
Efficient Zero-Knowledge Argument for Correctness of a Shuffle

Stephanie Bayer Jens Groth

University College London∗
{s.bayer,j.groth}@cs.ucl.ac.uk

Abstract

Mix-nets are used in e-voting schemes and other applications that require anonymity. Shuffles of
homomorphic encryptions are often used in the construction of mix-nets. A shuffle permutes and re-
encrypts a set of ciphertexts, but as the plaintexts are encrypted it is not possible to verify directly
whether the shuffle operation was done correctly or not. Therefore, to prove the correctness of a shuffle
it is often necessary to use zero-knowledge arguments.

We propose an honest verifier zero-knowledge argument for the correctness of a shuffle of homomor-
phic encryptions. The suggested argument has sublinear communication complexity that is much smaller
than the size of the shuffle itself. In addition the suggested argument matches the lowest computation
cost for the verifier compared to previous work and also has an efficient prover. As a result our scheme
is significantly more efficient than previous zero-knowledge schemes in literature.

We give performance measures from an implementation where the correctness of a shuffle of 100,000
ElGamal ciphertexts is proved and verified in around 2 minutes.

Keywords: Shuffle, zero-knowledge, ElGamal encryption, mix-net, voting, anonymous broadcast.

1 Introduction

A mix-net [Cha81] is a multi-party protocol which is used in e-voting or other applications which require
anonymity. It allows a group of senders to input a number of encrypted messages to the mix-net, which then
outputs them in random order. It is common to construct mix-nets from shuffles.

Informally, a shuffle of ciphertexts C1, . . . CN is a set of ciphertexts C ′1, . . . , C
′
N with the same plain-

texts in permuted order. In our work we will examine shuffle protocols constructed from homomorphic
encryption schemes. That means for a given public key pk, messages M1,M2 and randomness ρ1, ρ2 the
encryption function satisfies Epk(M1M2; ρ1 + ρ2) = Epk(M1; ρ1)Epk(M2; ρ2). Thus, we may construct
a shuffle of C1, . . . , CN by selecting a permutation π ∈ ΣN and randomizers ρ1, . . . ρN , and calculating
C ′1 = Cπ(1)Epk(1; ρ1), . . . , C ′N = Cπ(N)Epk(1; ρN).

A common construction of mix-nets is to let the mix-servers take turns in shuffling the ciphertexts.
If the encryption scheme is semantically secure the shuffle C ′1, . . . , C

′
N output by a mix-server does not

reveal the permutation or the messages. But this also means that a malicious mix-server in the mix-net
could substitute some of the ciphertexts without being detected. In a voting protocol, it could for instance
replace all ciphertexts with encrypted votes for candidate X. Therefore, our goal is to construct an interactive
argument that makes it possible to verify that the shuffle was done correctly (soundness), but reveals nothing
about the permutation or the randomizers used (zero-knowledge).
∗Both authors are supported by EPSRC grant number EP/G013829/1.

1

Efficiency is a major concern in arguments for the correctness of a shuffle. In large elections it is
realistic to end up shuffling millions of votes. This places considerable strain on the performance of the
zero-knowledge argument both in terms of communication and computation. We will construct a zero-
knowledge argument for correctness of a shuffle that is highly efficient both in terms of communication and
computation.

1.1 Related work

The idea of a shuffle was introduced by Chaum [Cha81] but he didn’t give any method to guarantee the
correctness. Many suggestions had been made how to build mix-nets or prove the correctness of a shuffle
since then, but many of these approaches have been partially or fully broken, and the remaining schemes
sometimes suffer from other drawbacks. The scheme of Desmedt and Kurosawa [DK00] assumed that only
a small number of mix-servers are corrupt. The approach of Jakobson, Juels, and Rivest [JJR02] needed
a relatively big number of mix-server to minimize the risk of tampering with messages or compromising
privacy of the senders. Peng et al. [PBDV04] restrained the class of possible permutations and also re-
quired that a part of the senders are honest. None of these drawbacks are suffered by the shuffle scheme of
Wikström [Wik02] and approaches based on zero-knowledge arguments. Since zero-knowledge arguments
achieve better efficiency they will be the focus of our paper.

Early contributions using zero-knowledge arguments were made by Sako and Killian [SK95] and Abe [Abe98,
Abe99, AH01]. Furukawa and Sako [FS01] and Neff [Nef01, Nef03] proposed the first shuffles for ElGamal
encryption with a complexity that depends linearly on the number of ciphertexts.

Furukawa and Sako’s approach is based on permutation matrices and has been refined further [Fur05,
GL07]. Furukawa, Miyachi, Mori, Obana and Sako [FMM+02] presented an implementation of a shuffle
argument based on permutation matrices and tested it on mix-nets handling 100,000 ElGamal ciphertexts.
Recently, Furukawa and Sako [FMS10] have reported on another implementation based on elliptic curve
groups.

Wikström [Wik09] also used the idea of permutation matrices and suggested a shuffle argument which
splits in an offline and online phase. Furthermore, Terelius and Wikström [TW10] constructed conceptually
simple shuffle arguments that allowed the restriction of the shuffles to certain classes of permutations. Both
protocols are implemented in the Verificatum mix-net library [Wik10].

Neff’s approach [Nef01] is based on the invariance of polynomials under permutation of the roots. This
idea was picked up by Groth who suggested a perfect honest verifier zero-knowledge protocol [Gro10].
Stamer [Sta05] reported on an implementation of this scheme. Later Groth and Ishai [GI08] proposed the
first shuffle argument where the communication complexity is sublinear in the number of ciphertexts.

1.2 Our contribution

Results. We propose a practical zero-knowledge argument for the correctness of a shuffle. We cover
the case of shuffles of ElGamal ciphertexts but it is possible to adapt our argument to other homomorphic
cryptosystems as well.

Our argument has sublinear communication complexity. When shuffling N ciphertexts, arranged in an
m×nmatrix, our argument transmitsO(m+n) group elements giving a minimal communication complexity
of O(

√
N) if we choose m = n. In comparison, Groth and Ishai’s argument [GI08] communicates Ω(m2 +

n) group elements and all other state of the art shuffle arguments communicate Θ(N) elements.
The disadvantage of Groth and Ishai’s argument compared to the schemes with linear communication

was that the prover’s computational complexity was on the order of O(Nm) exponentiations. It was there-
fore only possible to choose smallm. In comparison, our prover’s computational complexity isO(N logm)
exponentiations for constant round arguments and O(N) exponentiations if we allow a logarithmic number

2

of rounds. In practice, we do not need to increase the round complexity until m gets quite large, so the
speedup in the prover’s computation is significant compared to Groth and Ishai’s work and is comparable to
the complexity seen in arguments with linear communication. Moreover, the verifier is fast in our argument
making the entire process very light from the verifier’s point of view.

In Section 6 we report on an implementation of our shuffle argument using shuffles of 100,000 ElGa-
mal ciphertexts. We compare this implementation on the parameter setting for ElGamal encryption used
in [FMM+02] and find significant improvements in both communication and computation. We also com-
pare our implementation to the shuffle argument in the Verificatum mix-net [Wik10] and find significant
improvements in communication and moderate improvements in computation.

New techniques. Groth [Gro09] proposed efficient sublinear size arguments to be used in connections with
linear algebra over a finite field. We combine these techniques with Groth and Ishai’s sublinear size shuffle
argument. The main problem in applying Groth’s techniques to shuffling is that they were designed for use
in finite fields and not for use with group elements or ciphertexts. It turns out though that the operations
are mostly linear and therefore it is possible to carry them out “in the exponent”; somewhat similar to what
is often done in threshold cryptography. Using this adaptation we are able to construct an efficient multi-
exponentiation argument that a ciphertext C is the product of a set of known ciphertexts C1, . . . , CN raised
to a set of hidden committed values a1, . . . , aN . This is the main bottleneck in our shuffle argument and
therefore gives us a significant performance improvement.

Groth’s sublinear size zero-knowledge arguments also suffered from a performance bottleneck in the
prover’s computation. At some juncture it is necessary to compute the sums of the diagonal strips in a
product of two matrices. This problem is made even worse in our setting because when working with
group elements we have to compute these sums in the exponents. By adapting techniques for polynomial
multiplication such as Toom-Cook [Too00, Coo66] and the Fast Fourier Transform [CT65] we are able to
reduce this computation. Moreover, we generalize an interactive technique of Groth [Gro09] to further
reduce the prover’s computation.

Structure of the paper. In Section 2 we will give definitions of key concepts used in the paper. In Sec-
tion 3 we explain how to construct the full shuffle argument, following the invariance of polynomial roots
paradigm of Neff [Nef01]. Section 4 contains a multi-exponentiation argument to hidden committed values,
which is a major component in our shuffle argument. We consider this section with the new techniques
described above to be our main contribution. In Section 5 we give another major component of our protocol,
which is a shuffle argument for hidden committed values. This argument was sketched in Groth [Gro09]
but we give all the details and make a few minor improvements. Finally, in Section 6 we report on our
implementation and give theoretical and experimental comparisons with other shuffle arguments.

