Sub-linear Zero-Knowledge Argument
for Correctness of a Shuffle

Jens Groth Yuval Ishai
University College London Technion and UCLA
j.groth@ucl.ac.uk yuvali@cs.technion.ac.il

February 4, 2008

Abstract

A shuffle of a set of ciphertexts is a new set of ciphertexts with the same plaintexts in permuted
order. Shuffles of homomorphic encryptions are a key component in mix-nets, which in turn are used
in protocols for anonymization and voting. Since the plaintexts are encrypted it is not directly verifiable
whether a shuffle is correct, and it is often necessary to prove the correctness of a shuffle using a zero-
knowledge proof or argument.

In previous zero-knowledge shuffle arguments from the literature the communication complexity
grows linearly with the number of ciphertexts in the shuffle. We suggest the first practical shuffle ar-
gument with sub-linear communication complexity. Our result stems from combining previous work on
shuffle arguments with ideas taken from probabilistically checkable proofs.

Keywords: Shuffle, zero-knowledge argument, sub-linear communication, homomorphic encryption,
mix-net.

1 Introduction

A shuffle of ciphertextz, ..., ey is a new set of ciphertextgy, ..., £y with the same plaintexts in per-

muted order. Shuffles are used in many protocols for anonymous communication and voting. It is usually

important to verify the correctness of the shuffle. Take for instance a voting protocol where the ciphertexts

are encrypted votes; it is important to avoid that some of the ciphertexts in the shuffle are substituted with en-
cryptions of other votes. There has therefore been much research on designing zero-knowledge arguments
for the correctness of a shuffle [SK95, Abe98, AHO1, FS01, Nef01, Nef03, Gro03, FORMNSNKO6,

OTO05, NSNKO5, Fur05, GLO7, WikO05].

When designing shuffle arguments, efficiency is a major concern. It is realistic to have elections with
millions of encrypted votes, in which case the statement to be proven is very large. In this paper, our main
goal is to get gractical shuffle argument with low communication complexity. A theoretical solution to
this problem would be to use Kilian’'s communication-efficient zero-knowledge argument [Kil92] (see also
Micali [Mic00]). This method, however, requires a reduction to Circuit Satisfiability, a subsequent application
of the PCP-theorem [AS98, ALKMI8, Din07], and using a collision-free hash-function to build a hash-tree
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1By zero-knowledgargument§BCC88] we refer to computationally-sound zero-knowledge proofs [GMR89].



that includes the entire PCP. Even with the best PCP constructions known to date (cf. {BSfEHuch an
approach would be inefficient in practice.

OUR CONTRIBUTION. We present a sublinear-communication 7-move public coin perfect zero-knowledge
argument of knowledge for the correctness of a shuffle of EIGamal ciphertexts [EIG85]. (The protocol is
presented in the common random string model, but can also be implemented in the plain model at the cost of
a slightly higher constant number of rounds.) All shuffle arguments previously suggested in the literature have
communication complexity2(N)x, whereN is the number of ciphertexts in the shuffle ands a security
parameter specifying the finite group over which the scheme works. Our shuffle argument has communication
complexityO(m? + n)x for m andn such thatV = mn. (The constant in the expression is low as well, see
Section 8 for a more precise efficiency analysis.) With= N'/3 this would give a size of)(N?/3)x bits,

but in practice a smaller choice of will usually be better for computational reasons. Our shuffle argument
moderately increases the prover’'s computational burden and reduces the amount of communication and the
verifier's computational burden in comparison with previous work.

For practical purposes it will be natural to use the Fiat-Shamir heuristic [FS86] (i.e. compute the verifier’s
public-coin challenges using a cryptographic hash-function) to make our shuffle argument non-interactive.
The Fiat-Shamir heuristic justifies reducing the communication and verifier computation at the cost of in-
creased prover computation, since the non-interactive shuffle argument needs to be computed only once by
the prover but may be distributed to and checked by many verifiers. Letting the prover do some extra work
in order to reduce the communication and the computational burden of each verifier is therefore a good
trade-off in practice. To the best of our knowledge, our protocol is the first practical instance of a sublinear-
communication argument for any interesting nontrivial statement.

We have some further remarks on our result. Our technique also applies to other homomorphic cryptosys-
tems, for instance Paillier encryption [Pai99]; a more general treatment of a wider class of homomorphic
encryptions can be obtained along the lines of [Gro03]. For simplicity we focus just on EIGamal encryption
in this paper. Similarly to previous shuffle arguments from the literature, we will present our protocol as an
honest verifiezero-knowledge argument. There are very efficient standard techniques for converting honest
verifier zero-knowledge arguments into fully zero-knowledge arguments [Dam00, GMYO06, Gro04].

TECHNIQUES Our starting point is the honest verifier zero-knowledge shuffle argument by Groth [Gro03],
which builds on ideas by Neff [NefO1]. Borrowing some of the ideas underlying the PCP theorem, namely
the use of Hadamard codes and batch-verification techniques, we reduce the size of the shuffle argument. We
note that unlike Kilian [Kil92] we do not reduce the shuffle statement to an NP-complete language such as
SAT; instead we work directly with the ciphertexts in the shuffle statement. Moreover, while we use ideas
behind the PCP theorem we do not make use of a full-blown PCP. In particular, our argument avoids any
use of linearity testing, low-degree testing, or other forms of code proximity testing that appear in all known
PCPs.

RELATED WORK. Our work was inspired by the recent work of Ishai, Kushilevitz, and Ostrovsky [IKOO07],
which introduced an approach for constructing sublinear-communication arguments using exponentially long
but succinctly described PCPs. Similarly to [IKO07] we use shorhomorphiccommitments as the main
cryptographic building block. There are, however, several important differences between our technigques and
those from [IKOOQ7]. In particular, the arguments obtained in [IKOO7] do not addreszesorknowledge
requirement (and are only concerned with soundness), they inherently require the verifigrrivateecoins

(which are undesirable in the context of our application), and they entiplegrity testingthat subsequently
requires soundness amplification. Finally, the approach of [IKOQ7] is generic and does not account for the
special structure of the shuffle problem; this structure is crucial for avoiding an expensive reduction to SAT.



2 Preliminaries

2.1 Notation

We letX y denote the symmetric group dn, 2,..., N}. Given two functionsf, g : N — [0, 1] we write
f(k) = g(rk) when|f(k) — g(k)| = O(k™°) for every constant. We say that the functiotfi is negligible
when f(x) ~ 0 and that it isoverwhelmingvhen f (k) ~ 1.

Algorithms in our shuffle argument will get a security parametas input, which specifies the size of the
group we are working over. Sometimes we for notational simplicity avoid writing this explicitly, asswning
can be deduced indirectly from other inputs given to the algorithms.

