful algorithm. By stateful, we mean that we do not need to
give it the same input twice, it remembers from the last invocation what its state was. This makes the notation
a little simpler, since we do not need to explicitly write out the transfer of state from one invocation to the
next.

2.2 Group Generation

We will work over a groupGq of a prime orderq. This could for instance be a subgroup ofZ∗
p, wherep

is a prime andgcd(q2, p − 1) = q; or it could be an elliptic curve group or subgroup. We will assume
the discrete logarithm problem is hard inGq. More precisely, letG be a generating algorithm that takes
a security parameterκ as input and outputsgk := (q,Gq, g), where byGq we denote a computationally
efficient representation of the group andg is a random generator forGq. The discrete logarithm assumption
says that for any non-uniform polynomial time adversaryA:

Pr
[
(q,Gq, g)← G(1κ);x← Zq;h := gx : A(q,Gq, g, h) = x

]
≈ 0.

(When the randomness ofG is taken from a common random string, the above definition needs to be strength-
ened so thatA is given the randomness used byG.)

2.3 Generalized Pedersen Commitment

We will use a variant of the Pedersen commitment scheme [Ped91] that permits making a commitment to a
length-n vector inZn

q rather than a single element ofZq as in Pedersen’s original commitment. A crucial
feature of this generalization is that the amount of communication it involves does not grow withn. The
generalized scheme proceeds as follows. The key generation algorithmKcom takes(q,Gq, g) as input and
outputs a commitment keyck := (g1, . . . , gn, h), whereg1, . . . , gn, h are randomly chosen generators of
Gq. The message space isMck := Zn

q , the randomizer space isRck := Zq and the commitment space is
Cck := Gq. (The parametern will be given as an additional input to all algorithms; however, we prefer to
keep it implicit in the notation.)

To commit to ann-tuple (m1, . . . ,mn) ∈ Zn
q we pick randomnessr ← Zq and compute the commit-

mentC := hr
∏n

i=1 g
mi
i . The commitment is perfectly hiding since no matter what the messages are, the

commitment is uniformly distributed inGq. The commitment is computationally binding under the discrete
logarithm assumption; we will skip the simple proof.

3

The commitment keyck will be part of the common random string in our shuffle argument. We re-
mark that it can be sampled from a random string. We writeC := comck(m1, . . . ,mn; r) for making a
commitment tom1, . . . ,mn using randomnessr. The commitment scheme is homomorphic, i.e., for all
m1,m

′
1, . . . ,mn,m

′
n, r, r

′ ∈ Zq we have

comck(m1, . . . ,mn; r) · comck(m′
1, . . . ,m

′
n; r′) = comck(m1 +m′

1, . . . ,mm +m′
n; r + r′).

In some cases we will commit to less thann elements; this can be accomplished quite easily by setting the
remaining messages to0.

We will always assume that parties check that commitments are valid, meaning they check thatC ∈ Gq.
If Gq is a subgroup ofZ∗

p this can be done by checking thatCq = 1, however, batch verification techniques
can be used to lower this cost when we have multiple commitments to check.2 If Gq is an elliptic curve
of orderq, then the validity check just consists of checking thatC is a point on the curve, which is very
inexpensive.

2.4 ElGamal Encryption

ElGamal encryption [ElG85] in the groupGq works as follows. The public key ispk := y = gx with a
random secret keysk := x ← Z∗

q . The message space isMpk := Gq, the randomizer space isRpk := Zq

and the ciphertext space isCpk := Gq × Gq. To encrypt a messagem ∈ Gq using randomnessR ∈ Zq we
compute the ciphertextEpk(m;R) := (gR, yRm). To decrypt a ciphertext(u, v) we computem = vu−x.

The semantic security of ElGamal encryption is equivalent to the DDH assumption. Semantic security
may be needed for the shuffle itself to be secure; however, the security of our shuffle argument will rely on
the discrete logarithm assumption only. In particular, our shuffle argument is still sound and zero-knowledge
even if the cryptosystem is insecure or the decryption key has been exposed.

ElGamal encryption is homomorphic with entry-wise multiplication in the ciphertext space. For all
(m,R), (m′, R′) ∈Mpk ×Rpk we have

Epk(mm′;R+R′) = (gR+R′
, yR+R′

mm′)

= (gR, yRm) · (gR′
, yR′

m′) = Epk(m;R) · Epk(m′;R′).

We will always assume that the ciphertexts in the shuffle are valid, i.e.,(u, v) ∈ Gq × Gq. Batch
verification techniques can reduce the cost of verifying validity when we have multiple ciphertexts. To
further reduce the cost of ciphertext verification, Groth [Gro03] suggests a variant of ElGamal encryption
that makes batch-checking ciphertext validity faster. Our shuffle argument works also for this variant of
ElGamal encryption.

Our shuffle argument works with many types of cryptosystems; the choice of ElGamal encryption is
made mostly for notational convenience. Our technique can be directly applied with any homomorphic
cryptosystem that has a message space of orderq. We are neither restricted to using the same underlying
group(q,Gq, g) as the commitment scheme nor restricted to using ElGamal encryption or variants thereof.
Using techniques from [Gro03] it is also possible to generalize the shuffle argument to work for cryptosystems
that do not have message spaces of orderq. This latter application does require a few changes to the shuffle
argument though and does increase the complexity of the shuffle argument, but the resulting protocol still has
the same sub-linear asymptotic complexity.

2See also [Gro03] for a variant of the Pedersen commitment scheme overZ∗
p that makes it possible to completely eliminate the

cost of verifying validity.

4

2.5 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

We will assume there is a setup algorithmG that generates some setup informationgk. This setup information
could for instance be a description of a group that we will be working in. Consider a pair of probabilistic
polynomial time interactive algorithms(P, V) called the prover and the verifier. They may have access to
a common random stringσ generated by a probabilistic polynomial time key generation algorithmK. We
consider a polynomial time decidable ternary relationR. For an elementxwe callw a witness if(gk, x, w) ∈
R. We define a corresponding group-dependent languageLgk consisting of elementsx that have a witness
w such that(gk, x, w) ∈ R. We writetr ← 〈P (x), V (y)〉 for the public transcript produced byP andV
when interacting on inputsx andy together with the randomness used byV . This transcript ends withV
either accepting or rejecting. We sometimes shorten the notation by saying〈P (x), V (y)〉 = b if V ends by
accepting,b = 1, or rejecting,b = 0.

Definition 1 (Argument). The triple(K,P, V) is called anargumentfor relationR with setupG if for all
non-uniform polynomial time interactive adversariesA we have

Completeness:

Pr
[
gk ← G(1κ);σ ← K(gk); (x,w)← A(gk, σ) :

(gk, x, w) /∈ R or 〈P (gk, σ, x, w), V (gk, σ, x)〉 = 1
]
≈ 1.

Computational soundness:

Pr
[
gk ← G(1κ);σ ← K(gk);x← A(gk, σ) : x /∈ Lgk and〈A, V (gk, σ, x)〉 = 1

]
≈ 0.

Definition 2 (Public coin argument). An argument(K,P, V) is public coin if the verifier’s messages are
chosen uniformly at random independently of the messages sent by the prover and the setup parametersgk, σ.