2 Preliminaries

In this section we will give the definitions of the key concepts needed. Our protocol works for different
types of homomorphic encryption schemes; for example ElGamal encryption. When arguing that a shuffle
is correct we will use homomorphic commitment schemes extensively. Finally, we give precise definitions
of honest verifier zero knowledge arguments.

2.1 Notation

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We write y ← A(x)
for the process of picking randomness r at random and setting y = A(x; r). We also write y ← S for

3

sampling y uniformly at random from a set S.
We say a function f : N→ [0, 1] is negligible if f(λ) = O(λ−c) for every constant c > 0. We say 1− f

is overwhelming if f is negligible. We will give a security parameter λ written in unary as input to all parties
in our protocols. Intuitively, the higher the security parameter the more secure the protocol. Formally, we
define security in the following sections by saying an adversarial algorithm has negligible (in the security
parameter) probability of succeeding in its attack.

For vectors of group elements, we write ~x~y = (x1y1, . . . , xnyn) for the entry-wise product and corre-
spondingly ~xz = (xz1, . . . , x

z
n). We write ~xπ if the entries of vector ~x are permuted by the permutation π, i.e.,

~xπ = (xπ(1), . . . , xπ(n)). For vectors of field elements, we use the standard inner product ~x ·~y =
∑n

i=1 xiyi.

2.2 Homomorphic encryption

Informally, an encryption scheme is homomorphic if for a public key pk, messagesM1,M2 and randomness
ρ1, ρ2 the encryption function satisfies Epk(M1M2; ρ1 + ρ2) = Epk(M1; ρ1)Epk(M2; ρ2). Our argument
works with many different homomorphic encryption schemes where the message space has large prime
order q, but for notational convenience we will focus just on ElGamal encryption.

Let G be a cyclic group of large prime order q with generatorG. The ElGamal encryption scheme [ElG84]
in this group works as follows: the secret key sk = x ∈ Z∗q is chosen at random, and the public key pk
contains Y = Gx. To encrypt a message M ∈ G we choose a random ρ ∈ Zq and compute the cipher-
text Epk(M ; ρ) := (Gρ, Y ρM) belonging to the ciphertext space H = G × G. To decrypt a ciphertexts
(U, V) ∈ H we compute M = V U−x.

The ElGamal encryption scheme is homomorphic with entry-wise multiplication. For all pairs (M1, ρ1), (M2, ρ2) ∈
G× Zq it holds that

Epk(M1M2; ρ1 + ρ2) = (Gρ1+ρ2 ;Y ρ1+ρ2M1M2) = (Gρ1 , Y ρ1M1)(Gρ2 , Y ρ2M2)

= Epk(M1; ρ1)Epk(M2; ρ2).

For ~M = (M1, . . . ,Mn) and ~ρ = (ρ1, . . . , ρn) we define Epk(~M ; ~ρ) =
(
Epk(M1; ρ1), . . . , Epk(Mm; ρm)

)
.

We also define a bilinear map

Hn × Znq → H by ~C~a = (C1, . . . , Cn)(a1,...,an)T =

n∏
i=1

Caii .

For a matrix A ∈ Zn×mq with column vectors ~a1, . . . ,~am we define ~CA = (~C~a1 , . . . , ~C~am). It is useful to
observe that (~CA)B = ~CAB .

We will by default assume that the ciphertexts used in the shuffle are valid, i.e., for each ciphertext C
we have C ∈ H = G×G. For the most common choices of the group G used in practice this is something
that can be tested quite easily by any interested party.

2.3 Homomorphic commitment

We will need a homomorphic commitment scheme in our protocol. A commitment scheme is homomorphic
if for a commitment key ck, messages a, b, and randomizers r, s it holds that comck(a + b; r + s) =
comck(a; r)comck(b; s). We also require for our scheme that it is possible to commit to n elements in Zq,
where q is a large prime, at the same time. Many homomorphic commitment schemes with this property can
be used, but for convenience we just focus on a generalization of the Pedersen commitment scheme [Ped91].

For a cyclic group G of large prime order q, the general Pedersen commitment scheme works as follows:
first the key generation algorithm K chooses random generators G1, . . . , Gn, H of the group G and sets

4

the commitment key ck = (G, G1, . . . , Gn, H). To commit to n elements (a1, . . . , an) ∈ Znq we pick
randomness r ∈ Zq and compute comck(a1, . . . , an; r) = Hr

∏n
i=1G

ai
i . We can also commit to less than

n elements; this is done by setting the remaining entries to 0. We will always assume that interested parties
have verified that commitments belong to the group G.

The commitment is computationally binding under the discrete logarithm assumption, i.e., a non-uniform
probabilistic polynomial time adversary has negligible probability of finding two different openings of the
same commitment. The commitment scheme is perfectly hiding since the commitment is uniformly dis-
tributed in G no matter what the messages are.

We stress that a commitment consists of a single group element no matter how big n is. This means
the commitment scheme is length reducing; we can commit to n elements with a single small commitment.
This property is crucial to get sublinear communication cost.

The generalized Pedersen commitment scheme is homomorphic; for all ~a,~b ∈ Znq and r, s ∈ Zq we have

comck(~a; r)comck(~b; s) = Hr
n∏
i=1

Gaii ·H
s
n∏
i=1

Gbii = Hr+s
n∏
i=1

Gai+bii = comck(~a+~b; r + s).

For a matrix A ∈ Zn×mq with columns ~a1, . . . ,~am we shorten notation by defining comck(A;~r) =
(comck(~a1; r1), . . . , comck(~am; rm)). We will also abuse this notation slightly and define the commitment
to ~a ∈ ZNq where N = mn as comck(~a;~r) =

(
comck(a1 . . . an; r1), . . . , comck(a(m−1)n+1) . . . aN ; rm)

)
.

Like in the case of encryption, we also define ~c ~b = (c1, . . . , cm)(b1,...,bm)T =
∏m
j=1 c

bj
j and for a matrix B

with columns ~b1, . . . ,~bm we define ~cB =
(
~c
~b1 , . . . ,~c

~bm
)
. It is useful to observe that the underlying linear

algebra behaves nicely, i.e., comck(A;~r)
~b = comck(A~b;~r ·~b) and comck(A;~r)B = comck(AB;~rB).

2.4 Special honest verifier zero-knowledge argument of knowledge

In the shuffle arguments we consider a prover P and a verifier V both of which are probabilistic polynomial
time interactive algorithms. We assume the existence of a probabilistic polynomial time setup algorithm G
that when given a security parameter λ returns a common reference string σ.

In our case, the common reference string will be σ = (pk, ck), where pk and ck are public keys for the
ElGamal encryption scheme and the generalized Pedersen commitment scheme described previously. The
encryption scheme and the commitment scheme may use different underlying groups, but we require that
they have the same prime order q. We will write G for the group used by the commitment scheme and write
H for the ciphertext space.

The setup algorithm can also return some side-information that may be used by an adversary; however,
we require that even with this side-information the commitment scheme should remain computationally
binding. The side-information models that the keys may be set up using some multi-party computation
protocol that leaks some information, the adversary may see some decryptions or even learn the decryption
key, etc. Our protocol for verifying the correctness of a shuffle is secure in the presence of such leaks as
long as the commitment scheme is computationally binding.

LetR be a polynomial time decidable ternary relation, we callw a witness for a statement x if (σ, x, w) ∈
R. We define the languages

Lσ := {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w for the relation R.
The public transcript produced by P and V when interacting on inputs s and t is denoted by tr ←

〈P(s),V(t)〉. The last part of the transcript is either accept or reject from the verifier. We write 〈P(s),V(t)〉 =
b, b ∈ {0, 1} for rejection or acceptance.

5

Definition 1. The triple (G,P,V) is called an argument for a relation R with perfect completeness if for all
non-uniform polynomial time interactive adversaries A we have:
Perfect completeness:

Pr[(σ, hist)← G(1λ); (x,w)← A(σ, hist) : (σ, x, w) 6∈ R or 〈P(σ, x, w),V(σ, x)〉 = 1] = 1

Computational soundness:

Pr[(σ, hist)← G(1λ);x← A(σ, hist) : x 6∈ Lσ and 〈A,V(σ, x)〉 = 1] ≈ 0

Definition 2. An argument (G,P,V) is called public coin if the verifier chooses his messages uniformly at
random and independently of the messages sent by the prover, i.e., the challenges correspond to the verifier’s
randomness ρ.

Definition 3. A public coin argument (G,P,V) is called a perfect special honest verifier zero knowledge
(SHVZK) argument forRwith common reference string generator G if there exists a probabilistic polynomial
time simulator S such that for all non-uniform polynomial time adversaries A we have

Pr[(σ, hist)← G(1λ); (x,w, ρ)← A(σ, hist);

tr ← 〈P(σ, x, w),V(σ, x; ρ)〉 : (σ, x, w) ∈ R and A(tr) = 1]

= Pr[(σ, hist)← G(1λ); (x,w, ρ)← A(σ, hist);

tr ← S(σ, x, ρ) : (σ, x, w) ∈ R and A(tr) = 1]

To construct a fully zero-knowledge argument secure against arbitrary verifiers in the common reference
string model one can first construct a SHVZK argument and then convert it into a fully zero-knowledge
argument [Gro04, GMY06]. This conversion has constant additive overhead, so it is very efficient and
allows us to focus on the simpler problem of getting SHVZK against honest verifiers.