All our algorithms will be probabilistic polynomial time algorithms. We will assume that they can sample
randomness from sets of the typie. We note that such randomness can be sampled from a source of uniform
random bits in expected polynomial time (g q).

We write A(x;r) = y when A, on inputz and randomness, outputsy. We writey «— A(x) for the
process of picking randomnessat random and setting := A(x;r). We also writey — S for samplingy
uniformly at random from the sét.

When defining security, we assume that there is an adversary attacking our scheme. This adversary is
modeled as a non-uniform polynomial time stateful algorithm. By stateful, we mean that we do not need to
give it the same input twice, it remembers from the last invocation what its state was. This makes the notation
a little simpler, since we do not need to explicitly write out the transfer of state from one invocation to the
next.

2.2 Group Generation

We will work over a groupG, of a prime orderg. This could for instance be a subgroupjf, wherep

is a prime andged(q?,p — 1) = ¢; or it could be an elliptic curve group or subgroup. We will assume
the discrete logarithm problem is hard @),. More precisely, lel be a generating algorithm that takes
a security parametet as input and outputgk := (¢, Gy, g), where byG, we denote a computationally
efficient representation of the group ané a random generator f@¥,. The discrete logarithm assumption
says that for any non-uniform polynomial time adversdry

Pr|(q,Gq,9) — G(1%);x — Zg; h := g* : A(q,Gyq,9,h) = x| = 0.

(When the randomness @fis taken from a common random string, the above definition needs to be strength-
ened so tha# is given the randomness used @y

2.3 Generalized Pedersen Commitment

We will use a variant of the Pedersen commitment scheme [Ped91] that permits making a commitment to a
length+ vector inZj rather than a single element &f, as in Pedersen’s original commitment. A crucial
feature of this generalization is that the amount of communication it involves does not grow.withe
generalized scheme proceeds as follows. The key generation algdtithmtakes(q, G4, g) as input and
outputs a commitment keyk := (g1,...,9n, h), Wheregs, ..., g,, h are randomly chosen generators of

G,. The message spaceMd . := Zj, the randomizer space 18, := Z, and the commitment space is

Cer := G4. (The parameten will be given as an additional input to all algorithms; however, we prefer to
keep it implicit in the notation.)

To commit to ann-tuple (my, ..., my) € Zy we pick randomness — Z, and compute the commit-
mentC := h"[], ¢."". The commitment is perfectly hiding since no matter what the messages are, the
commitment is uniformly distributed i67,. The commitment is computationally binding under the discrete
logarithm assumption; we will skip the simple proof.
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The commitment key:k will be part of the common random string in our shuffle argument. We re-
mark that it can be sampled from a random string. We w@lte= com.;(mi, ..., my,;r) for making a
commitment tomq, ..., m, using randomness. The commitment scheme is homomorphic, i.e., for all
mi,my,...,my,m,,r,r € Z, we have

comeg, (M1, ..., Mp;7) - come (M}, ..., mL;7") = comep(my +mi, ... .My +ml;r +17).
In some cases we will commit to less tharelements; this can be accomplished quite easily by setting the
remaining messages o

We will always assume that parties check that commitments are valid, meaning they che&cktidaf.

If G, is a subgroup oZ, this can be done by checking th@t = 1, however, batch verification techniques
can be used to lower this cost when we have multiple commitments to éhéck, is an elliptic curve
of order g, then the validity check just consists of checking thats a point on the curve, which is very
inexpensive.

2.4 ElGamal Encryption

ElGamal encryption [EIG85] in the grouf, works as follows. The public key isk := y = ¢” with a
random secret keyk := = < Z;. The message spaceid,, := G, the randomizer space B8 := Z,
and the ciphertext space(s;, := G, x G4. To encrypt a message € G, using randomnesk € Z, we
compute the ciphertext,, (m; R) := (¢, y"*m). To decrypt a ciphertextu, v) we computen = vu~%,

The semantic security of EIGamal encryption is equivalent to the DDH assumption. Semantic security
may be needed for the shuffle itself to be secure; however, the security of our shuffle argument will rely on
the discrete logarithm assumption only. In particular, our shuffle argument is still sound and zero-knowledge
even if the cryptosystem is insecure or the decryption key has been exposed.

ElGamal encryption is homomorphic with entry-wise multiplication in the ciphertext space. For all
(m, R),(m',R") € Mpi, x Rpi, we have

Epr(mm/; R+ R') = (g™, 4 Fmm)

= (¢ y"m) - (g%, 4 m’) = Epp(m; R) - Epp(m/; R).

We will always assume that the ciphertexts in the shuffle are valid, (uey) € G4 x G,. Batch
verification techniques can reduce the cost of verifying validity when we have multiple ciphertexts. To
further reduce the cost of ciphertext verification, Groth [Gro03] suggests a variant of EIGamal encryption
that makes batch-checking ciphertext validity faster. Our shuffle argument works also for this variant of
ElGamal encryption.

Our shuffle argument works with many types of cryptosystems; the choice of ElGamal encryption is
made mostly for notational convenience. Our technique can be directly applied with any homomorphic
cryptosystem that has a message space of ard&ve are neither restricted to using the same underlying
group(q, G4, g) as the commitment scheme nor restricted to using EIGamal encryption or variants thereof.
Using techniques from [Gro03] it is also possible to generalize the shuffle argument to work for cryptosystems
that do not have message spaces of ogddrhis latter application does require a few changes to the shuffle
argument though and does increase the complexity of the shuffle argument, but the resulting protocol still has
the same sub-linear asymptotic complexity.

2See also [Gro03] for a variant of the Pedersen commitment schem@&pybat makes it possible to completely eliminate the
cost of verifying validity.



2.5 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

We will assume there is a setup algoritighthat generates some setup informatén This setup information
could for instance be a description of a group that we will be working in. Consider a pair of probabilistic
polynomial time interactive algorithmga”, V') called the prover and the verifier. They may have access to
a common random string generated by a probabilistic polynomial time key generation algorshmae
consider a polynomial time decidable ternary relatidrFor an element we callw a witness if(gk, x, w) €

R. We define a corresponding group-dependent langiiggeonsisting of elements that have a witness

w such that(gk, z,w) € R. We writetr — (P(x),V(y)) for the public transcript produced by andV

when interacting on inputs andy together with the randomness usedby This transcript ends with’

either accepting or rejecting. We sometimes shorten the notation by s@ying, V(y)) = b if V ends by
acceptingp = 1, or rejectingp = 0.

Definition 1 (Argument). The triple (K, P, V) is called anargumentor relation R with setupg if for all
non-uniform polynomial time interactive adversariésve have

Completeness:
Pr [gk — G(1%); 0 — K(gh): (v, w) — A(gh,0)

(gk,z,w) ¢ Ror(P(gk,o,z,w),V(gk,o,z)) = 1} ~ 1.