We define special honest verifier zero-knowledge (SHVZK) [CDS94] for a public coin argument as the
ability to simulate the transcript for any set of challenges without access to the witness.

Definition 3 (Perfect special honest verifier zero-knowledge).The public coin argument(K,P, V) is
called a special honest verifier zero-knowledge argument forR with setupG if there exists a probabilistic
polynomial time simulatorS such that for all non-uniform polynomial time adversariesA we have

Pr
[
gk ← G(1κ);σ ← K(gk); (x,w, ρ)← A(gk, σ);

tr← 〈P (gk, σ, x, w), V (gk, σ, x; ρ)〉 : (gk, x, w) ∈ R andA(tr) = 1
]

= Pr
[
gk ← G(1κ);σ ← K(gk); (x,w, ρ)← A(gk, σ);

tr← S(gk, σ, x, ρ) : (gk, x, w) ∈ R andA(tr) = 1
]
.

We remark that there are efficient techniques to convert SHVZK arguments into zero-knowledge argu-
ments for arbitrary verifiers in the common random string model [Dam00, GMY06, Gro04]. In this paper,
we will therefore for simplicity focus just on the special honest verifier zero-knowledge case.

WITNESS-EXTENDED EMULATION. We shall define an argument of knowledge3 through witness-extended
emulation, the name taken from Lindell [Lin03]. Whereas Lindell’s definition pertains to proofs of knowl-
edge in the plain model, we will adapt his definition to the setting of public coin arguments in the common

3The standard definition ofproofsof knowledge by Bellare and Goldreich [BG92] does not apply in our setting, since we work in
the common random string model and are interested inargumentsof knowledge. See Damgård and Fujisaki [DF02] for a discussion
of this issue.

5

random string model. Informally, our definition says: given an adversary that produces an acceptable argu-
ment with probabilityε, there exists an emulator that produces a similar argument with probabilityε, but at
the same time provides a witness.

Definition 4 (Witness-extended emulation).We say the public coin argument(K,P, V) has witness-
extended emulation if for all deterministic polynomial timeP ∗ there exists an expected polynomial time
emulatorE such that for all non-uniform polynomial time adversariesA we have

Pr
[
gk ← G(1κ);σ ← K(gk); (x, s)← A(gk, σ);

tr← 〈P ∗(gk, σ, x, s), V (gk, σ, x)〉 : A(tr) = 1
]

≈ Pr
[
gk ← G(1κ);σ ← K(gk); (x, s)← A(gk, σ);

(tr, w)← E〈P ∗(gk,σ,x,s),V (gk,σ,x)〉(gk, σ, x) :

A(tr) = 1 and if tr is accepting then(gk, x, w) ∈ R
]
,

whereE has access to a transcript oracle〈P ∗(gk, σ, x, s), V (gk, σ, x)〉 that can be rewound to a particular
round and run again with the verifier using fresh randomness.

We think ofs as being the state ofP ∗, including the randomness. Then we have an argument of knowl-
edge in the sense that the emulator can extract a witness wheneverP ∗ is able to make a convincing argument.
This shows that the definition implies soundness. We remark that the verifier’s randomness is part of the
transcript and the prover is deterministic. So combining the emulated transcript withgk, σ, x, s gives us the
view of both the prover and the verifier and at the same time gives us the witness.

Damg̊ard and Fujisaki [DF02] have suggested an alternative definition of an argument of knowledge in
the presence of a common random string. Witness-extended emulation as defined above implies knowledge
soundness as defined by them [Gro04].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic [FS86] can be used to make public coin SHVZK
arguments non-interactive. In the Fiat-Shamir heuristic the verifier’s challenges are computed by applying a
cryptographic hash-function to the transcript of the protocol. Security can be formally argued in the random
oracle model [BR93], in which the hash-function is modeled as a completely random function that returns a
random string on each input it has not been queried before. While the Fiat-Shamir heuristic is not sound in
general [GK03], it is still commonly believed to be a safe practice when applied to “natural” protocols.

2.6 Problem Specification and Setup

We will construct a 7-move public coin perfect SHVZK argument for the relation

R =
{

(gk = (q,Gq, g), (pk = y, e1, . . . , eN , E1, . . . , EN), (π,R1, . . . , RN))
∣∣∣

y ∈ Gq ∧ π ∈ ΣN ∧R1, . . . , RN ∈ Rpk ∧ ∀i : Ei = eπ−1(i)Epk(1;Ri)
}
.

In our SHVZK argument, the common random stringσ will be generated as a public key(g1, . . . , gn, h)
for then-element Pedersen commitment scheme described in Section 2.3. Depending on the applications,
there are many possible choices for who generates the commitment key and how this generation is done.
For use in a mix-net, we could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the setup and the commitment key. Another option is to let the
verifier generate the common random string, since it is easy to verify whether a commitment key is valid or
not. This option yields an 8-move (honest-verifier zero-knowledge) argument in the plain model.4

4We can also get full zero-knowledge in the plain model. The verifier picks the common random string as above and also picks an

6

2.7 Polynomial Identity Testing

For completeness we state a variation of the well-known Schwartz-Zippel lemma that we use several times
in the paper.

Lemma 5 (Schwartz-Zippel). Let p be a non-zero multivariate polynomial of degreed over Zq, then the
probability ofp(x1, . . . , xν) = 0 for randomly chosenx1, . . . , xν ← Zq is at mostd/q.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given two multi-variate
polynomialsp1 andp2 we can test whetherp1(x1, . . . , xν) − p2(x1, . . . , xν) = 0 for randomx1, . . . , xν ←
Zq. If the two polynomials are identical this will always be true, whereas if the two polynomials are different
then there is only probabilitymax(d1, d2)/q for the equality to hold.

3 Product of Committed Elements

Consider a sequence of commitmentsA1, . . . , Am and a valuea ∈ Zq. We will give an SHVZK argument of
knowledge of{aij}m,n

i=1,j=1 and{ri}mi=1 such that

A1 = comck(a11 , a12 , . . . , a1n ; r1)
...

Am = comck(am1 , am2 , . . . , amn ; rm)
and a =

m∏
i=1

n∏
j=1

aij mod q.

The argument is of sub-linear size; the prover will sendm2 commitments and2n elements fromZq, where
N = mn is the total number of committed elementsaij . Form = N1/3 this gives a size ofO(N2/3)κ bits.

The argument is quite complex so let us first describe some of the ideas that go into it. In our argument,
the prover will prove knowledge of the contents of the commitments. For the sake of simplicity we will first
describe the argument assuming the prover knows the contents of the commitments and by the computational
binding property of the commitment scheme is bound to these values. We will also for the sake of simplicity
just focus on soundness and later when giving the full protocol add extra parts that will give us honest verifier
zero-knowledge and witness-extended emulation. (Note that even completeness and soundness alone are
nontrivial to achieve when consideringsublinear communicationarguments.)

Consider first commitmentsA1, . . . , Am as described above. The verifier will pick a random challenge
s1, . . . , sm. By the homomorphic property

m∏
i=1

Asi
i = comck(

m∑
i=1

siai1, . . . ,
m∑

i=1

siain;
m∑

i=1

siri).