To define an argument of knowledge we follow the approach of Groth and Ishai [GI08] and do it through
witness-extended emulation first introduced by Lindell [Lin03]. This definition informally says that given an
adversary that produces an acceptable argument with some probability, there exist an emulator that produces
a similar argument with the same probability and at the same time provides a witness w.

Definition 4. A public coin argument (G,P,V) has witness extended emulation if for all deterministic
polynomial time P∗ there exists an expected polynomial time emulator X such that for all non-uniform
polynomial time adversaries A we have

Pr[(σ, hist)← G(1λ); (x, s)← A(σ, hist); tr ← 〈P∗(σ, x, s),V(σ, x)〉 : A(tr) = 1]

≈ Pr[(σ, hist)← G(1λ); (x, s)← A(σ, hist); (tr, w)← X 〈P∗(σ,x,s),V(σ,x)〉(σ, x, ρ) :

A(tr) = 1 and if tr is accepting then (σ, x, w) ∈ R].

In the definition, s can be interpreted as the state of P∗, including the randomness. So whenever P∗ is able
to make a convincing argument when in state s, the emulator can extract a witness at the same time giving
us an argument of knowledge. This definition automatically implies soundness.

2.5 The Fiat-Shamir heuristic

In the Fiat-Shamir heuristic the prover computes the public-coin challenges with a cryptographic hash-
function instead of interacting with a verifier. This makes it possible for the prover to compute the entire
argument without any interaction, i.e., it is a non-interactive argument.

6

Non-interactivity is desirable in many applications. Consider for instance an election, where the au-
thorities want to convince independent verifiers that the tally is correct. Using non-interactive arguments
the authorities only need to compute the argument once and then they can send the same non-interactive
argument to all the verifiers. If the argument was interactive on the other hand, they would have to interact
with each verifier, which would increase the complexity of the protocol.

The Fiat-Shamir heuristic is known to be secure in the random oracle model, where the cryptographic
hash-function is modeled as a random oracle that returns a uniformly random answer to inputs it has not
seen before. Those who are satisfied with a security proof in the random oracle model can therefore obtain a
significant saving in interaction and in the prover’s computation. For the sake of generality, we will describe
the interactive protocols though.

2.6 The Schwartz-Zippel lemma

For completeness we will state a variation of the Schwartz-Zippel lemma that we will use several times.

Lemma 1 (Schwartz-Zippel). Let p be a non-zero multivariate polynomial of degree d over Zq, then the
probability of p(x1, . . . , xn) = 0 for randomly chosen x1, . . . , xn ← Z∗q is at most d

q−1 .

Given two multi-variate polynomials p1 and p2 we can test whether p1(x1, . . . , xn)−p2(x1, . . . , xn) = 0
for random x1, . . . , xn ← Z∗q or not. This equation will always hold if p1 = p2, whereas if p1 6= p2 the

probability that the test pass is only max(d1,d2)
q−1 .

3 Shuffle Argument

We will give an argument of knowledge of a permutation π ∈ ΣN and randomness {ρi}Ni=1 such that for
given ciphertexts {Ci}Ni=1, {C ′i}Ni=1 we have C ′i = Cπ(i)Epk(1; ρi). The shuffle argument combines a multi-
exponentiation argument, which allows us to prove that the product of a set of ciphertexts raised to a set of
committed exponents yields a particular ciphertext, and a product argument, which allows us to prove that a
set of committed values has a particular product. The multi-exponentiation argument is given in Section 4
and the product argument is given in Section 5. In this section, we will give an overview of the protocol
and explain how a multi-exponentiation argument can be combined with a product argument to yield an
argument for the correctness of a shuffle.

The first step for the prover is to commit to the permutation. This is done by committing to π(1), . . . , π(N).
The prover will now receive a challenge x and commit to xπ(1), . . . , xπ(N). The prover will give an argument
of knowledge of openings of the commitments to permutations of respectively 1, . . . , N and x1, . . . , xN and
demonstrate that the same permutation has been used in both cases. This means the prover has a commitment
to x1, . . . , xN permuted in an order that was fixed before the prover saw x.

To check that the same permutation has been used in both commitments the verifier sends random
challenges y and z. By using the homomorphic properties of the commitment scheme the prover can in a
verifiable manner compute commitments to d1−z = yπ(1)+xπ(1)−z, . . . , dN −z = yπ(N)+xπ(N)−z.
Using the product argument from Section 5 the prover shows that

∏N
i=1(di − z) =

∏N
i=1(yi + xi − z).

Observe that we have two identical degree N polynomials in z since the only difference is that the roots
have been permuted. The verifier does not know a priori that the two polynomials are identical but can by
the Schwartz-Zippel lemma deduce that the prover has negligible chance over the choice of z of making
a convincing argument unless indeed there is a permutation π such that d1 = yπ(1) + xπ(1), . . . , dN =
yπ(N) + xπ(N). Furthermore, there is negligible probability over the choice of y of this being true unless
the first commitment contains π(1), . . . , π(N) and the second commitment contains xπ(1), . . . , xπ(N).

7

The prover now has commitments to xπ(1), . . . , xπ(N) and uses the multi-exponentiation argument from
Section 4 to demonstrate that there exists a ρ such that

∏N
i=1C

xi
i = Epk(1; ρ)

∏N
i=1(C ′i)

xπ(i) . The verifier
does not see the committed values and therefore does not learn what the permutation is. However, from
the homomorphic properties of the encryption scheme the verifier can deduce

∏N
i=1M

xi
i =

∏N
i=1(M ′i)

xπ(i)

for some permutation π that was chosen before the challenge x was sent to the prover. Taking discrete
logarithms we have the polynomial identity

∑N
i=1 log(Mi)x

i =
∑N

i=1 log(M ′π−1(i))x
i. There is negligible

probability over the choice of x of this equality holding true unless M ′1 = Mπ(1), . . . ,M
′
N = Mπ(N). This

shows that we have a correct shuffle.

Common reference string: pk, ck.

Statement: ~C, ~C ′ ∈ HN with N = mn.

Prover’s witness: π ∈ ΣN and ~ρ ∈ ZNq such that ~C ′ = Epk(~1; ~ρ)~Cπ.

Initial message: Pick ~r ← Zmq , set ~a = {π(i)}Ni=1 and compute ~cA = comck(~a;~r).

Send: ~cA

Challenge: x← Z∗q .

Answer Pick ~s ∈ Zmq , set~b = {xπ(i)}Ni=1 and compute ~cB = comck(~b;~s).

Send: ~cB

Challenge: y, z ← Z∗q .

Answer: Define ~c−z = comck(−z, . . . ,−z;~0) and ~cD = ~c yA~cB . Compute ~d = y~a + ~b and ~t = y~r + ~s.
Engage in a product argument as described in Section 5 of openings d1 − z, . . . , dN − z and ~t such
that

~cD~c−z = comck(~d− ~z;~t) and
N∏
i=1

(di − z) =
N∏
i=1

(yi+ xi − z).

Compute ρ = −~ρ ·~b and set ~x = (x, x2, . . . , xN)T . Engage in a multi-exponentiation argument as
described in Section 4 of~b,~s and ρ such that

~C~x = Epk(1; ρ) ~C ′
~b

and ~cB = comck(~b;~s)

The two arguments can be run in parallel. Furthermore, the multi-exponentiation argument can be
started already in round 3 after the computation of the commitments ~cB .

Verification: The verifier checks ~cA,~cB ∈ Gm and computes ~c−z,~cD as described above and computes∏N
i=1(yi+xi− z) and ~C~x. The verifier accepts if the product argument and the multi-exponentiation

argument both are valid.

Theorem 5. The protocol is a public coin perfect SHVZK argument of knowledge of π ∈ ΣN and ~ρ ∈ ZNq
such that ~C ′ = Epk(~1; ~ρ)~Cπ.

8

Proof. Let us first argue that we have perfect completeness. Note that di = yπ(i) + xπ(i) so we have

N∏
i=1

(di − z) =

N∏
i=1

(yπ(i) + xπ(i) − z) =

N∏
i=1

(yi+ xi − z).

Also, we have with C ′i = Epk(1; ρi), bi = xπ(i) and ρ = −~ρ ·~b that

Epk(1; ρ) ~C ′
~b

= Epk(~1;−~ρ)
~b
(
Epk(~1, ~ρ)~Cπ

)~b
= ~C

~b
π =

N∏
i=1

Cx
π(i)

π(i) = ~C~x.

Perfect completeness now follows from the perfect completeness of the product argument and the perfect
completeness of the multi-exponentiation argument.

Perfect SHVZK follows from the fact that the commitments are perfectly hiding and the underlying
arguments are perfect SHVZK. To simulate the entire argument we can pick random commitments~cA,~cB ←
comck(0, . . . , 0) which can be done without knowing the witness for the correctness of the shuffle. The
simulator then runs perfect SHVZK simulations of the product and multi-exponentiation arguments.