Computational soundness:

Pr [gk — G(1%);0 «— K(gk);x «— A(gk,0) : x ¢ Lg, and(A, V (gk,0,x)) = 1} ~ 0.

Definition 2 (Public coin argument). An argument X, P, V') is public coinif the verifier's messages are
chosen uniformly at random independently of the messages sent by the prover and the setup paparaeters

We define special honest verifier zero-knowledge (SHVZK) [CDS94] for a public coin argument as the
ability to simulate the transcript for any set of challenges without access to the witness.

Definition 3 (Perfect special honest verifier zero-knowledge)The public coin argumentk, P,V) is
called a special honest verifier zero-knowledge argumenffavith setupg if there exists a probabilistic
polynomial time simulatof such that for all non-uniform polynomial time adversariésve have

Pr |gk — G(1%);0 — K(gh); (x,w, p) — Algk, 0);
tr — (P(gk,o,z,w),V(gk,o,z;p)) : (gk,z,w) € RandA(tr) =1
= Pr|gk < G170 — K(gh): (v, w, p) — Algh,0):
tr — S(gk,o,z,p) : (gk,z,w) € RandA(tr) = 1.

We remark that there are efficient techniques to convert SHVZK arguments into zero-knowledge argu-
ments for arbitrary verifiers in the common random string model [Dam00, GMY06, Gro04]. In this paper,
we will therefore for simplicity focus just on the special honest verifier zero-knowledge case.
WITNESS-EXTENDED EMULATION. We shall define an argument of knowleddlerough witness-extended
emulation, the name taken from Lindell [Lin03]. Whereas Lindell’'s definition pertains to proofs of knowl-
edge in the plain model, we will adapt his definition to the setting of public coin arguments in the common

3The standard definition gfroofsof knowledge by Bellare and Goldreich [BG92] does not apply in our setting, since we work in
the common random string model and are interestegignmentf knowledge. See Dandgd and Fujisaki [DF02] for a discussion
of this issue.



random string model. Informally, our definition says: given an adversary that produces an acceptable argu-
ment with probabilitye, there exists an emulator that produces a similar argument with probabitityt at
the same time provides a witness.

Definition 4 (Witness-extended emulation).We say the public coin argume(k’, P,V') has witness-
extended emulation if for all deterministic polynomial tirf?& there exists an expected polynomial time
emulatorE’ such that for all non-uniform polynomial time adversariésve have

Pr |gh — G(17);0 — K(gh); (¢,5) — Algh, 0);
tr — (P*(gk,0,x,s),V(gk,o,x)) : A(tr) = 1}
~ Pr[gk < G(1");0 — K(gh); (z,5) — Algh, o);
(tr,w) — E(P*(gk,a,x,s),\/(gk,ma:))(gk,0’$) .

A(tr) = 1 and iftr is accepting thelgk, z, w) € R],

whereE has access to a transcript oraclé* (gk, o, x, s), V (gk, o, z)) that can be rewound to a particular
round and run again with the verifier using fresh randomness.

We think of s as being the state d?*, including the randomness. Then we have an argument of knowl-
edge in the sense that the emulator can extract a withess whedrieigeable to make a convincing argument.
This shows that the definition implies soundness. We remark that the verifier's randomness is part of the
transcript and the prover is deterministic. So combining the emulated transcripjiyithz, s gives us the
view of both the prover and the verifier and at the same time gives us the witness.

Damgard and Fujisaki [DF02] have suggested an alternative definition of an argument of knowledge in
the presence of a common random string. Witness-extended emulation as defined above implies knowledge
soundness as defined by them [Gro04].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic [FS86] can be used to make public coin SHVZK
arguments non-interactive. In the Fiat-Shamir heuristic the verifier’'s challenges are computed by applying a
cryptographic hash-function to the transcript of the protocol. Security can be formally argued in the random
oracle model [BR93], in which the hash-function is modeled as a completely random function that returns a
random string on each input it has not been queried before. While the Fiat-Shamir heuristic is not sound in
general [GKO3], it is still commonly believed to be a safe practice when applied to “natural” protocols.

2.6 Problem Specification and Setup

We will construct a 7-move public coin perfect SHVZK argument for the relation

R= {(gk = (Q>Gq>g)7(pk:yaela"'76N7E17'"7EN>7(7T7R1a"'7RN)) ‘
yEG AT ESNARL,... Ry € Rpp AVi: B = eﬂfl(i)Epk(1;Ri)}.

In our SHVZK argument, the common random stringvill be generated as a public k¢y, ..., gn, h)
for the n-element Pedersen commitment scheme described in Section 2.3. Depending on the applications,
there are many possible choices for who generates the commitment key and how this generation is done.
For use in a mix-net, we could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the setup and the commitment key. Another option is to let the
verifier generate the common random string, since it is easy to verify whether a commitment key is valid or
not. This option yields an 8-move (honest-verifier zero-knowledge) argument in the plain‘model.

“We can also get full zero-knowledge in the plain model. The verifier picks the common random string as above and also picks an



2.7 Polynomial Identity Testing

For completeness we state a variation of the well-known Schwartz-Zippel lemma that we use several times
in the paper.

Lemma 5 (Schwartz-Zippel). Let p be a non-zero multivariate polynomial of degré®ver Z,, then the
probability ofp(z1, ..., z,) = 0 for randomly chosen, ..., z, < Z, is at mostl/q.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given two multi-variate
polynomialsp; andp, we can test whether, (z1,...,x,) — p2(z1,...,2,) = 0 for randomzy, ..., z, <
Zq. If the two polynomials are identical this will always be true, whereas if the two polynomials are different
then there is only probabilityhax(d;, d2)/q for the equality to hold.

3 Product of Committed Elements

Consider a sequence of commitmedts ..., A,, and a value: € Z,. We will give an SHVZK argument of

m,n

knowledge of{a;; };; ;_; and{r;};Z, such that

Ay = come(ain ,aiz,... ;a1 ;71)

and a = ﬁﬁaij mod gq.

Am = Comck(aml yAm2 5+ -+ 5, Qmn ;Tm) i=1j=1

The argument is of sub-linear size; the prover will semticommitments an@n elements fron¥,, where
N = mn is the total number of committed elements. Form = N'/3 this gives a size of(N?/3)x bits.

The argument is quite complex so let us first describe some of the ideas that go into it. In our argument,
the prover will prove knowledge of the contents of the commitments. For the sake of simplicity we will first
describe the argument assuming the prover knows the contents of the commitments and by the computational
binding property of the commitment scheme is bound to these values. We will also for the sake of simplicity
just focus on soundness and later when giving the full protocol add extra parts that will give us honest verifier
zero-knowledge and witness-extended emulation. (Note that even completeness and soundness alone are
nontrivial to achieve when considerisgblinear communicatioarguments.)