In our argument the prover will open this commitment multi-exponentiation asf1 :=
∑m

i=1 siai1, . . . , fn :=∑m
i=1 siain, z :=

∑m
i=1 siri.

Consider now the case where we have three sets of commitments{Ai}mi=1, {B`}m`=1, {Ci`}m,m
i=1,`=1

containing respectivelym × n matricesA,B and m2 × n matrix C. The verifier will choose
random challengess1, . . . , sm, t1, . . . , tm ← Zq. The prover can open the commitment products∏m

i=1A
si
i ,
∏m

`=1B
t`
` ,
∏m

i=1

∏m
`=1C

sit`
i` as described above. This gives us for each of then columns

fj :=
m∑

i=1

siaij , Fj :=
m∑

`=1

t`b`j , φj :=
m∑

i=1

m∑
`=1

sit`ci`j .

additional key for a trapdoor commitment scheme. The verifier then makes engages in a zero-knowledge proof of knowledge of the
trapdoor. We can now use the standard techniques for converting honest verifier zero-knowledge arguments to full zero-knowledge
arguments [Dam00, GMY06, Gro04]. By running the two proofs in parallel, the round complexity is only 8. Note, however, that
since the verifier must know the secret trapdoor of the additional commitment scheme, the protocol is no longer public coin.

7

In our proofs the verifier will check for each column thatφj = fjFj . These checks can be seen as quadratic
equations in variabless1, . . . , sm, t1, . . . , tm of the form

(
m∑

i=1

siaij)(
m∑

`=1

t`b`j) =
m∑

i=1

m∑
`=1

sit`ci`j .

If ci`j = aijb`j for all i, `, j the check will always pass, whereas if this is not the case, then by the Schwartz-
Zippel lemma there is overwhelming probability over the choice ofs1, . . . , sm, t1, . . . , tm that the check will
fail. (This type of checking is also used in the Hadamard-based PCP of Arora et al. [ALM+98].) We therefore
have an argument forCii being a commitment to{aijbij}nj=1. The commitmentsCi` for i 6= ` are just fillers
that make the argument work, we will not need them for anything else. In the argument we only revealO(n)
elements inZq to simultaneously proveN = mn equalitiesciij = aijbij ; this is what will give us sub-linear
communication complexity.

Let us now explain how we choose the matrixB. For 1 ≤ I ≤ m, 1 ≤ J ≤ n we setbIJ :=∏I−1
i=1

∏n
j=1 aij ·

∏J
j=1 aIj . This means thatB is a matrix chosen such thatbij is the previous element

in the matrixB multiplied withaij . In particular, we havebmn =
∏m

i=1

∏n
j=1 aij = a. In addition, we will

have an extra column withb10 := 1 and for1 < i ≤ m : bi0 := bi−1,n. In other words, the0th column vector
is thenth column vector ofB shifted one step down. The prover will make a separate set ofm commitments
B′

1, . . . , B
′
m to this column. ChoosingB′

1 := comck(1; 0) it is straightforward to verify thatb10 = 1. To show
that the rest of the0th column is correctly constructed the prover will open

∏m−1
`=2 (B′

`)
t`−1 to the message

Fn − tma. The linear equations give us
∑m−1

`=2 t`−1b`0 + tma =
∑m

`=1 t`b`n, which by the Schwartz-Zippel
lemma has negligible probability of being true unlessbmn = a andb`+1,0 = b`n for 1 ≤ ` < m.

We have now describedB extended with a0th column vector. WritẽB for the matrix with the0th column
and the firstn − 1 columns ofB. We will apply theA,B,C matrix argument we described before to the
matricesA, B̃, C, where we use commitmentsCii := Bi. This argument demonstrates for each1 ≤ j ≤ n
that bij = aijbi,j−1. Putting everything together we now have:b10 = 1, bij = aijbi,j−1, bi0 = bi−1,n and
bmn = a, which is sufficient to conclude thata =

∏m
i=1

∏n
j=1 aij .

We will now describe the full protocol. The most significant change from the description given above is
that we now add also elementsa0j , b0j that are chosen at random to the matrices. The role of these elements
is to give honest verifier zero-knowledge. The prover reveals elements of the formfj := a0j +

∑m
i=1 siaij

andFj := b0j +
∑m

`=1 t`b`j , which reveal nothing about
∑m

i=1 siaij and
∑m

`=1 t`b`j whena0j andb0j are
random.

Initial message:
a01, . . . , a0n ← Zq ; r0 ← Rck ; A0 := comck(a01, a02, . . . , a0n; r0)

For1 ≤ I ≤ m, 1 ≤ J ≤ n : bIJ :=
∏I−1

i=1

∏n
j=1 aij ·

∏J
j=1 aIj

b01, . . . , b0n ← Zq ; rb0, rb1 . . . , rbm ← Rck

B0 := comck(b01 , b02, , . . . , b0n ; rb0)
B1 := comck(b11 , b12 , . . . , b1n ; rb1)

...
Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

Defineb10 := 1, b20 := b1n, . . . , bm0 := bm−1,n

r′2, . . . , r
′
m ← Rck ; B′

2 := comck(b20; r′2), . . . , B
′
m := comck(bm0; r′m)

b00 ← Zq ; r′0 ← Rck ; B′
0 := comck(b00; r′0)

r̂ ← Rck ; B̂ := comck(b0n; r̂)

8

For0 ≤ i, ` ≤ m : ri` ← Rck and for1 ≤ i ≤ m : rii := rbi.

For0 ≤ i, ` ≤ m :
Ci` := comck(ai1b`0, . . . , ainb`,n−1; ri`)

Sincebij = aijbi,j−1 andrii = rbi we have for1 ≤ i ≤ m thatCii = Bi.

Send(A0, B0, B
′
0, B

′
2, . . . , B

′
m, B̂, C00, . . . , Cmm) to the verifier

Challenge: s1, . . . , sm, t1, . . . , tm ← Zq

Answer:
For1 ≤ j ≤ n : fj := a0j +

∑m
i=1 siaij ; Fj := b0j +

∑m
`=1 t`b`j ; F0 := b00 +

∑m
`=1 t`b`0

z := r0 +
∑m

i=1 siri ; zb := rb0 +
∑m

`=1 t`rb` ; z′ := r′0 +
∑m

`=2 t`r
′
` ; ẑ := r̂ +

∑m
`=2 t`−1r

′
`

zab := r00 +
∑m

i=1 siri0 +
∑m

`=1 t`r0` +
∑m

i=1

∑m
`=1 sit`ri`

Send(f1, . . . , fn, F0, . . . , Fn, z, zb, z
′, ẑ, zab) to the verifier

Verification:
CheckA0

∏m
i=1A

si
i = comck(f1, . . . , fn; z)

For1 ≤ ` ≤ m setB` := c``. CheckB0
∏m

`=1B
t`
` = comck(F1, . . . , Fn; zb)

SetB′
1 := comck(1; 0). CheckB′

0

∏m
`=1(B

′
`)

t` = comck(F0; z′).