Finally, we have to show that we have witness-extended emulation. In the witness-extended emulation
we run the prover and verifier 〈P∗,V〉 with random challenges x, y, z ∈ Z∗q and random challenges for
the product and multi-exponentiation arguments. If we get an acceptable argument we have to extract a
witness. We start by rewinding and running the witness-extended emulators for the product and the multi-
exponentiation arguments. This gives us openings of~cB and~cD. Since~cD = ~c yA~cB this allows us to compute
openings ~a,~r of ~cA.

We will now argue that with overwhelming probability the extracted openings of ~cA must be of the form
~a = {π(i)}Ni=1 for some permutation π ∈ ΣN . Consider the situation after round 3 where the prover has
sent ~cB . The witness-extended emulation of the multi-exponentiation argument gives us the opening ~b,~s
of ~cB showing that the opening of ~cD must be of the form ~d = y~a +~b. The product argument shows that∏N
i=1(di− z) =

∏N
i=1(yi+xi− z). This has negligible probability over z in succeeding unless there exists

a permutation π such that di = π(i) + xπ(i). This shows yai + bi = yπ(i) + xπ(i), which has negligible
probability over y of being true unless ai = π(i). Furthermore, we then see that bi = xπ(i).

We now rewind and run the argument until we have extracted witnesses for the multi-exponentiation
argument for N random choices of x. Each choice xj gives us a witness containing ρ(j) such that

~C~xj = Epk(1; ρ(j))

N∏
i=1

(C ′i)
x
π(i)
j = Epk(1; ρ(j)) ~C ′

~xj
π−1 .

The N ×N matrix

X =

 x1
1 . . . x1

N
...

...
xN1 . . . xNN

can be viewed as a submatrix of a transposed Vandermonde matrix. If x1, . . . , xN are different then X is
invertible. We now have

~C = (~CX)X
−1

=
(
Epk(~1; ~ρ) ~C ′

X

π−1

)X−1

= Epk(~1; ~ρX−1) ~C ′π−1 .

This gives us a permutation π and ~ρ ′ = (−~ρX−1)π such that ~C ′ = Epk(~1; ~ρ ′) ~Cπ.

9

4 Multi-exponentiation Argument

Given ciphertexts C11, . . . , Cmn and C we will give in this section an argument of knowledge of openings
of commitments ~cA to A = {aij}n,mi,j=1 such that

C = Epk(1; ρ)

m∏
i=1

~C ~ai
i and ~cA = comck(A;~r)

where ~Ci = (Ci1, . . . , Cin) and ~aj = (a1j , . . . , anj)
T .

To explain the idea in the protocol let us for simplicity assume ρ = 0 and the prover knows the openings
of ~cA, and leave the question of SHVZK for later. In other words, we will for now just explain how to
convince the verifier in a communication-efficient manner that C =

∏m
i=1

~C ~ai
i . The prover can calculate

the ciphertexts
Ek =

∏
1≤i,j≤m

j=(k−m)+i

~C
~aj
i ,

where Em = C. To visualize this consider the following matrix(
~a1 . . . ~am

)

~C1

~C2
...
~Cm

~C ~a1
1

. . . ~C ~am
1

~C ~a1
2

. . . ~C ~am
2

.

~C ~a1
m

. . . ~C ~am
m

 E2m−1
...

Em+1

E1 . . . Em−1 Em

The prover sends the ciphertextsE1, . . . , E2m−1 to the verifier. The ciphertextC = Em is the product of the
main diagonal and the other Ek’s are the products of the other diagonals. The prover will use a batch-proof
to simultaneously convince the verifier that all the diagonal products give their corresponding Ek.

The verifier selects a challenge x ← Z∗q at random. The prover sets ~x = (x, x2, . . . , xm)T opens ~c ~xA to
~a =

∑m
j=1 x

j~aj and the verifier checks

Cx
m

2m−1∏
k=1
k 6=m

Ex
k

k =
m∏
i=1

~C
(xm−i~a)
i .

Since x is chosen at random, the prover has negligible probability of convincing the verifier unless the xk-
related terms match on each side of the equality for all k. In particular, since ~a =

∑m
j=1 x

j~aj the xm-related
terms give us

Cx
m

=
m∏
i=1

~C

xm−i
∑

1≤j≤m
m=m−i+j

xj~aj

i =

(
m∏
i=1

~C ~ai
i

)xm
and allow the verifier to conclude C =

∏m
i=1

~C ~ai
i .

Finally, to make the argument honest verifier zero-knowledge we have to avoid leaking information
about the exponent vectors ~a1, . . . ,~am. The prover therefore commits to a random vector ~a0 ← Znq and
after she sees the challenge x she reveals ~a = ~a0 +

∑m
j=1 x

j~aj . Since ~a0 is chosen at random this vector
does not leak any information about the exponents.

10

Another possible source of leakage is the products of the diagonals. The prover will therefore randomize
eachEk by multiplying it with a random ciphertext Epk(Gbk ; τk). Now eachEk is a uniformly random group
element in H and will therefore not leak information about the exponents. Of course, this would make it
possible to encrypt anything in the Ek and allow cheating. To get around this problem the prover has to
commit to the bk’s used in the random encryptions and the verifier will check that the prover uses bm = 0.
The full argument that also covers the case ρ 6= 0 can be found below.

Common reference string: pk, ck.

Statement: ~C1, . . . , ~Cm ∈ Hn , C ∈ H and ~cA ∈ Gm

Prover’s witness: A = {~aj}mj=1 ∈ Zn×mq , ~r ∈ Zmq and ρ ∈ Zq such that

C = Epk(1; ρ)

m∏
i=1

~C ~ai
i and ~cA = comck(A;~r)

Initial message: Pick ~a0 ← Znq , r0 ← Zq and b0, s0, τ0 . . . , b2m−1, s2m−1, τ2m−1 ← Zq and set bm =
0, sm = 0, τm = ρ. Compute for k = 0, . . . , 2m− 1

cA0 = comck(~a0; r0) cBk = comck(bk; sk) Ek = Epk(Gbk ; τk)

m,m∏
i=1,j=0

j=(k−m)+i

~C
~aj
i ,

Send: cA0 , {cBk}
2m−1
k=0 , {Ek}2m−1

k=0 .

Challenge: x← Z∗q .

Answer: Set ~x = (x, x2, . . . , xm)T and compute

~a = ~a0+A~x r = r0+~r·~x b = b0+
2m−1∑
k=1

bkx
k s = s0+

2m−1∑
k=1

skx
k τ = τ0+

2m−1∑
k=1

τkx
k

Send: ~a, r, b, s, τ .

Verification: Check cA0 , cB0 , . . . , cB2m−1 ∈ G and E0, . . . , E2m−1 ∈ H and ~a ∈ Znq and r, b, s, τ ∈ Zq
and accept if cBm = comck(0; 0) and Em = C and

cA0~c
~x
A = comck(~a; r) cB0

2m−1∏
k=1

cx
k

Bk
= comck(b; s) E0

2m−1∏
k=1

Ex
k

k = Epk(Gb; τ)
m∏
i=1

~C xm−i~a
i .

Theorem 6. The protocol above is a public coin perfect SHVZK argument of knowledge of openings
~a1, . . . ,~am, ~r and randomness ρ such that C = Epk(1; ρ)

∏m
i=1

~C ~ai
i .

Proof. It follows by direct verification that Em = C and cA0~c
~x
A = comck(~a; r) and cB0

∏2m−1
k=1 cx

k

Bk
=

11

comck(b; s). Perfect completeness now follows from

E0

2m−1∏
k=1

Ex
k

k =

2m−1∏
k=0

Epk(Gbk ; τk)

m,m∏
i=1,j=0

j=(k−m)+i

~C
~aj
i

xk

= Epk
(
G

∑2m−1
k=0 bkx

k
;

2m−1∑
k=0

τkx
k
) 2m−1∏
k=0

m,m∏
i=1,j=0

j=(k−m)+i

~C
xk~aj
i

= Epk(Gb; τ)
m∏
i=1

m∏
j=0

~C
xm−i+j~aj
i

= Epk(Gb; τ)
m∏
i=1

~C
xm−i

∑m
j=0 x

j~aj
i = Epk(Gb; τ)

m∏
i=1

~C xm−i~a
i .

Now we will prove that we have perfect SHVZK. On challenge x the simulator picks ~a← Znq and r ←
Zq at random and sets cA0 = comck(~a; r)·~c −~xA . The simulator also picks b, s, s1, . . . , sm−1, sm+1, . . . , s2m−1 ←
Zq and defines sm = 0. It computes commitments ~cB1 , . . . ,~cB2m−1 as cBk = comck(0; sk) and cB0 =

comck(b; s) ·
∏2m−1
k=1 c −x

k

Bk
. Finally it picks random ciphertexts E1, . . . , Em−1, Em+1, . . . , E2m−1 ← H

and τ ← Zq, sets Em = C and computes

E0 = Epk(Gb; τ) ·
m∏
i=1

~C
(xm−i~a)
i ·

2m−1∏
k=1

E−x
k

k .