Consider first commitmentd, ..., A,, as described above. The verifier will pick a random challenge
$1,- -+, 8m. By the homomorphic property
m m m m
H Al = Comck(z Si@il, - - -, Z Siin; Z SiT;).
i=1 i=1 i=1 i=1
In our argument the prover will open this commitment multi-exponentiatiof as " | s;a;1, ..., fn :=

Do Siin, 2 = Y it STy

Consider now the case where we have three sets of commitn{ie&awzl,{Bg}gll,{cig}?;”f}:l
containing respectivelyn x n matrices A, B and m? x n matrix C. The verifier will choose
random challenges,...,sm,t1,...,tm < Z4 The prover can open the commitment products
T17, A% TI, By, 1, T, Coi* as described above. This gives us for each ofiticelumns

m m m m
fj = Z S Fj = Ztgbgj s Cf)j = Z Z Sitéci€j~
1=1 /=1

i=1 (=1

additional key for a trapdoor commitment scheme. The verifier then makes engages in a zero-knowledge proof of knowledge of the
trapdoor. We can now use the standard techniques for converting honest verifier zero-knowledge arguments to full zero-knowledge
arguments [Dam00, GMY06, Gro04]. By running the two proofs in parallel, the round complexity is only 8. Note, however, that
since the verifier must know the secret trapdoor of the additional commitment scheme, the protocol is no longer public coin.



In our proofs the verifier will check for each column thigt= f;F;. These checks can be seen as quadratic

equations in variables,, . .., s;», t1, . . ., t;, Of the form
m m m
(3 ) ) =323 it
i=1 i=1 /=1

If ciej = a;jbp; for all 4, £, j the check will always pass, whereas if this is not the case, then by the Schwartz-
Zippel lemma there is overwhelming probability over the choice;of. ., s,,, t1, . . ., t;, that the check will

fail. (This type of checking is also used in the Hadamard-based PCP of Arora et al.'{88M We therefore

have an argument far; being a commitment tda; Zj} _,. The commitments’;, for i # ¢ are just fillers

that make the argument work, we will not need them for anything else. In the argument we only(réveal
elements ir¥, to simultaneously prov&/ = mn equalitiesc;;; = a;;b;;; this is what will give us sub-linear
communication complexity.

Let us now explain how we choose the matix Forl < I < m,1 < J < n we setb;; :=
= [T5= aij - H}-]:1 arj. This means thaB3 is a matrix chosen such thaj; is the previous element
in the matrix3 multiplied with a;;. In particular, we havé,,, = [[;", [;_; ai; = a. In addition, we will
have an extra column with := 1 and forl < i <m : by := b;—1 4. In other words, théth column vector
is thenth column vector ofB shifted one step down. The prover will make a separate set@mmitments
Bi,...,B], tothis column. Choosing} := com.(1;0) itis straightforward to verify thall;p = 1. To show
that the rest of théth column is correctly constructed the prover will OFHIT 7)t-1 to the message
F,, — t,,a. The linear equations give @522 toi—1boo + tma = > )L tebum, WhICh by the Schwartz-Zippel
lemma has negligible probability of being true unlégs, = a andb, 1 ¢ = by, for 1 < £ < m.

We have now describell extended with &th column vector. Write3 for the matrix with thedth column
and the firsta — 1 columns of B. We will apply theA, B, C' matrix argument we described before to the
matricesA, B, C, where we use commitment; := B;. This argument demonstrates for edck j < n
thatb;; = a;;b; j—1. Putting everything together we now havey = 1,b;; = a;;b; j—1,bi0 = bi—1,, and
bmn = a, which is sufficient to conclude that= T}, T[}_; ai;.

We will now describe the full protocol. The most significant change from the description given above is
that we now add also elementg;, by; that are chosen at random to the matrices. The role of these elements
is to give honest verifier zero-knowledge. The prover reveals elements of theffaemag; + > i, sia4;
andF} := byj + y_,-, tebej, which reveal nothing abodt"" | s;a;; and ", t,bs; whenag; andby; are
random.

Initial message:

aot, - .-, Qon < Zq ; 7o — Rer 3 Ao 1= comeg(aot, a2, - - -, Gon; T0)

. 171 1n B J )
Fori<I<m,1<J<n:by:=[[ Hj:l aij - Hj:1 arj
bot, - bon < Zg 5 Th0,Tb1 - -+ s Tom — Rek

By = comgg(bot ,bo2, 5--- ,bon ;7h0)

By = come(bi1,b12,... ,b1n ;701)

By, = Comck(bml abm2 yoe e abmn ;Tbm)
Definebyg :=1 ,bog .= bip, .y bmo = b1 n

/ ! . -
Thy ooy Ty < Rek 3 Bh := comeg(bao;75), . . ., Bl := comek (bmo; 71,)

boo «— Zg ; 7 < Rer ; Bf := Comck(boo;ro)

T Rck 5 B := comck(b()n;f)



For0<i,f<m : ry+ Regandforl <i<m : ry:=ry.
ForO0 <i, 4 <m:
Cip := comey(ai1beo, - - - ; @inben—1;7ie)
Sinceb;; = a;;b; j—1 andr;; = r,; we have forl < i < m thatC;; = B;.
Send(Ay, By, B)), B, ..., B, E, Coos - - -, Crmm) 10 the verifier
Challenge: si,...,8m,t1,. .., tm — Zg

Answer:
Forl <j<mn : fj:=ao + Y vy sitij; Fj:=boj + Y poyq tebej ; Fo :=boo + > peq tebeo
ZI=To A4 D e SiTi s 2 = Tp0 + D peg teree; Z =g F Y gty =T 4y o teary
Zab = T00 T D ity SiTio + D _peq teroe + D1ty D gy SiteTie
send(fi,. .-, fas Fo, -+ - Fny 2,26, 2, 2, 24p) 1O the verifier

Verification:
CheCkA(] Hﬁl Afl = COmck(fl, KRN f’nv Z)

Forl </ < msetBy := cy. CheCkB() H?;l Béé = comck(Fl, RN e Zb)
SetBj := com(1;0). CheckB) )", (B))" = com(Fp; 2').

CheckB [}, (B))t—1 = comy(Fy, — tma; 2)

Check

m m m m
COO : HC;& . H Cé% . H H Cisgt[ = COHle(leo, ey ann—l; Zab)

i=1 (=1 i=1/=1

Theorem 6. The protocol described above is a 3-move public-coin perfect SHVZK argument of knowledge
of a;; andr; such thate = [}, H?:1 a;; and for alli we haved; = comey (a1, . .., ain;73).