CheckB̂
∏m

`=2(B
′
`)

t`−1 = comck(Fn − tma; ẑ)
Check

C00 ·
m∏

i=1

Csi
i0 ·

m∏
`=1

Ct`
0` ·

m∏
i=1

m∏
`=1

Csit`
i` = comck(f1F0, . . . , fnFn−1; zab)

Theorem 6. The protocol described above is a 3-move public-coin perfect SHVZK argument of knowledge
of aij andri such thata =

∏m
i=1

∏n
j=1 aij and for all i we haveAi = comck(ai1, . . . , ain; ri).

Proof. Perfect completeness follows by verification.

PERFECT SHVZK. Given challenges1, . . . , sm, t1, . . . , tm the simulator works as follows. It picks
f1, . . . , fn, F0, . . . , Fn ← Zq ; z, zb, z

′, ẑ, zab ← Rck at random. For1 ≤ i, ` ≤ m it picks
Ci0, C0`, Ci` as random commitments to 0. It computesC00 := comck(f1F0, . . . , fnFn−1; zab) ·∏m

i=1C
−si
i0 ·

∏m
`=1C

−t`
0` ·

∏m
i=1

∏m
`=1C

−sit`
i` . It picksB′

2, . . . , B
′
m as random commitments to 0 and sets

B̂ := comck(Fn − tma; ẑ)
∏m

`=2(B
′
`)
−t`−1 andB′

0 := comck(F0; z′)
∏m

`=1(B
′
`)
−t` . It computesB0 :=

comck(F1, . . . , Fn; zb)
∏m

`=1B
−t`
` andA0 := comck(f1, . . . , fn; z)

∏m
i=1A

−si
i . The simulated argument is

(A0, B0, B
′
0, B

′
2, . . . , B

′
m, B̂, C00, . . . , Cmm, s1, . . . , sm, t1, . . . , tm, f1, . . . , fn, F0, . . . , Fn, z, zb, z

′, ẑ, zab).
We will now show that the simulation has the same distribution as a real argument on challenge

s1, . . . , sm, t1, . . . , tm using witness{aij}m,n
i=1,j=1 and {ri}mi=1. Compute in the simulationa0j := fj −∑m

i=1 siaij , b0j := Fj −
∑m

`=1 t`b`j , b00 := F0 −
∑m

`=1 t`b`0. Sincef1, . . . , fn, F0, . . . , Fn are chosen at
random, this gives a uniform distribution ona0j , b0j , b00 just as in a real argument. In the simulation we make
commitmentsCi0, C0`, Ci` to (0, . . . , 0) andB′

` to 0, but since the commitment scheme is perfectly hiding
these commitments cannot be distinguished from commitments computed according to the way we do it in a
real argument. We conclude by observing that both in the simulation and in a real argument, the remaining
part of the argument, namelyC00, B

′
0, B̂, B0 andA0 get the same distribution conditioned on the uniform

distribution ofz, zb, z′, ẑ, zab.

WITNESS-EXTENDED EMULATION. We will first show how to extract the contents of all the commitments
in an acceptable argument. Next, we will show that with overwhelming probability this gives us a witness
for the statement.

9

Consider a deterministic adversarial proverP ∗ with unknown probabilityε for making an acceptable
argument. We run it once on random challenges. If the argument is invalid we do not need to take further
action, but if it is acceptable we need to extract a witness for the statement. We therefore rewind and run
〈P ∗, V 〉 again until we have(m + 1)2 successful arguments on random challenges. This takes an expected
number of(m+1)2/ε runs, but we only have to do it whenP ∗ is successful in the first place, which happens
with probabilityε. Therefore, the expected run-time is(m+ 1)2.

With overwhelming probability the firstm + 1 vectors(1, s1, . . . , sm) are linearly independent. This
means that there exists linear combinations of them + 1 (1, s1, . . . , sm)-vectors that give us either of the
vectors(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). By taking appropriate linear combinations of them+
1 equalitiesA1

0

∏m
i=1A

si
i = comck(f1, . . . , fn; z) we get openings ofA0, A1, . . . , Am. In other words, we

learna01, . . . , amn, r0, . . . , rm so

A0 = comck(a01 , a02 , . . . , a0n ; r0)
A1 = comck(a11 , a12 , . . . , a1n ; r1)

...
Am = comck(am1 , am2 , . . . , amn ; rm)

.

Consider next the firstm + 1 vectors(1, t1, . . . , tm) that are answered successfully. Again, with over-
whelming probability they are linearly independent. There are therefore linear combinations of them that
give us each of the vectors(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Them + 1 successful answers
give us equalitiesB0

∏m
`=1B

t`
` = comck(F1, . . . , Fn; zb). By taking appropriate linear combinations of

these equalities we get openingsb01, . . . , bmn, rb0, . . . , rbm of B0, . . . , Bm as

B0 := comck(b01 , b02, , . . . , b0n ; rb0)
B1 := comck(b11 , b12 , . . . , b1n ; rb1)

...
Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

.

Similarly, the equalitiesB′
0

∏m
`=1(B

′
`)

t` = comck(F0; z′) andB̂
∏m

`=2(B
′
`)

t`−1 = comck(Fn − tma; ẑ) give
us openingsb00, r

′
0, . . . , bm0, r

′
m of B′

0, B
′
2, . . . , B

′
m andb̂, r̂ of B̂. By definitionB′

1 := comck(1; 0).
The(m+1)2 vectors(1, s1, . . . , sm, t1, . . . , tm, s1t1, . . . , smtm) are also linearly independent with over-

whelming probability. We can therefore from the(m+ 1)2 acceptable runs with equalities

C00 ·
m∏

i=1

Csi
i0 ·

m∏
`=1

Ct`
0` ·

m∏
i=1

m∏
`=1

Csit`
i` = comck(f1F0, . . . , fnFn−1; zab)

find linear combinations that give us openingswi`j , ri` of the(m+ 1)2 commitmentsCi`.
We have shown how to extract openings in expected polynomial time of all the commitments in the

argument. Next, we will argue that there is negligible probability of the emulator getting an acceptable
argument for which it has to extract a witness, yet ending up extractinga11, . . . , amn, r1, . . . , rm so

m∏
i=1

n∏
j=1

aij 6= a.

By the binding property of the commitment scheme we can assume the commitments have unique contents,
i.e., for instance thatwiij = bij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. This means that in the acceptable argument
we havefj = a0j +

∑m
i=1 siaij andFj = b0j +

∑m
`=1 b`j andF0 = b00 + t1 +

∑m
`=2 t`b`0.