The simulated argument is cA0 , {cBk}
2m−1
k=0 , {Ek}2m−1

k=0 , x,~a, r, b, s, τ.
The next step is to prove that the simulation on challenge x is indistinguishable from a real argument

with challenge x. The commitment scheme is perfectly hiding so the distribution of the commitments
cB1 , . . . , cBm−1 , cBm+1 , . . . , cB2m−1 is identical to the distribution we get in a real argument and cBm =
comck(0; 0) as in a real argument. The ciphertextsE1, . . . , Em−1, Em+1, . . . , E2m−1 are uniformly random
as in a real argument and Em = C as in a real argument. In the real argument the values ~a0, r0, b0, s0 and
τ0 are picked at random giving us that ~a, r, b, s, τ are uniformly random just as in the simulation. So, up
to this point we have the same probability distribution in both real arguments and simulated arguments and
the remaining parts cA0 , cB0 , E0 are now uniquely defined by the verification equations. It follows that real
arguments and simulated arguments have identical probability distributions.

Finally, we will show that the argument has witness-extended emulation. The witness-extended emulator
runs 〈P∗,V〉 to get a transcript. If the verifier rejects the transcript it does not need to do anything else, but if
the verifier accepts the witness-extended emulator will attempt to extract a witness. It rewinds the argument
to the challenge phase and runs it with fresh challenges until it has 2m acceptable arguments.

The witness-extended emulator runs in expected polynomial time. If the witness-extended emulator
after the initial message has probability ε > 0 of answering a random challenge, then there is probability
ε that the witness-extended emulator will have to sample 2m accepting transcripts. The witness-extended
emulator is expected to rewind 2m

ε times to sample the transcripts when the initial argument was accepting.
This gives an overall expectation of 2m rewinds whenever there is non-zero probability for P∗ to answer
the challenge after having sent the initial message.

There is negligible probability that an expected polynomial time emulator would get 2m transcripts with
a collision among the challenges. We will now analyze the case where it has 2m accepting transcripts with

12

2m different challenges x1, . . . , x2m. The first m+ 1 transcripts give us a transposed Vandermonde matrix

X =

1 1 . . . 1
x1 x2 . . . xm+1
...

...
...

xm1 xm2 . . . xmm+1

 .

Since x1, . . . , xm+1 are different X is invertible.
We now have for each x` an opening of ~cA0~c

~x`
A = comck(~a

(`), r(`)). Let Ax be the matrix with columns
~a(1) . . . ~a (m+1) and let ~rx = (r(1), . . . , r(m+1)). We then have

(cA0 , . . . , cAm) = ((cA0 , . . . , cAm)X)X
−1

= comck(Ax;~rx)X
−1

= comck(AxX
−1;~rxX

−1),

giving us openings ~a0, r0, . . . ,~am, rm of the commitments cA0 , . . . , cAm . In a similar way the emulator
can compute openings b0, s0, . . . , b2m−1, s2m−1 of cB0 , . . . , cB2m−1 . We now have for ` = 1, . . . , 2m that
~a(`) =

∑m
j=0 x

j
`~aj , this means

m∏
i=1

~C
xm−i` ~a(`)

i =

m∏
i=1

~C
∑m
j=0 x

m+j−i
` ~aj

i =

2m−1∏
k=0

 m∏
j=0

1≤m−k+j≤m

~C
~aj

(m−k)+j

xk`

.

Let ~E = (E0, . . . , E2m−1) and let Y be the inverse of the 2m× 2m matrix

X =

1 1 . . . 1
x1 x2 . . . x2m
...

...
...

x2m−1
1 x2m−1

2 . . . x2m−1
2m

and let ~yi be the ith column vector in Y (numbered 0 through 2m− 1). We get for each i = 0, . . . , 2m− 1

Ei = ~EX~yi =
2m∏
`=1

(
2m−1∏
k=0

E
xk`
k

)y`i

=

2m∏
`=1

Epk(Gb(`) ; τ (`)
) 2m−1∏

k=0

(m∏
j=0

1≤m−k+j≤m

~C
~aj

(m−k)+j

)xk`

y`i

= Epk
(
G

∑2m
`=1 b

(`)y`i ;

2m∑
`=1

τ (`)y`i

) 2m−1∏
k=0

 m∏
j=0

1≤m−k+j≤m

~C
~aj

(m−k)+j

∑2m
`=1 x

k
` y`i

= Epk
(
Gbi ; τi

) m∏
j=0

1≤m−i+j≤m

~C
~aj

(m−i)+j ,

where τi =
∑2m

`=1 τ
(`)y`i.

13

The verifier checks cBm = comck(0; 0) so the binding property implies that there is negligible probabil-
ity for the emulator extracting bm 6= 0. Since Em = C we now have

C = Epk(G0; τm)

m∏
j=0

1≤m−m+j≤m

~C
~aj
m−m+j = Epk(1; ρ)

m∏
i=1

~C ~ai
i

with ρ = τm. This shows that we have extracted a valid witness for the statement.

4.1 The prover’s computation

The prover has to compute
E0, . . . , E2m−1.

In this section we will for clarity ignore the randomization needed to get honest verifier zero-knowledge,
which can be added in a straightforward manner at little extra computational cost. So let us say we need to
compute for k = 1, . . . , 2m− 1 the elements

Ek =

m,m∏
i=1,j=1

j=(k−m)+i

~C
~aj
i .

This can be done by first computing the m2 products ~C ~aj
i and then computing the Ek’s as suitable products

of some of these values. Since each product ~C ~aj
i is of the form

∏n
`=1C

aj`
i` this gives a total of m2n

exponentiations in H. For large m this cost is prohibitive.
It turns out that we can do much better by using techniques inspired by multiplication of integers and

polynomials, such as Karatsuba [KO63], Toom-Cook [Too00, Coo66] and using the Fast Fourier Trans-
form [CT65]. A common theme in these techniques is to compute the coefficients of the product p(x)q(x) of
two degreem−1 polynomials p(x) and q(x) by evaluating p(x)q(x) in 2m−1 points ω0, . . . , ω2m−2 and us-
ing polynomial interpolation to recover the coefficients of p(x)q(x) from p(ω0)q(ω0), . . . , p(ω2m−2)q(ω2m−2).

If we pick ω ∈ Zq we can evaluate the vectors
m∏
i=1

~C ωm−i
i

m∑
j=1

ωj−1~aj .

This gives us

(
m∏
i=1

~C ωm−i
i

) ∑m
j=1 ω

j−1~aj

=

2m−1∏
k=1

 m,m∏
i=1,j=1

j=(k−m)+i

~C
~aj
i

ωk−1

=

2m−1∏
k=1

E ωk−1

k .

Picking 2m− 1 different ω0, . . . , ω2m−2 ∈ Zp we get the 2m− 1 ciphertexts

2m−1∏
k=1

E
ωk−1
0

k , . . . ,
2m−1∏
k=1

E
ωk−1
2m−2

k .

The ω0, . . . , ω2m−2 are different and therefore the transposed Vandermonde matrix 1 . . . 1
...

...
ω2m−2

0 . . . ω2m−2
2m−2

14

is invertible. Let ~yi = (y0, . . . , y2m−2)T be the ith column of the inverse matrix. We can now compute Ei
as

Ei =
2m−2∏
`=0

(
2m−1∏
k=1

E
ωk−1
`

k

)y`
=

2m−2∏
`=0

((m∏
i=1

~C
ωm−i`
i

) ∑m
j=1 ω

j−1
` ~aj

)y`
This means the prover can compute E1, . . . , E2m−1 as linear combinations of

(m∏
i=1

~C
ωm−i0
i

) ∑m
j=1 ω

j−1
0 ~aj

. . .
(m∏
i=1

~C
ωm−i2m−2

i

) ∑m
j=1 ω

j−1
2m−2~aj

.

The expensive step in this computation is to compute
∏m
i=1

~C
ωm−i0
i , . . . ,

∏m
i=1

~C
ωm−i2m−2

i .
If 2m− 2 is a power of 2 and 2m− 2|q− 1 we can pick ω1, . . . , ω2m−2 as roots of unity, i.e., ω2m−2

k =
1. This allows us to use the Fast Fourier Transformation “in the exponent” to simultaneously calculate∏m
i=1

~C
ωm−ik
i in all of the roots of unity using only O(mn logm) exponentiations. This is asymptotically

the fastest technique we know for computing E0, . . . , E2m−2.
Unfortunately, the FFT is not well suited for being used in combination with multi-exponentiation tech-

niques and in practice it therefore takes a while before the asymptotic behavior kicks in. For small m it is
therefore useful to consider other strategies. Inspired by the Toom-Cook method for integer multiplication,
we may for instance choose ω0, ω1, . . . , ω2m−2 to be small integers. When m is small even the largest expo-
nent ω2m−2

k will remain small. For instance, if m = 4 we may choose ωk ∈ {0,−1, 1,−2, 2,−3, 3}, which

makes the largest exponent ωm−1
k = 33 = 27. This makes it cheap to compute each

∏m
i=1

~C
ωm−ik
i because

the exponents are very small.
The basic step of Toom-Cook sketched above can be optimized by choosing the evaluation points care-

fully. However, the performance degrades quickly as m grows. Using recursion it is possible to get sub-
quadratic complexity also for large m, however, the cost still grows relatively fast. In the next section we
will therefore describe an interactive technique for reducing the prover’s computation. In our implemen-
tation, see Section 6, we have used a combination of the interactive technique and Toom-Cook as the two
techniques work well together.