Proof. Perfect completeness follows by verification.

PERFECT SHVZK. Given challenges, ..., sm,t1,...,t,n the simulator works as follows. It picks
fiyoo s fnsFo, oo s Fyy — Zg oy z,2,2' 2, 2qp — Rep at random. Forl < 4,4 < m it picks
Ci0,Coe, Ci¢ @as random commitments to 0. It computégy := comek(fiFo,.-., faFn_1;2a) -
[12, O - T, Coft - TT T17, €55 1t picks By, ..., BY, as random commitments to 0 and sets
B := comey(Fy — tma; 2) [172o(B)) 1 and B} := com(Fo; ") [T~ (B})"*. It computesB, :=
comeg(F1, ..., Fuy2p) [1my Bgtf and Ay := come,(f1,..., fn;2) [112, A; *. The simulated argument is
(Ao,BQ,Bé,Bé, .. .,B;n,B,COO, . .,Cmm,sl, .. .,Sm,tl, e ,tm,fl, . .,fn,F(),. . .,Fn,z,zb,z’,é,zab).

We will now show that the simulation has the same distribution as a real argument on challenge
81y -+ 8m,t1,. .., by USING Witness{a;; };2)';_, and {r;}12;. Compute in the simulationg; := f; —
Z;il SiQ4j, b()j = Fj — ZZ; tgbgj, bog := Fy — 2211 tobygo. Sincefl, cey fn» Fy, ..., F, are chosen at
random, this gives a uniform distribution ap;, by, boo just as in a real argument. In the simulation we make
commitments;g, Coe, Ci¢ t0 (0, ..., 0) and By to 0, but since the commitment scheme is perfectly hiding
these commitments cannot be distinguished from commitments computed according to the way we doitin a
real argument. We conclude by observing that both in the simulation and in a real argument, the remaining
part of the argument, nametyy, By, E, By and A get the same distribution conditioned on the uniform
distribution ofz, 2y, 2/, 2, z4p-
WITNESS-EXTENDED EMULATION. We will first show how to extract the contents of all the commitments
in an acceptable argument. Next, we will show that with overwhelming probability this gives us a witness
for the statement.



Consider a deterministic adversarial provetr with unknown probabilitye for making an acceptable
argument. We run it once on random challenges. If the argument is invalid we do not need to take further
action, but if it is acceptable we need to extract a witness for the statement. We therefore rewind and run
(P*, V') again until we havém + 1)? successful arguments on random challenges. This takes an expected
number of(m + 1)? /e runs, but we only have to do it wheP* is successful in the first place, which happens
with probabilitye. Therefore, the expected run-time(is + 1)2.

With overwhelming probability the first» + 1 vectors(1, sy, ..., s,,) are linearly independent. This
means that there exists linear combinations ofithe- 1 (1, sy, ..., s, )-vectors that give us either of the
vectors(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1). By taking appropriate linear combinations of thet
1 equalitiesA} [T, A" = comex(f1, ..., fn; 2) We get openings oflg, Ai, ..., A,,. In other words, we
learnagt, . .., QGmn, 70, - - -, T'm SO

AU = Comck(am y @02 5 .-+ , A0On STO)
Ar = come(air,a12,... ,a10;71)
Am = Comck(aml yAm2 5+ -+ 5, Qmn ;T'm)

Consider next the first, + 1 vectors(1, ¢4, ..., t,,) that are answered successfully. Again, with over-
whelming probability they are linearly independent. There are therefore linear combinations of them that
give us each of the vectol,0,...,0),(0,1,0,...,0),...,(0,...,0,1). Them + 1 successful answers
give us equalitiesB, [ ;" , B@‘ = comy(F1,. .., Fp;2p). By taking appropriate linear combinations of
these equalities we get openings, . . ., byun, 750, - - -, Tom Of By, - .., B, @S

By = come(bor ,bo2, ;... ,bon ;7H0)
By = comg(bi1,b12,... b1 ;5701)
By = comeg(bm1 ;0m2 -+ bmn 5 Tom)

Similarly, the equalities3, [7, (B})" = com,(Fo; /) and B [[5-(B})"-1 = come,(Fy — tma; 2) give
us openingsoo, 74, - - - » bmo, 7, Of By, Bb, ..., B., andb, # of B. By definition B} := com,(1; 0).

The(m+1)2 vectors(1, s1, ..., Sm,t1,- -, tm, S1t1, - . ., Smtm) are also linearly independent with over-
whelming probability. We can therefore from the 4 1)? acceptable runs with equalities

m

m m m

S t sity .

Coo - Hcié : Hcoﬁ : H HCM ¢ = come(f1F0, -, faFn-1; Zab)
i=1 /=1 i=1¢=1

find linear combinations that give us openingg;, r;, of the (m + 1)2 commitments’;,.

We have shown how to extract openings in expected polynomial time of all the commitments in the
argument. Next, we will argue that there is negligible probability of the emulator getting an acceptable
argument for which it has to extract a witness, yet ending up extraeting. . , amn, 1, - - -, "m SO

m n
[I1]es# e
i=1j=1

By the binding property of the commitment scheme we can assume the commitments have unique contents,
i.e., for instance thaw;;; = b;; forall1 <i < m,1 < j < n. This means that in the acceptable argument
we haVij = ap; + Z?il 8iQj andFj = bOj + Z?; bgj andFy = bgg + t1 + 27:2 tobgo.
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Since B] = com(1;0) we haveb;, = 1. SinceB [T7s(By)te-t = come(Fy, — tma; 2) we have
with overwhelming probability ovet, ..., t,, thatbyy = biy,...,bmo = by—1,, and alsob,,, = a. The
equation

m

m m m
Coo- [T C3 - T1Coi - TTTI G = coman(fiFo.. fuFnmt: zab)

i=1 =1 i=10=1
and writing out the product

m m m m
fiFj1=ao;+ Y _ siagboj + > teaoibej1+ > > siteaij
i=1 (=1

1=1 (=1
gives us with overwhelming probability over, ..., s,,,t1,...,ty thatb;; = wy; = a;jb; ;-1 for1 <4 <
m, 1 < j < m. Combining these pieces of information we see that= [],_; [T}~ a;; - H}]:1 arj. This
gives us[ [}, [[_, aij = bmn = a as we required. a

4 Committed Permutation of Known Elements

Consider a vector of commitment, ..., B, and a set of valuega;; ;21 ;.

an argument of knowledge afe X and{r;};”, such that:

In this section we will give

By = comek(ar-1(11) s Gr-1(12) 5+ -+ » Qr=1(1n) ;T1)

Bm = Comck(aﬂ—l(ml) ,aﬂ.—l(mQ) yoee 7a7r_1(mn) ;Tm)

(Here we identify{N] with [m] x [n].)