10

SinceB′
1 = comck(1; 0) we haveb10 = 1. SinceB̂

∏m
`=2(B

′
`)

t`−1 = comck(Fn − tma; ẑ) we have
with overwhelming probability overt1, . . . , tm that b20 = b1n, . . . , bm0 = bm−1,n and alsobmn = a. The
equation

C00 ·
m∏

i=1

Csi
i0 ·

m∏
`=1

Ct`
0` ·

m∏
i=1

m∏
`=1

Csit`
i` = comck(f1F0, . . . , fnFn−1; zab)

and writing out the product

fjFj−1 = a0j +
m∑

i=1

siaijb0j +
m∑

`=1

t`a0jb`,j−1 +
m∑

i=1

m∑
`=1

sit`aijb`,j−1

gives us with overwhelming probability overs1, . . . , sm, t1, . . . , tm thatbij = wiij = aijbi,j−1 for 1 ≤ i ≤
m, 1 ≤ j ≤ m. Combining these pieces of information we see thatbIJ =

∏
i<I

∏m
j=1 aij ·

∏J
j=1 aIj . This

gives us
∏m

i=1

∏n
j=1 aij = bmn = a as we required. �

4 Committed Permutation of Known Elements

Consider a vector of commitmentsB1, . . . , Bm and a set of values{aij}m,n
i=1,j=1. In this section we will give

an argument of knowledge ofπ ∈ ΣN and{ri}mi=1 such that:

B1 = comck(aπ−1(11) , aπ−1(12) , . . . , aπ−1(1n) ; r1)
...

Bm = comck(aπ−1(m1) , aπ−1(m2) , . . . , aπ−1(mn) ; rm)

(Here we identify[N] with [m]× [n].)
Our argument uses Neff’s idea [Nef01], which is to let the verifier pick a valuex at random and let

the prover argue that the committed valuesbij satisfy
∏m

i=1

∏n
j=1(x − bij) =

∏m
i=1

∏n
j=1(x − aij). If the

committedbij are a permutation ofaij this equation holds, since polynomials are invariant under permutation
of their roots. On the other hand, ifbij are not a permutation ofaij , then by the Schwartz-Zippel lemma there
is negligible chance over the choice ofx for the equality to hold.

Initial challenge: x← Zq

Answer: Define B′
1 := comck(x, . . . , x; 0)B−1

1 , . . . , B′
m := comck(x, . . . , x; 0)B−1

m and a :=∏m
i=1

∏n
j=1(x− aij).

Make a 3-move argument of knowledge of openings ofB′
1, . . . , B

′
m such that the product of all the

entries isa.

Theorem 7. The protocol is a 4-move public coin perfect SHVZK argument of knowledge ofaij , ri, π such
thatBi := comck(aπ−1(i1), . . . , aπ−1(in); ri).

Proof. Perfect completeness follows from the homomorphic properties of the commitment scheme and in-
variance under permutation of the roots of a polynomial:

∏m
i=1

∏n
j=1(x− aij) =

∏m
i=1

∏n
j=1(x− aπ−1(ij)).

Perfect SHVZK follows from the perfect SHVZK of the committed product argument.
We will now prove that we have witness-extended emulation. We first run the protocol with a random

x ← Zq and random challenges for the argument of knowledge of committed product. If accepting, we
rewind to the point where we have just sentx to the prover and run the witness extractor to get openings
{bij}m,n

i=1,j=1, {r′i}mi=1 ofB′
1, . . . , B

′
m such that

∏m
i=1

∏n
j=1 bij =

∏m
i=1

∏n
j=1(x−aij). By the homomorphic

property of the commitment scheme this gives us openings{x− bij}m,n
i=1,j=1, {−r′i}mi=1 of B1, . . . , Bm. The

11

process takes an expected number of(m + 1)2 steps, since at the point where the prover has receivedx and
has probabilityε of making an acceptable argument, the extractor uses an expected number of(m+1)2 runs.

What remains is to argue that with overwhelming probability there is a permutationπ ∈ ΣN such that
dij := x− bij = aπ−1(ij). To see this consider the adversaryP ∗ with non-negligible probabilityε of making
a convincing argument on a random challengex. There is then non-negligible probability that we extract an
openingdij , r

′
i of B1, . . . , Bm. By the binding property of the commitment we then have for a new random

x that with non-negligible probability
∏m

i=1

∏n
j=1(x − dij) −

∏m
i=1

∏n
j=1(x − aij). Unless there exists a

permutationπ ∈ ΣN sodij = aπ−1(ij) the Schwartz-Zippel lemma gives us less than probabilityN/q for
this equality to hold for randomx. �

5 Multi-exponentiation to Committed Exponents

Consider a set of commitmentsA1, . . . , Am, a matrix of ciphertextsE11, . . . , Emn and a ciphertextE. In
this section we will give an argument of knowledge of{aij}m,n

i=1,j=1, {ri}mi=1 andR such that:

A1 = comck(a11 , a12 , . . . , a1n ; r1)
...

Am = comck(am1 , am2 , . . . , amn ; rm)
and E = Epk(1;R)

m∏
i=1

n∏
j=1

E
aij

ij .

The argument will containm2 commitments,m2 ciphertexts andn elements inZq, whereN = mn. Choos-
ingm = N1/3 gives a communication complexity ofO(N2/3)κ bits.

When describing the idea, let us first just consider how to get soundness and ignore the issue of zero-
knowledge for a moment. In the argument, the prover will prove knowledge of the committed exponents, so
let us from now on assume the committed values are well-defined. The prover can computem2 ciphertexts

Di` =
n∏

j=1

E
aij

`j .

We haveE = Epk(1;R)
∏m

i=1Dii = Epk(1;R)
∏m

i=1

∏n
j=1E

aij

ij . IgnoringR that can be dealt with using
standard zero-knowledge techniques all that remains is for the verifier to be convincedDi` have been correctly
computed. For this purpose the verifier will select challengest1, . . . , tm ← Zq at random. The prover will
open

∏m
i=1A

ti
i to the valuesf1 :=

∑m
i=1 tiai1, . . . , fn :=

∑m
i=1 tiain. The verifier now checks for each

1 ≤ ` ≤ m that
∏n

j=1E
fj

`j =
∏m

i=1D
ti
i`. Writing this out we have

∏m
i=1(

∏n
j=1E

aij

`j)ti =
∏m

i=1D
ti
i`. Sinceti

are chosen at random, there is overwhelming probability for one of these checks to fail unless for alli, ` we
haveDi` =

∏n
j=1E

aij

`j .
In the argument, we wish to have honest verifier zero-knowledge. We will therefore multiply theDi`

ciphertexts with random encryptions to avoid leaking information about the exponents. This, however, makes
it possible to encrypt anything inDi`, so to avoid cheating we commit to the plaintexts of those random
encryptions and use the commitments to prove that they all cancel out against each other.

Initial message:
a01, . . . , a0n ← Zq ; r0 ← Rck ; A0 = comck(a01, a02, . . . , a0n; r0)

b01, . . . , bmm ← Zq ; r01, . . . , rmm ← Rck ; bmm := −
∑m−1

i=1 bii ; rmm := −
∑m−1

i=1 rii

C01 := comck(b01; r01) . . . C0m := comck(b0m; r0m)
...

...
Cm1 := comck(bm1; rm1) . . . Cmm := comck(bmm; rmm)

12

R01, . . . , Rmm ← Rpk ;Rmm := R−
∑m−1

i=1 Rii

D01 := Epk(gb01 ;R01)
∏n

j=1E
a0j

1j · · · D0m := Epk(gb0m ;R0m)
∏n

j=1E
a0j

mj
...