4.2 Trading computation for interaction

We will present an interactive technique that can be used to reduce the prover’s computation. The prover
wants to show that C has the same plaintext as the product of the main diagonal of following matrix (here
illustrated for m = 16).

~C ~a1
1

~C ~a2
1

~C ~a3
1

~C ~a4
1

~C ~a1
2

~C ~a2
2

~C ~a3
2

~C ~a4
2

. . .
~C ~a1

3
~C ~a2

3
~C ~a3

3
~C ~a4

3
~C ~a1

4
~C ~a2

4
~C ~a3

4
~C ~a4

4
. . .

~C ~a13
13

~C ~a14
13

~C ~a15
13

~C ~a16
13

. . . ~C ~a13
14

~C ~a14
14

~C ~a15
14

~C ~a16
14

~C ~a13
15

~C ~a14
15

~C ~a15
15

~C ~a16
15

~C ~a13
16

~C ~a14
16

~C ~a15
16

~C ~a16
16

15

In the previous section the prover calculated all m2 entries of the matrix. But we are only interested in
the product along the diagonal so we can save computation by just focusing on the blocks close to the main
diagonal.

Let us explain the idea in the case of m = 16. We can divide the matrix into 4× 4 blocks and only use
the four blocks that are on the main diagonal. Suppose the prover wants to demonstrate C =

∏16
i=1

~C ~ai
i . Let

us for now just focus on soundness and return to the question of honest verifier zero-knowledge later. The
prover starts by sendingE0, E1, E2, E3, E4, E5, E6 that are the products along the diagonals of the elements
in the blocks that we are interested in. I.e., E0 =

∏4
i=1

~C
~a4i−3

4i , . . . , E6 =
∏4
i=1

~C ~a4i
4i−3 and E3 = C. The

verifier sends a random challenge x and using the homomorphic properties of the encryption scheme and of
the commitment scheme both the prover and the verifier can compute ~C ′1, . . . , ~C

′
4 and cA′1 , . . . , cA′4 as

~C ′i = ~C x3

4i−3
~C x2

4i−2
~C x

4i−1
~C4i cA′j = cA4j−3c

x
A4j−2

c x
2

A4j−1
c x

3

A4j
.

They can also both compute C ′ =
∏6
k=0E

xk

k . The prover and the verifier now engage in an SHVZK

argument for the smaller statement C ′ =
∏4
i=1

~C
′ ~a′i
i . The prover can compute a witness for this statement

with ~a′i = ~a4i−3 + x~a4i−2 + x2~a4i−1 + x3~a4i. This shows

Cx
3

6∏
k=0
k 6=3

Ex
k

k =
4∏
i=1

(~C x3

4i−3
~C x2

4i−2
~C x

4i−1
~C4i)

(~a4i−3+x~a4i−2+x2~a4i−1+x3~a4i).

Looking at the x3-related terms, we see this has negligible chance of holding for a random x unless C =∏16
i=1

~C ~ai
i , which is what the prover wanted to demonstrate.

We will generalize the technique to reducing a statement ~C1, . . . , ~Cm, C, cA1 , . . . , cAm with a factor µ
to a statement ~C ′1, . . . , ~C

′
m′ , C

′, cA′1 , . . . , cA′m′
where m = µm′. To add honest verifier zero-knowledge

to the protocol, we have to prevent the Ek’s from leaking information about ~a1, . . . ,~am. We do this by
randomizing eachEk with a random ciphertext Epk(Gbk ; tk). To prevent the prover to use the randomization
to cheat she will have to commit the bk’s before seeing the challenge x.

Common Reference string: pk, ck.

Statement: ~C1, . . . , ~Cm ∈ Hn and C ∈ H and cA1 , . . . , cAm ∈ G where m = µm′.

Prover’s witness: A ∈ Zn×mq , ~r ∈ Zmq and ρ ∈ Zq such that

C = Epk(1; ρ)
m∏
i=1

~C ~ai
i and ~cA = comck(A;~r).

Initial message: Pick~b = (b0, . . . , b2µ−2), ~s, ~τ ← Z2µ−1
q and set bµ−1 = 0, sµ−1 = 0, τµ−1 = ρ. Compute

for k = 0, . . . , 2µ− 2

cbk = comck(bk; sk) Ek = Epk(Gbk ; τk)
m′−1∏
`=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

~C
~aµ`+j
µ`+i .

Send: ~cb = (cb0 , . . . , cb2µ−2) and ~E = (E0, . . . , E2µ−2).

Challenge: x← Z∗q .

16

Answer: Set ~x = (1, x, . . . , x2µ−2)T and send b = ~b · ~x and s = ~s · ~x to the verifier.

Compute for ` = 1, . . . ,m′

~a′` =

µ∑
j=1

xj−1~aµ(`−1)+j r′` =

µ∑
j=1

xj−1rµ(`−1)+j ρ′ = ~τ · ~x.

Define ~C ′1, . . . , ~C
′
m′ and cA′1 , . . . , cA′m′ and C ′ by

~C ′` =

µ∏
i=1

~C xµ−i

µ(`−1)+i cA′` =

µ∏
j=1

c x
j−1

Aµ(`−1)+j
C ′ = Epk(G−b; 0) ~E~x.

Engage in an SHVZK argument of openings~a′1, . . . ,~a
′
m′ ,

~r′ and ρ′ such thatC ′ = Epk(1; ρ′)
∏m′

`=1
~C
′ ~a′`
` .

Verification: Check ~cb ∈ G2µ−1 and E0, . . . , E2µ−2 ∈ H and b, s ∈ Zq. Accept if

cbµ−1 = comck(0; 0) Eµ−1 = C ~c ~xb = comck(b; s)

and if the SHVZK argument for ~C ′1, . . . , ~C
′
m′ , C

′, cA′1 , . . . , cA′m′
is valid.

Theorem 7. The protocol above is a public coin perfect SHVZK argument of knowledge of ~a1, . . . ,~am, ~r
such that C = Epk(1; ρ)

∏m
i=1

~C ~ai
i

Proof. Let us first argue that we have perfect completeness. It follows by straightforward verification that
cbµ−1 = comck(0; 0) and C = Eµ−1 and ~c ~xb = comck(b; s). Both the prover and the verifier can compute
the reduced statement ~C ′1, . . . , ~C

′
m′ , C

′, ~cA′ as described above and the prover can compute openings of ~cA′
and ρ′ = ~τ · ~x. Perfect completeness now follows from the perfect completeness of the underlying SHVZK
argument because C ′ = Epk(1; ρ′)

∏m′

i=1
~C
′ ~a′i
i . To see this is the case, we compute

C ′ = Epk(G−b; 0)

2µ−2∏
k=0

Ex
k

k

= Epk(G−
~b·~x; 0)

2µ−2∏
k=0

Epk(Gbk ; τk)

m′−1∏
`=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

~C
~aµ`+j
µ`+i

xk

= Epk
(
G0;~τ · ~x

) 2µ−2∏
k=0

m′−1∏
`=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

(
~C xµ−i
µ`+i

) xj−1~aµ`+j

= Epk(1; ρ′)

m′∏
`=1

2µ−2∏
k=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

(
~C xµ−i

µ(`−1)+i

) xj−1~aµ(`−1)+j

= Epk(1; ρ′)
m′∏
`=1

~C
′ ~a′`
`

17

Let us now describe the SHVZK simulator. On challenge x it picks b, s← Zq and cb1 , . . . , cb2µ−2 ← G
andE0, . . . , E2µ−2 ← H. It sets cbµ−1 = comck(0; 0) andEµ−1 = C and computes cb0 = comck(b; s)

∏2µ−2
k=1 c −x

k

bk
.

Now it runs the simulator for the SHVZK argument on ~C ′1, . . . ,
~C ′m′ , C

′, cA′1 , . . . , cA′m′
.

Both in real arguments and simulated arguments we have uniformly random ciphertexts
E0, . . . , Eµ−2, Eµ, . . . , E2µ−2 and Eµ−1 = C. The commitment scheme is perfectly hiding, so we have
that cb1 , . . . , cbµ−2 , cbµ , . . . , cb2µ−2 are uniformly random in real arguments and cbµ−1 = comck(0; 0) just as
in the simulation. In a real argument we have b0, s0 ← Zq chosen at random, which implies that b, s are
uniformly random just as in the simulation. Given all these values the verification equation uniquely defines
cb0 = comck(b; s)

∏2µ−2
k=1 c −x

k

bk
. It now follows from the perfect SHVZK of the underlying argument that

the simulation is perfect.
Now, we have to show that the argument has witness-extended emulation. The emulator will run the

argument with a random challenge x and output the resulting transcript. If the verifier rejects in the transcript
the emulator is done, but if the verifier accepts the emulator will try to extract a witness. The emulator
rewinds the argument to the challenge phase and repeatedly runs it with fresh challenges until it gets 2µ− 1
accepting transcripts. In this process it uses the witness-extended emulator for the underlying SHVZK
argument to get witnesses ~a′1, r

′
1, . . . ,~a

′
m′ , r

′
m′ , ρ

′. The emulator on average makes 2µ − 1 runs when the
prover has non-zero probability of succeeding giving an expected polynomial time.