Our argument uses Neff's idea [Nef01], which is to let the verifier pick a vala random and let
the prover argue that the committed valbgssatisfy[ [, [Ti_; (z — bij) = [[}Z; [I—; (= — asj). If the
committedb;; are a permutation af;; this equation holds, since polynomials are invariant under permutation
of their roots. On the other hand bif; are not a permutation af;;, then by the Schwartz-Zippel lemma there
is negligible chance over the choicemfor the equality to hold.

Initial challenge: z «— Z,

Answer: Define B} := come(z,...,2;0)ByY, ..., B, = comg(z,...,z;0)B,! and a :=
m n
| e Hj:1(95 - Qij)-
Make a 3-move argument of knowledge of openings3f.. ., B;, such that the product of all the
entries isa.

Theorem 7. The protocol is a 4-move public coin perfect SHVZK argument of knowledge, of, = such
that B; := Comck(arl(il), e Qp=1(in); ’l“i).

Proof. Perfect completeness follows from the homomorphic properties of the commitment scheme and in-
variance under permutation of the roots of a polynon{igl2, [[7_, (z — aij) = [[iZ; [[j=; (z — az-1(5)-
Perfect SHVZK follows from the perfect SHVZK of the committed product argument.

We will now prove that we have witness-extended emulation. We first run the protocol with a random
x «— Z4 and random challenges for the argument of knowledge of committed product. If accepting, we
rewind to the point where we have just sento the prover and run the witness extractor to get openings
{bij iy oo AT}y of By, ..., By, suchthal [i2, [T, bij = [T, [1j=; (z — ai;). By the homomorphic
property of the commitment scheme this gives us openfngs bz-j}m’szl, {—=ri}m of By,...,By. The

1=
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process takes an expected numbefrof+ 1)? steps, since at the point where the prover has receiatt

has probability: of making an acceptable argument, the extractor uses an expected nurfrber of runs.
What remains is to argue that with overwhelming probability there is a permutatiory y such that

dij = — bij = az-1(;;. To see this consider the adversatywith non-negligible probability of making

a convincing argument on a random challengé& here is then non-negligible probability that we extract an

openingd;;,r; of By, ..., By,. By the binding property of the commitment we then have for a new random

z that with non-negligible probability [}, [7_, (z — di;) — [[;Z, I}, (# — ai;). Unless there exists a

permutationt € Yy sod;; = a,-1(; the Schwartz-Zippel lemma gives us less than probabhity for

this equality to hold for randora. d

5 Multi-exponentiation to Committed Exponents

Consider a set of commitments, ..., 4,,, a matrix of ciphertextsEu, ..., Enyn and a ciphertext. In
this section we will give an argument of knowledge{ef; };“1 ;_,, {ri}{~, and R such that:

A = COmck(an y @12 5.+ ,Q1n ;7°1) m n
and E = Ex(LR)[]]]E

Am = Comck(aml yAm2 5+ -+ 5, Qmn ;Tm) i=1j=1

The argument will contaim? commitmentsm? ciphertexts ane elements irZ,, whereN = mn. Choos-
ingm = N/ gives a communication complexity 6f( N2/3)x bits.

When describing the idea, let us first just consider how to get soundness and ignore the issue of zero-
knowledge for a moment. In the argument, the prover will prove knowledge of the committed exponents, so
let us from now on assume the committed values are well-defined. The prover can compmipdertexts

D = HE(I”'

We haveE = E,;(1; R) " Dii = Ep(1; R) ], HJ 1 E“” Ignoring R that can be dealt with using
standard zero-knowledge techniques all that remains is for the verifier to be conipdeale been correctly
computed. For this purpose the verifier will select challenges ., t,, < Z, at random. The prover will
open[[", A% to the valuesf; = Y"1, tiair, ..., fo == Soiv, tiain. The verifier now checks for each
1 <0< mthat[]}_, Elf;] = [}, Dj;. Writing this out we havd [} | (TT}_, E;”)" = [[;~, Dj;. Sincet;
are chosen at random, there is overwhelming probability for one of these checks to fail unless, fowall
haveD; = [1}_, E;;’.

In the argument, we wish to have honest verifier zero-knowledge. We will therefore multipy;the
ciphertexts with random encryptions to avoid leaking information about the exponents. This, however, makes
it possible to encrypt anything ifv;,, so to avoid cheating we commit to the plaintexts of those random
encryptions and use the commitments to prove that they all cancel out against each other.

Initial message:

aol, - .-, Qon < Lq ; 1o < Rer ;3 Ao = come(aot, aoz, - - -, Gon; T0)
m—1 m—1
bots - -y bmm <_Zq§ 701, -+ Pmm < Rek 3 bmm = _Z bi; 5 Tmm = _Zizl Tis
001 = comck(bm; 7"01) e C()m = comck(b()m; Tom)
Cm1 = comeg(bmi;™m1) ... Comm = comeg(bmm; Tmm,)

12



Ro1, ...y Rinm — Rpk s Rypm = R — Z:l_ll Ri;
Do = Ep(g"Ro)IIj_1 Byy’ -+ Dom = Eu(g"™; Rom)IIj— Epyy

Dy = Epk(gb’”l;RmﬂH?:lEﬂw v Dy = Epr(gPmm s R 11— 1Eam]

Send(Ao, Co1, - - -, Crums Dot - - -, D) to the verifier
Challenge: t1,...,ty, «— Zq

Answer:
Fori<j<n: fj ‘= ap; + Z;Zl tiaij 5 z: =10+ Z;ril t;r;
Forl1 </<m :Fp:=bg + 27;1 tibiv ; z¢ :=roe + 2211 tirie s Zp = Roy + Z:il tiRy
Send(fi,..., fns F1ye ooy oy 2,21, oy 2m,y Z1, - - ., Zim) 10 the verifier

Verification:
CheckAg [T, A% = comeg(fi, .-, fa3 2)

For1 < ¢ < m check

Cog H Cfé = Comck(Fg; Zg) and Epk(gF‘; Zz) H EZJ = Dy H Df}
=1 j=1 i

Check[ [, Ci; = com(0;0)
CheckE = H?il Dy;

Theorem 8. The protocol above is a 3-move public coin perfect SHVZK argument of knowledge of
115+ Qmns 715 - Ty RSOE = Epi(1; R) T TTG=y E)” and A; = comer(ain, - - -, @in; 4).

Proof. Perfect completeness can be verified directly.

PERFECT SHVZK. The simulator on challenge,,...,t, simulates the argument as follows. It
picks Ri1,...,Rmm <+ Rpr and byy,....bpm <« Zg and computesD;, := Epk(gbw; Ryp).