...
Dm1 := Epk(gbm1 ;Rm1)

∏n
j=1E

amj

1j · · · Dmm := Epk(gbmm ;Rmm)
∏n

j=1E
amj

mj

Send(A0, C01, . . . , Cmm, D01, . . . , Dmm) to the verifier

Challenge: t1, . . . , tm ← Zq

Answer:
For1 ≤ j ≤ n : fj := a0j +

∑m
i=1 tiaij ; z := r0 +

∑m
i=1 tiri

For1 ≤ ` ≤ m : F` := b0` +
∑m

i=1 tibi` ; z` := r0` +
∑m

i=1 tiri` ; Z` := R0` +
∑m

i=1 tiRi`

Send(f1, . . . , fn, F1, . . . , Fm, z, z1, . . . , zm, Z1, . . . , Zm) to the verifier

Verification:
CheckA0

∏m
i=1A

ti
i = comck(f1, . . . , fn; z)

For1 ≤ ` ≤ m check

C0`

m∏
i=1

Cti
i` = comck(F`; z`) and Epk(gF` ;Z`)

n∏
j=1

E
fj

`j = D0`

m∏
i=1

Dti
i`

Check
∏m

i=1Cii = comck(0; 0)

CheckE =
∏m

i=1Dii

Theorem 8. The protocol above is a 3-move public coin perfect SHVZK argument of knowledge of
a11, . . . , amn, r1, . . . , rm, R soE = Epk(1;R)

∏m
i=1

∏n
j=1E

aij

ij andAi = comck(ai1, . . . , ain; ri).

Proof. Perfect completeness can be verified directly.

PERFECT SHVZK. The simulator on challenget1, . . . , tm simulates the argument as follows. It
picks R11, . . . , Rmm ← Rpk and b11, . . . , bmm ← Zq and computesDi` := Epk(gbi` ;Ri`).
It sets Dmm := E

∏m−1
i=1 D−1

ii . This gives us random ciphertextsDi` conditioned onE =∏m
i=1Dii. The simulator picksc11, . . . , Cmm as random commitments to0 and setsCmm :=

comck(0; 0)
∏m−1

i=1 C−1
ii . It picks f1, . . . , fn ← Zq; z ← Rck and computesA0 :=

comck(f1, . . . , fn; z)
∏m

i=1A
−ti
i . It picks F1, . . . , Fm ← Zq; z1, . . . , zm ← Rck and Z1, . . . , Zm ←

Rpk. For all ` it setsD0` := Epk(gF` ;Z`)
∏n

j=1E
fj

`j

∏m
i=1D

−ti
i` . This gives us the simulated argument

(A0, C01, . . . , Cmm, D01, . . . , Dmm, t1, . . . , tm, f1, . . . , fn, F1, . . . , Fm, z, z1, . . . , zm, Z1, . . . , Zm).
We will now prove that a simulated argument is indistinguishable from a real argument on challenge

t1, . . . , tm. Observe first that both in the simulation and in the real argument we get a uniform random
distribution of ciphertextsDi` for 1 ≤ i, ` ≤ m conditioned onE =

∏m
i=1Dii. Given theaij from the

witness, theDi` ciphertexts determineb11, . . . , bmm uniquely such that
∑m

i=1 bii = 0. Since the com-
mitment scheme is perfectly hiding, the distribution of commitmentsc11, . . . , Cmm to 0 in the simulation
is identical to the distribution of commitments we get in a real argument. In the simulation, we pick
f1, . . . , fn, F1, . . . , Fm, z, z1, . . . , zm, Z1, . . . , Zm at random, which indirectly defines uniformly random
valuesa0j , r0, b0`, r0`, R0`. We have with these values that they give the uniquely determinedD0`, C0`, A0

such thatA0
∏m

i=1A
ti
i = comck(f1, . . . , fn; z) and for1 ≤ ` ≤ m that

C0`

m∏
i=1

Cti
i` = comck(F`; z`) and Epk(gF` ;Z`)

n∏
j=1

E
fj

`j = D0`

m∏
i=1

Dti
i`.

13

We conclude that the distributions of simulated arguments and real arguments are the same.

WITNESS-EXTENDED EMULATION. Consider a deterministic adversaryP ∗ with probability ε of creating
an acceptable argument. We run it with a random challenget1, . . . , tm. If it fails to produce an acceptable
argument we do not need to extract a witness, but with probabilityε it does produce an acceptable argument
and we must try to extract a witness. We run〈P ∗, V 〉 until we havem+1 acceptable arguments with random
challengest1, . . . , tm. We can expect to useε · (m+ 1)/ε = m+ 1 runs in this phase.

We will now argue that we can extract openings of the commitments and deduce howD01, . . . , Dmm have
been constructed. With overwhelming probability them+ 1 challenge vectors(1, t1, . . . , tm) for which we
have gotten acceptable arguments are linearly independent. We can therefore find linear combinations giving
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Taking linear combinations of the equalitiesA0

∏m
i=1A

ti
i =

comck(f1, . . . , fn; z) gives us openingsa01, . . . , amn, r0, . . . , rm so

A0 = comck(a01 , a02 , . . . , a0n ; r0)
...

Am = comck(am1 , am2 , . . . , amn ; rm)

Similarly, taking linear combinations of them + 1 equalitiesC0`
∏m

i=1C
ti
i` = comck(F`; z`) for each`

gives us openingsb0`, . . . , bm`, r0`, . . . , rm` soCi` = comck(bi`; ri`).
For each̀ we also havem+1 equalitiesEpk(gF` ;Z`)

∏n
j=1E

fj

`j = D0`
∏m

i=1D
ti
i`. By taking appropriate

linear combinations we findR0`, . . . , Rm` soDi` = Epk(gbi` ;Ri`)
∏n

j=1E
aij

`j .
Now we know openings of the commitments and how the ciphertexts have been constructed. The binding

property of the commitment scheme and the equality
∏m

i=1Ciicomck(0; 0) gives us
∑m

i=1 bii = 0. We have

E =
m∏

i=1

Dii =
m∏

i=1

Epk(gbii ;Rii)
n∏

j=1

E
aij

ij = Epk(1;R)
m∏

i=1

n∏
j=1

E
aij

ij ,

for R :=
∑m

i=1Rii. This gives us a witness(a11, . . . , amn, r1, . . . , rm, R) for the statement. �

6 Shuffle Argument

Given ciphertexts{eij}m,n
i=1,j=1 and{Eij}m,n

i=1,j=1 we will give an argument of knowledge ofπ ∈ ΣN and
{Rij}m,n

i=1,j=1 such that for alli, j we haveEij = eπ−1(ij)Epk(1;Rij). The most expensive components of
the argument will be a product of committed elements argument and a multi-exponentiation to committed
elements argument described in the previous sections. The total size of the argument is thereforeO(m2+n)κ
bits, whereN = mn. Withm = N1/3 this gives an argument of sizeO(N2/3)κ bits.

The argument proceeds in seven steps. First the prover commits to the permutationπ, by making a
commitment to1, . . . , N in permuted order. Then the verifier picks challengess1, . . . , sm, t1, . . . , tn at
random. The prover commits to the challengessitj in permuted order. The prover now proves that she has
committed tositj permuted in the same order as the permutation committed to in the initial commitment.
The point of the argument is that since the permutation is committed before seeing the challenges, the prover
has no choice in creating the commitment, the random challenges have already been assigned unique slots in
the commitment.