Suppose now the emulator has satisfactory answers to 2µ− 1 challenges x1, . . . , x2µ−1. The matrix X
with columns of the form ~x` = (1, x`, . . . , x

2µ−2
`)T is a transposed Vandermonde matrix and therefore if

x1, . . . , x2µ−1 are different X is invertible. Define~bx = (b(1), . . . , b(2µ−1)) and ~sx = (s(1), . . . , s(2µ−1)).
We now have

~cb = (~c Xb)X
−1

= comck(~bx;~sx)X
−1

= comck(~bxX
−1;~sxX

−1)

giving us openings b0, . . . , b2µ−1, s0, . . . , s2µ−1 of all the commitments cb0 , . . . , cb2µ−2 the prover sent.
The witness-extended emulator for the underlying SHVZK argument provides us with openings (~a′j)

(`), (r′j)
(`)

of cA′j =
∏µ
k=1 c

xj−1

Ajµ+k
. Using a similar technique as we did for the bi’s we can by taking appropriate linear

combinations find openings ~a1, r1, . . . ,~am, rm of cA1 , . . . , cAm .
The witness-extended emulations of the underlying argument give us (ρ′)(1), . . . , (ρ′)(2µ−1) in response

to the challenges x1, . . . , x` satisfying (C ′)(`) = Epk(1; (ρ′)(`))
∏m′

i=1

(
~C
′(`)
i

) (~a′i)
(`)

. We will now argue
that a linear combination of those will give us the desired ρ, needed to complete our argument. Let ~y =
(y1, . . . , y2µ−1) be the µ − 1th column of X−1 such that

∑2µ−1
`=1 xk` y` = 1 for k = µ − 1, else 0, and

define ρ =
∑2µ−1

`=1 (ρ′)(`)y`. The verifier checks cbµ−1 = comck(0; 0), so the binding property implies that

18

bµ−1 = 0. We then have

C = Eµ−1 =

2µ−1∏
`=1

(
2µ−2∏
k=0

E
xk`
k

)y`
=

2µ−1∏
`=1

(
Epk(Gb

(`)
; 0)(C ′)(`)

)y`
=

2µ−1∏
`=1

(
Epk(Gb

(`)
; (ρ′)`)

m′∏
u=1

(
~C ′(`)u

) (~a′u)(`)
)y`

= Epk
(
G

∑2µ−1
`=1 b(`)y` ;

2µ−1∑
`=1

(ρ′)(`)y`

) 2µ−1∏
`=1

(
m′−1∏
u=0

(µ∏
i=1

~C
xµ−i`
uµ+i

) ∑µ
j=1 x

j−1
` ~auµ+j

)y`

= Epk(Gbµ−1 ; ρ)

2µ−1∏
`=1

m′−1∏
u=0

2µ−2∏
k=0

(2µ−2∏
i=1,j=1

j=(k−µ+1)+i

~C
~auµ+j
uµ+i

)xk`

y`

= Epk(G0; ρ)
m′−1∏
u=0

2µ−2∏
k=0

(2µ−2∏
i=1,j=1

j=(k−µ+1)+i

~C
~auµ+j
uµ+i

)∑2µ−1
`=1 y`x

k
`

= Epk(1; ρ)
m′−1∏
u=0

2µ−2∏
i=1,j=1

j=(µ−1−µ+1)+i

~C
~auµ+j
uµ+i = Epk(1; ρ)

m∏
i=1

~C ~ai
i .

This means the emulator has extracted a valid witness.

5 Product Argument

We will now describe an argument that a set of committed values have a particular product. More precisely,
given commitments ~cA to A = {aij}n,mi,j=1, and a value b we want to give an argument of knowledge for∏n
i=1

∏m
j=1 aij = b. Our strategy is to compute a commitment

cb = comck

 m∏
j=1

a1j , . . . ,

m∏
j=1

anj ; s

 .

We give an argument of knowledge that cb is correct, i.e., it contains
∏m
j=1 a1j , . . . ,

∏m
j=1 anj . Next, we give

an argument of knowledge that b is the product of the values inside cb. We will present these two arguments
in Sections 5.1 and 5.3. Here, we just give an overview of the protocol.

Common reference string: pk, ck.

Statement: ~cA ∈ Gm and b ∈ Zq.

Prover’s witness: A ∈ Zn×m, ~r ∈ Zmq such that

~cA = comck(A;~r) and
n∏
i=1

m∏
j=1

aij = b

19

Initial message: Pick s ← Zq and compute cb = comck(
∏m
j=1 a1j , . . . ,

∏m
j=1 anj ; s). Send cb to the

verifier.

Engage in an SHVZK argument of knowledge as described in Section 5.1 of
cb = comck(

∏m
j=1 a1j , . . . ,

∏m
j=1 anj ; s), where a11, . . . , anm are the committed values in ~cA.

Engage (in parallel) in an SHVZK argument of knowledge as described in Section 5.3 of b being the
product of the committed values in cb.

Verification: The verifier accepts if cb ∈ G and both SHVZK arguments are convincing.

Theorem 8. The protocol is a public coin perfect SHVZK argument of knowledge of openings a11, . . . , anm, r1, . . . , rm ∈
Zq such that b =

∏n
i=1

∏m
i=1 aij .

Proof. Perfect completeness follows from the perfect completeness of the two underlying SHVZK argu-
ments since the prover’s opening of cb gives a satisfying input to both arguments.

Perfect SHVZK follows from the perfect hiding property of the commitment scheme and the perfect
SHVZK of the two underlying arguments. The simulator picks cb = comck(0, . . . , 0; s) for random s← Zq
and runs the simulator for the two underlying arguments.

It remains to argue that we have witness-extended emulation. The witness-extended emulator runs the
argument using the witness-extended simulators for the underlying arguments such that if it is successful it
has openings a11, . . . , anm, r1, . . . , rm of ~cA and an opening b1, . . . , bn, s of cb such that

b1 =

m∏
j=1

a1j . . . bn =

m∏
j=1

anj and b =

n∏
i=1

bi.

This implies that the extracted openings of ~cA satisfy
∏n
i=1

∏m
j=1 aij = b.

5.1 Hadamard product argument

We will give an argument for committed values a11, . . . , anm and b1, . . . , bn satisfying bi =
∏m
j=1 aij .

It will be convenient to write this with vector notation. We have commitments ~cA and cb and the prover
wants to argue knowledge of openings to tuples ~a1, . . . ,~am,~b ∈ Znq such that ~b =

∏m
i=1~ai, where we use

entry-wise multiplication, which is also known as the Hadamard product.
The prover generates commitments ~cB to the matrix B with columns

~b1 = ~a1
~b2 =

2∏
i=1

~ai . . . ~bm−1 =

m−1∏
i=1

~ai ~bm =
m∏
i=1

~ai.

By picking cB1 = cA1 and cBm = cb the prover guarantees~b1 = ~a1 and~bm = ~b. The prover’s strategy is to
prove that for each i = 1, . . . ,m− 1

~bi+1 = ~ai+1
~bi.

Since~b1 = ~a1 and~bm = ~b this shows~b =
∏m
i=1~ai.

We will use randomization to simplify the argument. The verifier will send a challenge x and the prover
will demonstrate

m−1∑
i=1

xi~bi+1 =
m−1∑
i=1

~ai+1(xi~bi).

Defining cDi = c x
i

Bi
and cD =

∏m−1
i=1 c x

i

Bi+1
we get commitments to the vectors

~d1 = x~b1 ~d2 = x2~b2 . . . ~dm−1 = xm−1~bm−1
~d =

m−1∑
i=1

xi~bi+1.

20

Thus, we have reduced the problem to demonstrating that the committed values satisfy

~d =
m−1∑
i=1

~ai+1
~di.

The argument can be made more efficient by having the verifier send a challenge y and defining the
bilinear map

∗ : Znq × Znq → Zq by (a1, . . . , an)T ∗ (d1, . . . , dn)T =

n∑
j=1

ajdjy
j .

The prover will now use the zero argument from Section 5.2 to demonstrate that

0 =
m−1∑
i=1

~ai+1 ∗ ~di −~1 ∗ ~d,

which happens with negligible probability over y unless indeed ~d =
∑m−1

i=1 ~ai+1
~di.

Common reference string: pk, ck.

Statement: ~cA, cb.

Prover’s witness: ~a1, . . . ,~am, ~r, and~b, s such that

~cA = comck(A;~r) cb = comck(~b; s) ~b =

m∏
i=1

~ai.

Initial message: Define ~b1 = ~a1,~b2 = ~a1~a2, . . . ,~bm−1 = ~a1 · · ·~am−1, and ~bm = ~b. Pick s2, . . . , sm−1 ←
Zq and compute cB2 = comck(~b2; s2), . . . , cBm−1 = comck(~bm−1; sm−1). Define s1 = r1 and
sm = s, and set cB1 = cA1 and cBm = cb.

Send ~cB .

Challenge: x, y ← Z∗q .