It sets Dy, = E[["] 1 D‘ . This gives us random ciphertext®;, conditioned onEF =
[[i, Dii. The simulator pICkSCH, oo, Cpym @s random commitments t6 and setsC,,, :=
com,(0; 0) [T ¢ It picks fi,...,fn <« Zgz <+« Re and computesd, =
come (f1,.--y fns 2 )lel Ai_ti. It picks Fi,...,Fy — Zg;21,---12m — Rep @and Zy, ..., Zy —
Ry For all it sets Doy := Eui(g"; Zo) TTj— 1EfJ [1, D;,"". This gives us the S|mulated argument
(A(),C(n,...,Cmm,D()l,...,Dmm,tl,...,tm,fl,.. fn,Fl,... Fm,z Zlye .- Zm,Zl,...,Zm).

We will now prove that a simulated argument is indistinguishable from a real argument on challenge
ti,...,tm. Observe first that both in the simulation and in the real argument we get a uniform random
distribution of ciphertext®;, for 1 < i,¢ < m conditioned onE' = [[", D;;. Given theq;; from the
witness, theD;, ciphertexts determiné,i, ..., by, uniquely such thad ", b; = 0. Since the com-
mitment scheme is perfectly hiding, the distribution of commitments. .., C,..,, to 0 in the simulation
is identical to the distribution of commitments we get in a real argument. In the simulation, we pick
fiyo o fs By By 2,21, 0o o Zmy 21, - - -, Zyy, @t random, which indirectly defines uniformly random
valuesayg;, 0, boe, Toe, Roe. We have with these values that they give the uniquely determihedCo,, Ag
such thatdo [, A% = come(fi,. .., fa; 2) and forl < ¢ < m that

n m
Cog HCZ = COIM k Fg; Zg) and e Zg H = Dog HD;}
j=1 i=

13



We conclude that the distributions of simulated arguments and real arguments are the same.

WITNESS-EXTENDED EMULATION. Consider a deterministic adversay with probability e of creating

an acceptable argument. We run it with a random challénge. , t,,. If it fails to produce an acceptable
argument we do not need to extract a witness, but with probabilitgoes produce an acceptable argument
and we must try to extract a witness. We fu?i, V') until we havemn + 1 acceptable arguments with random

challengesy, ..., t,,. We can expectto use (m + 1)/e = m + 1 runs in this phase.
We will now argue that we can extract openings of the commitments and dedudefiow. , D,,..,, have
been constructed. With overwhelming probability the+ 1 challenge vector§l, ¢4, ..., t,,) for which we

have gotten acceptable arguments are linearly independent. We can therefore find linear combinations giving
(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1). Taking linear combinations of the equalitidg [ ;" , Af =

come (f1, - -, fn; 2) gives US OPeNINGSo1, - - -, Amn, 705 - - - » F'm SO
Ay = Comck(am yA02 5 -+ - 5, A0On ;To)
Ay = Comck’(aml yAm2 5+ -+ y Amn ;Tm)

Similarly, taking linear combinations of the + 1 equalitiesCo, [ [, Cf;’ = com (Fy; z¢) for each?

gives us opening&yy, - - - , byne, Toes - -« s Tme SOCip = comeg (big; 74¢).
For eacl’ we also haven + 1 equalitiesE,x(g%*; Z) H?Zl EZ; = Dy H;il Df;;. By taking appropriate
linear combinations we fin®, ..., R, SOD;y = Epk(gbif; Riy) H;."‘Zl EZJ

Now we know openings of the commitments and how the ciphertexts have been constructed. The binding
property of the commitment scheme and the equljt}, Cjicom.(0;0) gives usy ;" ; b;; = 0. We have

E =[] Dii = [ Eor(d"; Ris) HE“” = E(1;R) HHE“”
=1 =1

i=1j5=1

for R := Y ", R;. This gives us a witnes@1, ..., Gmn, 1, - - . , 'm, R) for the statement. O

6 Shuffle Argument

Given ciphertextge;; };7 ,_; and {E;;};27 ,_; we will give an argument of knowledge af € ¥ and
{Ri;};i2) j—, such that for alli, j we haveE;; = e;-1(;;) Epr(1; Rij). The most expensive components of

the argument will be a product of committed elements argument and a multi-exponentiation to committed
elements argument described in the previous sections. The total size of the argument is théreforer )«

bits, whereN = mn. With m = N''/3 this gives an argument of siz&(N?/3) bits.

The argument proceeds in seven steps. First the prover commits to the permmiabpmaking a
commitment tol,..., N in permuted order. Then the verifier picks challenges .., sy, t1,...,t, at
random. The prover commits to the challenggs in permuted order. The prover now proves that she has
committed tos;¢; permuted in the same order as the permutation committed to in the initial commitment.
The point of the argument is that since the permutation is committed before seeing the challenges, the prover
has no choice in creating the commitment, the random challenges have already been assigned unique slots in
the commitment.

The other part of the argument is to use the committed exponentiation technique to show that
[T 1T, ef;tj = Ep (L, R) 112, IT5—, Efr 7 for some knownR. If we look at the plaintext, this implies

[T, IT=ym Sitﬂ' = [Ti% 1=, M tfﬁ) Wlth the permutation fixed before the challenges are chosen at
ili

random there |s overwhelming proba ty that the argument fails unless forjalle haveM;; = m -1
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Initial message: The prover seta, ;) := m(i — 1) + j. The prover picks,1, . .., 7am «— Rer and sets

Ar = comg(ar ,ai2,... ,014 ;7a1)
Am = Comck(aml ;Am2 5+ -+ 5, Qmn ;Tam)
First challenge: si,...,8m,t1,...,tn «— Zq4
First answer: We defineb.. ;) := s;t;. The prover picksys, ...,y < Rex and sets
By = comeg(bi1,b12,... b1 ;701)
By, = Comck(bml 7bm2 yoen abmn ;Tbm)
Second challenge:\ — Z,
Answer: Make a 4-move argument of knowledgemofc ¥ and openings ofi} By, ..., A} B,, so they

contain a permutation of th& values\(m(i — 1) + j) + s;t;. Observe, the first move of this argument
can be made in parallel with the second challenge so we only use three additional moves.

Make a 3-move argument of knowledgetf, r,;, R so

By = come(bi b1z, ,b1n3701) m n m on
itj bij
. wa TTIT - aten TTT 5
Bn = Comck(bml B S ;rbm) i=1j=1 i=lj=1

Theorem 9. The protocol is a 7-move public coin perfect SHVZK argument of knowledgeco® and
Rz‘j S Rpk SOEZ']‘ = eﬂ.fl(ij)Epk(l; Rij).

Proof. Perfect completeness follows from the perfect completeness of the underlying arguments of knowl-
edge. Perfect SHVZK follows from the perfect SHVZK of the underlying arguments. What remains is to
prove that we have witness-extended emulation.