The other part of the argument is to use the committed exponentiation technique to show that∏m
i=1

∏n
j=1 e

sitj
ij = Epk(1;R)

∏m
i=1

∏n
j=1E

sitj
π(ij) for some knownR. If we look at the plaintext, this implies∏m

i=1

∏n
j=1m

sitj
ij =

∏m
i=1

∏n
j=1M

sitj
π(ij). With the permutation fixed before the challenges are chosen at

random there is overwhelming probability that the argument fails unless for alli, j we haveMij = mπ−1(ij).

14

Initial message: The prover setsaπ(ij) := m(i− 1) + j. The prover picksra1, . . . , ram ← Rck and sets

A1 := comck(a11 , a12 , . . . , a1n ; ra1)
...

Am := comck(am1 , am2 , . . . , amn ; ram)

First challenge: s1, . . . , sm, t1, . . . , tn ← Zq

First answer: We definebπ(ij) := sitj . The prover picksrb1, . . . , rbn ← Rck and sets

B1 := comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

Second challenge:λ← Zq

Answer: Make a 4-move argument of knowledge ofπ ∈ ΣN and openings ofAλ
1B1, . . . , A

λ
mBm so they

contain a permutation of theN valuesλ(m(i−1)+ j)+sitj . Observe, the first move of this argument
can be made in parallel with the second challenge so we only use three additional moves.

Make a 3-move argument of knowledge ofbij , rbi, R so

B1 = comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm = comck(bm1 , bm2 , . . . , bmn ; rbm)
and

m∏
i=1

n∏
j=1

e
sitj
ij = Epk(1;R)

m∏
i=1

n∏
j=1

E
bij

ij .

Theorem 9. The protocol is a 7-move public coin perfect SHVZK argument of knowledge ofπ ∈ Σ and
Rij ∈ Rpk soEij = eπ−1(ij)Epk(1;Rij).

Proof. Perfect completeness follows from the perfect completeness of the underlying arguments of knowl-
edge. Perfect SHVZK follows from the perfect SHVZK of the underlying arguments. What remains is to
prove that we have witness-extended emulation.

We run the proverP ∗ with random challengess1, . . . , sm, t1, . . . , tn, λ and challenges for the arguments
of knowledge. If we get an acceptable argument, we have to extract a witness. We run〈P ∗, V 〉 until we have
acceptable answers toN sets of challengess1, . . . , sm, t1, . . . , tn. In each of these runs, we run the witness-
extractor for the multi-exponentiation to committed elements argument to get openings ofB1, . . . , Bm and
anR ∈ Rpk so

B1 := comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)
and

m∏
i=1

n∏
j=1

e
sitj
ij =

m∏
i=1

n∏
j=1

E
bij

ij Epk(1;R).

We also run the witness-extended extractor for the committed permutation of known elements to get openings
of Aλ

1B1, . . . , A
λ
mBm. Providedλ 6= 0 this gives us an opening ofA1, . . . , Am.

We will now argue that with overwhelming probability we have either an invalid argument and do not
need to extract a witness or alternatively we have sufficient information to compute a witness. The per-
mutation argument gives us thatλaij + bij is a permutation ofλ(m(i − 1) + j) + sitj in each of the
N runs with different challengess1, . . . , sm, t1, . . . , tn. With overwhelming probability overλ there ex-
ists a permutationπ ∈ ΣN such thataπ(ij) = (i − 1)m + j and bπ(ij) = sitj . Since we commit to

15

aij in the first round, allN runs must have the same permutationπ. With overwhelming probability the
N vectors(s1t1, . . . , smtn) are linearly independent. Taking appropriate linear combinations of theN

equalities
∏m

i=1

∏n
j=1 e

sitj
ij =

∏m
i=1

∏n
j=1E

bij

ij Epk(1;R) gives usEij = eπ(ij)Epk(1;Rij) for Rij com-
puted as an appropriate linear combination of theR values found in the argument. We output the witness
(π,R11, . . . , Rmn). �

7 Efficient Verification

The small size of the argument gives a corresponding low cost of verification. There are, however,2N
ciphertexts that we must exponentiate in the verification. In this section we show that the verifier computation
can be reduced to making multi-exponentiations of the ciphertexts to small exponents.

7.1 Prover-Assisted Multi-exponentiation

In our shuffle argument, the verifier has to compute

m∏
i=1

n∏
j=1

e
sitj
ij .

The prover can assist this computation by computingD1, . . . , Dn asDj :=
∏m

i=1 e
si
ij . The verifier can then

compute
m∏

i=1

n∏
j=1

e
sitj
ij =

m∏
j=1

D
tj
j .

What remains is for the verifier to check that the ciphertexts are correct, which can be done by verifying

n∏
j=1

D
αj

j =
m∏

i=1

(
n∏

j=1

e
αj

ij)si

for randomly chosenαj . Since the check is done off-line, the verifier can use small exponentsαj , say,
32-bit exponents. This trick reduces the amount of verifier computation that is needed for computing∏m

i=1

∏n
i=1 e

sitj
ij to onem-exponentiation to exponents fromZq andm+1 n-exponentiations to small expo-

nents.
Whenm is small, this strategy may actually end up increasing the communication complexity of the

shuffle. However, the exact same method can be employed when we let the verifier compute thetj-values
as products then products ofψ1, . . . , ψn1 andτ1, . . . , τn2 wheren = n1n2. If we choosen2 =

√
N for

instance, we get that the prover only sends
√
N ciphertexts to the verifier. The verifier then makes

√
N -

multi-exponentiations to small exponentsα1, . . . , α√N .

7.2 Randomized Verification

In the argument for multi-exponentiation to committed exponents, the verifier must checkm equalities of the
form

Epk(gF` ;Z`)
n∏

j=1

E
fj

`j = D0`

m∏
i=1

Dti
i`.

16

This can be done off-line in a randomized way by pickingα1, . . . , αm at random and testing whether

Epk(g
∑m

`=1 α`F` ;
m∑

`=1

α`Z`)
n∏

j=1

(
m∏

`=1

Eα`
`j

)fj

=
m∏

`=1

Epk(gF` ;Z`)
n∏

j=1

E
fj

`j

α`

=
m∏

`=1

Dα`
0`

m∏
i=1

(
m∏

`=1

Dα`
i`

)ti

.

This way, we maken m-multi-exponentiations to small exponentsα` and onen-multi-exponentiation to
larger exponentsfj .

8 Comparison

Let us compare our shuffle argument with the most efficient arguments for correctness of a shuffle of ElGamal
ciphertexts in the literature. Furukawa and Sako [FS01] suggested an efficient argument for correctness
of a shuffle based on committing to a permutation matrix. This scheme was further refined by Furukawa
[Fur05]. We will use Groth and Lu’s [GL07] estimates for the complexity of Furukawa’s scheme. Neff
[Nef01, Nef03] gave an efficient interactive proof for correctness of a shuffle. Building on those ideas Groth
[Gro03] suggested a perfect SHVZK argument for correctness of a shuffle. Our shuffle argument builds on
Neff’s and Groth’s schemes.