We run the proveP* with random challenges,, ..., sm, t1,. . ., ty, A and challenges for the arguments
of knowledge. If we get an acceptable argument, we have to extract a witness. W& rif) until we have
acceptable answers ¢ sets of challenges, . .., s, t1, . . ., t,. In each of these runs, we run the witness-
extractor for the multi-exponentiation to committed elements argument to get openings.of , B,, and
anRk € Ry so

By = comgg(bi1,b12,... ,bin ;7p1)

and HHef;tj = HHEZ” k(13 R).

B,, = Comck(bml ybm2 o b ;Tbm) i=1j=1 i=1j=1

We also run the witness-extended extractor for the committed permutation of known elements to get openings
of A} By, ..., A) B,,. Provided\ # 0 this gives us an opening of;, ..., A,,.

We will now argue that with overwhelming probability we have either an invalid argument and do not
need to extract a witness or alternatively we have sufficient information to compute a witness. The per-
mutation argument gives us that;; + b;; is a permutation of\(m(i — 1) + j) + s;t; in each of the
N runs with different challenges, ..., sy, t1,...,t,. With overwhelming probability oveh there ex-
ists a permutationr € Yy such thata,;;) = (i — 1)m + j andb.(;;) = sit;. Since we commit to
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a;; in the first round, allN runs must have the same permutatian With overwhelming probability the
N vectors(sity,...,smt,) are linearly independent. Taking appropriate linear combinations of\the
equalities] [ 11_[] 1 f;tj = [L5 15— Efj” pk(1; R) gives USE;; = er(i;) Epi(1; Rij) for R;; com-
puted as an appropriate linear combination of fhealues found in the argument. We output the witness
(WaRlla---aRmn)- O

7 Efficient Verification

The small size of the argument gives a corresponding low cost of verification. There are, h@yéver,
ciphertexts that we must exponentiate in the verification. In this section we show that the verifier computation
can be reduced to making multi-exponentiations of the ciphertexts to small exponents.

7.1 Prover-Assisted Multi-exponentiation

In our shuffle argument, the verifier has to compute

™ e, The verifier can then

The prover can assist this computation by compufing. .., D, asD; := [[;", e i

compute
m n m
[11<" =112
j=1

i=1j=1

What remains is for the verifier to check that the ciphertexts are correct, which can be done by verifying
n m n
QiNg.
H H H €;f )"

for randomly choseny;. Since the check is done off-line, the verifier can use small expongntsay,
32-bit exponents This trick reduces the amount of verifier computation that is needed for computing
| i f] 7 to onem-exponentiation to exponents frafy andm + 1 n-exponentiations to small expo-
nents.

Whenm is small, this strategy may actually end up increasing the communication complexity of the
shuffle. However, the exact same method can be employed when we let the verifier compyreathes
as products the products ofyy, ...,v,, andry,...,7,, wheren = nyns. If we chooseny = /N for
instance, we get that the prover only serdd ciphertexts to the verifier. The verifier then makg#/-
multi-exponentiations to small exponents, .. . , o /7

7.2 Randomized Verification

In the argument for multi-exponentiation to committed exponents, the verifier must eheqlalities of the

form N .
Epe(g™: Z0) [[ EL = Doc [] D
j=1 i=1
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This can be done off-line in a randomized way by picking. . ., «,, at random and testing whether

oy
n

N m m fj m n
Epp(g>i=r et Z Zy) H (H EZ£> B H Eui(9™; Z0) H EZJJ
/=1 =1 Jj=1
- )
11

=1 j=1

This way, we make: m-multi-exponentiations to small exponentg and onen-multi-exponentiation to
larger exponentg;.

8 Comparison

Let us compare our shuffle argument with the most efficient arguments for correctness of a shuffle of EIGamal
ciphertexts in the literature. Furukawa and Sako [FS01] suggested an efficient argument for correctness
of a shuffle based on committing to a permutation matrix. This scheme was further refined by Furukawa
[Fur05]. We will use Groth and Lu’s [GLO7] estimates for the complexity of Furukawa’s scheme. Neff
[Nef01, Nef03] gave an efficient interactive proof for correctness of a shuffle. Building on those ideas Groth
[Gro03] suggested a perfect SHVZK argument for correctness of a shuffle. Our shuffle argument builds on
Neff’s and Groth’s schemes.

We will compare the schemes using an elliptic curve of prime ogdéNe use|q| = 256 so SHA256
can be used to choose the public coin challenges. We measure the communication complexity in bits and
measure the prover and verifier computation in single exponentiations. By this we mean that in all schemes,
we count the cost of a multi-exponentiationiicexponents as single exponentiations. We compare the
most efficient shuffle arguments in Table 1. Section 7 offer a couple of speedup techniques. If we employ the

Elliptic curve Furukawa-Sakq Groth Furukawa proposed
Group orderiq| = 256 [FSO01] [Gro03] | [Fur05, GLO7]

Prover (single expo.) 8N 6N TN 3mN + 5N
Verifier (single expo.) 10N 6N 8N 4N + 3n
Prover’'s communication (bits) 1280V T68 N 768N 768m? + 768n
Rounds 3 7 3 7

Table 1: Comparison of shuffle arguments /6r= mn ElGamal ciphertexts.

randomization techniques from Section 7 then the prover’s cost increag8éséxponentiations, whereas the
verifier's complexity reduces thV small exponentiations and? +3n exponentiations to full size exponents
from Z,,.

For all schemes it holds that multi-exponentiation techniques can reduce their cost, see e.g. Lim [LimO00].
We refer to the full paper of Groth [Gro03] for a discussion of randomization techniques and other tricks that
can be used to reduce the computational complexity of all the shuffle arguments. An additional imProvement
of our scheme is to let the prover assist the verifier in computing the muIti—exponenﬁ@@rﬂ?z1 efj 7
see Section 7. Table 2 has back-of-the-envelope estimates when we compare an optimized version of our
scheme to that of Groth [Gro03]. We assume that we are shuffling: 100,000 ElGamal ciphertexts
with parametersn = 10,n = 10,000 so N = mn. We count the computational cost in the number
of multiplications. In parenthesis we are giving timing estimates assuming the use of equipment where a
multiplication takeslus, which is conservative given today’s equipment. We only count the cost of the
shuffle argument in Table 2, not the cost of computing the shuffle or the size of the shuffle (51 Mbits).
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Groth [Gro03] proposed

Prover’s computation | 18- 10° mults (18 sec.) 143 - 10% mults (143 sec.
Verifier's computation | 14 - 10 mults (14 sec.y 5-10% mults (5 sec.)
Prover's communication 77 Mbits 8 Mbits

Table 2: Comparison of shuffle arguments 160, 000 EIGamal ciphertexts.
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