We will compare the schemes using an elliptic curve of prime orderq. We use|q| = 256 so SHA256
can be used to choose the public coin challenges. We measure the communication complexity in bits and
measure the prover and verifier computation in single exponentiations. By this we mean that in all schemes,
we count the cost of a multi-exponentiation ton exponents asn single exponentiations. We compare the
most efficient shuffle arguments in Table 1. Section 7 offer a couple of speedup techniques. If we employ the

Elliptic curve Furukawa-Sako Groth Furukawa proposed
Group order:|q| = 256 [FS01] [Gro03] [Fur05, GL07]
Prover (single expo.) 8N 6N 7N 3mN + 5N
Verifier (single expo.) 10N 6N 8N 4N + 3n
Prover’s communication (bits) 1280N 768N 768N 768m2 + 768n
Rounds 3 7 3 7

Table 1: Comparison of shuffle arguments forN = mn ElGamal ciphertexts.

randomization techniques from Section 7 then the prover’s cost increases by2N exponentiations, whereas the
verifier’s complexity reduces to4N small exponentiations andm2+3n exponentiations to full size exponents
from Zq.

For all schemes it holds that multi-exponentiation techniques can reduce their cost, see e.g. Lim [Lim00].
We refer to the full paper of Groth [Gro03] for a discussion of randomization techniques and other tricks that
can be used to reduce the computational complexity of all the shuffle arguments. An additional improvement
of our scheme is to let the prover assist the verifier in computing the multi-exponentiation

∏m
i=1

∏n
j=1 e

sitj
ij ,

see Section 7. Table 2 has back-of-the-envelope estimates when we compare an optimized version of our
scheme to that of Groth [Gro03]. We assume that we are shufflingN = 100, 000 ElGamal ciphertexts
with parametersm = 10, n = 10, 000 soN = mn. We count the computational cost in the number
of multiplications. In parenthesis we are giving timing estimates assuming the use of equipment where a
multiplication takes1µs, which is conservative given today’s equipment. We only count the cost of the
shuffle argument in Table 2, not the cost of computing the shuffle or the size of the shuffle (51 Mbits).

17

Groth [Gro03] proposed
Prover’s computation 18 · 106 mults (18 sec.) 143 · 106 mults (143 sec.)
Verifier’s computation 14 · 106 mults (14 sec.) 5 · 106 mults (5 sec.)
Prover’s communication 77 Mbits 8 Mbits

Table 2: Comparison of shuffle arguments for100, 000 ElGamal ciphertexts.

References

[Abe98] Masayuki Abe. Universally verifiable mix-net with verification work independent of the num-
ber of mix-servers. InEUROCRYPT, volume 1403 ofLecture Notes in Computer Science,
pages 437–447, 1998.

[AH01] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on permutation net-
works. InPKC, volume 1992 ofLecture Notes in Computer Science, pages 317–324, 2001.

[ALM +98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems.Journal of the ACM, 45(3):501–555,
May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of
NP. Journal of the ACM, 45(1):70–122, 1998.

[BCC88] Gilles Brassard, David Chaum, and Claude Crèpeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. InCRYPTO, volume 740
of Lecture Notes in Computer Science, pages 390–420, 1992.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. InACM CCS, pages 62–73, 1993.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Short
PCPs verifiable in polylogarithmic time. InIEEE Conference on Computational Complexity,
pages 120–134, 2005.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. InCRYPTO, volume 893 ofLecture Notes in
Computer Science, pages 174–187, 1994.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. InEURO-
CRYPT, volume 1807 ofLecture Notes in Computer Science, pages 418–430, 2000.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based
on groups with hidden order. InASIACRYPT, volume 2501 ofLecture Notes in Computer
Science, pages 125–142, 2002.

[Din07] Irit Dinur. The PCP theorem by gap amplification.Journal of the ACM, 54(3), 2007.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

18

[FMM+02] Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana, and Kazue Sako. An imple-
mentation of a universally verifiable electronic voting scheme based on shuffling. InFinancial
Cryptography, volume 2357 ofLecture Notes in Computer Science, pages 16–30, 2002.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. InCRYPTO, volume 263 ofLecture Notes in Computer Science, pages
186–194, 1986.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. InCRYPTO, volume
2139 ofLecture Notes in Computer Science, pages 368–387, 2001.

[Fur05] Jun Furukawa. Efficient and verifiable shuffling and shuffle-decryption.IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 88-A(1):172–188, 2005.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. InFOCS, pages 102–113, 2003. Full paper available at
http://eprint.iacr.org/2003/034 .

[GL07] Jens Groth and Steve Lu. Verifiable shuffle of large size ciphertexts. InPKC, volume 4450 of
Lecture Notes in Computer Science, pages 377–392, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proofs.SIAM Journal of Computing, 18(1):186–208, 1989.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures.Journal of Cryptology, 19(2):169–209, 2006.

[Gro03] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. InPKC, volume 2567
of Lecture Notes in Computer Science, pages 145–160, 2003. Full paper available at ePrint
Archive: http://eprint.iacr.org/2005/246 .

[Gro04] Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3,
BRICS, 2004. PhD thesis. xii+119 pp.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs.
In CCC, pages 278–291, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. InSTOC, pages 723–732,
1992.

[Lim00] Chae Hoon Lim. Efficient multi-exponentiation and application to batch verification of digital
signatures, 2000.http://dasan.sejong.ac.kr/ ∼chlim/pub/multi exp.ps .

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation.Jour-
nal of Cryptology, 16(3):143–184, 2003.

[Mic00] Silvio Micali. Computationally sound proofs.SIAM Journal of Computing, 30(4):1253–1298,
2000.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. InACM CCS, pages
116–125, 2001.

[Nef03] C. Andrew Neff. Verifiable mixing (shuffling) of ElGamal pairs, 2003.
http://www.votehere.net/vhti/documentation/egshuf.pdf .

19

[NSNK05] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. A provably secure and effcient
verifiable shuffle based on a variant of the Paillier cryptosystem.Journal of Universal Computer
Science, 11(6):986–1010, 2005.

[NSNK06] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: a formal model
and a Paillier-based three-round construction with provable security.International Journal of
Information Security, 5(4):241–255, 2006.

[OT05] Takao Onodera and Keisuke Tanaka. Shufle for Paillier’s encryption scheme.IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., E88-A(5):1241–1248, 2005.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite residuosity classes. InEURO-
CRYPT, volume 1592 ofLecture Notes in Computer Science, pages 223–239, 1999.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In CRYPTO, volume 576 ofLecture Notes in Computer Science, pages 129–140, 1991.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solution to the
implementation of a voting booth. InEUROCRYPT, volume 921 ofLecture Notes in Computer
Science, pages 393–403, 1995.

[Wik05] Douglas Wikstr̈om. A sender verifiable mix-net and a new proof of a shuffle. InASIACRYPT,
volume 3788 ofLecture Notes in Computer Science, pages 273–292, 2005.

20