Answer: Define the bilinear map ∗ : Znq × Znq → Zq by (a1, . . . , an)T ∗ (d1, . . . , dn)T =
∑n

j=1 ajdjy
j .

Define cDi = c x
i

Bi
and cD =

∏m−1
i=1 c x

i

Bi+1
and c−1 = comck(−~1; 0) and engage in the SHVZK zero

argument described in Section 5.2 for the committed values satisfying

0 =

m−1∑
i=1

~ai+1 ∗ ~di −~1 ∗ ~d.

The prover’s witness in this argument consists of the openings of cA2 , . . . , cAm , c−1 and the openings
of cD1 , . . . , cDm−1 , cD. The latter openings can be computed as ~d1 = x~b1, t1 = xs1, . . . , ~dm−1 =

xm−1~bm−1, tm−1 = xm−1sm−1, and ~d =
∑m−1

i=1 xi~bi+1, t =
∑m−1

i=1 xisi+1.

Verification: Check cB2 , . . . , cBm−1 ∈ G, cB1 = cA1 , cBm = cb and define cDi = c x
i

Bi
, cD =

∏m−1
i=1 c x

i

Bi+1

and c−1 = comck(−~1; 0). Accept if the zero argument is valid.

21

Theorem 9. The protocol is a public coin perfect SHVZK argument of knowledge of committed vectors
~a1, . . . ,~am,~b such that~b =

∏m
i=1~ai.

Proof. It is straightforward to check that the inputs to the underlying zero argument are correct. Perfect
completeness therefore follows from the perfect completeness of the underlying zero argument.

Given challenges x, y the simulator picks s2, . . . , sm−1 ← Zq, computes cB2 = comck(~0; s2), . . . , cBm−1 =

comck(~0; sm−1) and runs the SHVZK simulator for the underlying zero knowledge argument. The perfect
hiding property of the commitments and the perfect SHVZK of the underlying zero argument shows that
this is a perfect simulation.

It remains to argue that we have witness-extended emulation. The witness-extended emulator runs the
zero argument with witness-extended emulation to get openings of cA2 , . . . , cAm , c−1 and cD1 , . . . , cDm−1 , cD
of the form ~a2, r2, . . . ,~am, rm,−~1, 0 and ~d1, t1, . . . , ~dm−1, tm−1, ~d, t. This gives us openings of ~cB com-
puted as

~b1 = x−1~d1 s1 = x−1t1 . . . ~bm−1 = x1−m~dm−1 sm−1 = x1−mtm−1

~bm = x1−m(~d−
m−2∑
i=1

xi~bi+1) sm = x1−m(t−
m−2∑
i=1

xisi+1).

Since cB1 = cA1 and cBm = cb we automatically get openings ~a1 = ~b1, r1 = s1 and ~b = ~bm, s = sm of
these commitments.

The remaining question is whether the extracted witness satisfies the statement. The binding property
of the commitment scheme implies that cD1 , . . . , cDm−1 contain ~d1 = x~b1, . . . , ~dm−1 = xm−1~bm−1, and
cD contains ~d =

∑m−1
i=1 xi~bi+1 for the randomly chosen x. Since ~cB is fixed before seeing the challenges

~d1, . . . , ~dm−1, ~d are determined before the prover sees the y that defines the bilinear map ∗. The witness-
extended emulation of the underlying zero argument implies

~1 ∗ ~d =
m−1∑
i=1

~ai+1 ∗ ~di,

which has negligible probability of holding for random y unless ~d =
∑m−1

i=1 ~ai+1
~di. This implies

m−1∑
i=1

xi~bi+1 =

m−1∑
i=1

~ai+1(xi~bi),

which has negligible probability of holding for random x unless~b2 = ~a2
~b1, . . . ,~bm = ~am~bm−1. This shows

the extracted openings satisfy~b = ~bm =
∏m
i=1~ai as required in the statement.

5.2 Zero argument

Given a bilinear map ∗ : Znq × Znq → Zq (in our case defined by y ∈ Zq as described in Section 5.1) and
commitments to ~a1,~b0, . . . ,~am,~bm−1 the prover wants to show that 0 =

∑m
i=1~ai ∗~bi−1.

The prover picks ~a0,~bm ← Znq and calculates commitments to these values. The prover computes
for k = 0, . . . , 2m the values dk =

∑
0≤i,j≤m

j=(m−k)+i

~ai ∗ ~bj and commits to them. Observe that dm+1 =∑m
i=1~ai ∗~bi−1 = 0. The prover sets cDm+1 = comck(0; 0) such that the verifier can see dm+1 = 0.
The verifier picks a challenge x and uses the homomorphic property to compute commitments to ~a =∑m
i=0 x

i~ai and ~b =
∑m

j=0 x
m−j~bj ; the prover will provide openings of these commitments. The verifier

22

can also compute a commitment to
∑2m

k=0 dkx
k and the prover opens this commitment. We observe that if

everything is computed correctly by the prover then

2m∑
k=0

dkx
k =

(m∑
i=0

xi~ai

)
∗
(m∑
j=0

xm−j~bj

)
.

The verifier checks this equation by testing if
∏2m
k=0 c

xk

Dk
= comck(~a ∗ ~b; t). There is negligible chance

that the prover convinces the verifier unless the polynomials are identical. Since dm+1 = comck(0; 0) the
coefficient of xm+1 is 0 showing that 0 =

∑m
i=1~ai+1 ∗~bi,

Common reference string: pk, ck.

Statement: ~cA,~cB and a specification of a bilinear map ∗ : Znq × Znq → Zq.

Prover’s witness: A = {~ai}mi=1 ∈ Zn×mq , ~r ∈ Zmq , and B = {~bi}m−1
i=0 , ~s = (s0, . . . , sm−1) ∈ Zmq such that

~cA = comck(A;~r) ~cB = comck(B;~s) 0 =

m∑
i=1

~ai ∗~bi−1.

Initial message: Pick ~a0,~bm ← Znq and r0, sm ← Zq and compute

cA0 = comck(~a0; r0) cBm = comck(~bm; sm).

Compute d0, . . . , d2m as
dk =

∑
0≤i,j≤m

j=(m−k)+i

~ai ∗~bj .

Pick ~t = (t0 . . . t2m)← Z2m+1
q and set tm+1 = 0 and compute commitments ~cD = comck(~d;~t).

Send: cA0 , cBm ,~cD.

Challenge: x← Z∗q .

Answer:

~a =

m∑
i=0

xi~ai r =

m∑
i=0

xiri ~b =

m∑
j=0

xm−j~bj s =

m∑
j=0

xm−jsj t =

2m∑
k=0

xktk.

Send: ~a,~b, r, s, t.

Verification: Accept if cA0 , cBm ∈ G,~cD ∈ G2m+1, cDm+1 = comck(0; 0), ~a,~b ∈ Znq , r, s, t ∈ Zq and

m∏
i=0

c x
i

Ai = comck(~a, r)

m∏
j=0

c x
m−j

Bj = comck(~b; s)

2m∏
k=0

c x
k

Dk
= comck(~a ∗~b; t).

Theorem 10. The protocol is a public coin perfect SHVZK argument of knowledge of committed values
~a1,~b0, . . . ,~am,~bm−1 such that 0 =

∑m
i=1~ai ∗~bi−1.

23

Proof. We have dm+1 =
∑m

i=1~ai ∗~bi−1 = 0 and

~a ∗~b =

(
m∑
i=0

xi~ai

)
∗

 m∑
j=0

xm−j~bj

 =
2m∑
k=0

∑
0≤i,j≤m

j=(m−k)+i

~ai ∗~bj =
2m∑
k=0

dkx
k.

Perfect completeness now follows by direct verification.
The argument is perfect SHVZK. The simulator picks, on challenge x, ~a,~b← Znq , and

r, s, t0, t1, . . . , tm, tm+2, . . . , t2m ← Zq and defines tm+1 = 0. It computes

cA0 = comck(~a; r)
m∏
i=1

c −x
i

Ai
cBm = comck(~b; s)

m−1∏
j=0

c −x
m−j

Bj
t =

2m∑
k=0

tkx
k

cD0 = comck(~a ∗~b; t0) cD1 = comck(0; t1) . . . cD2m = comck(0; t2m).

The simulated argument is (cA0 , cBm ,~cD, x,~a, r,
~b, s, t). To see that this is a perfect simulation note that the

cDi’s are perfectly hiding commitments and ~a,~b, r, s, t are uniformly random both in a real argument and
in the simulation. Conditioned on those values the commitments cA0 , cBm , cD0 , cDm+1 are uniquely deter-
mined by the verification equations; thus real arguments and simulated arguments have identical probability
distributions.

It remains to prove that we have witness-extended emulation. The emulator runs the argument 〈P∗,V〉
and if the transcript is accepting it has to extract a witness. Therefore, it rewinds to the challenge phase
and runs it again with random challenges until it has 2m+ 1 accepting transcripts. On average the witness-
extended emulator will be making 2m+ 1 arguments so it runs in expected polynomial time.

There is negligible probability for the emulator ending up with 2m + 1 accepting arguments with a
collision in the challenges. Provided the challenges are different, the emulator now has accepting transcripts
for x0, . . . , x2m satisfying for each x` that cDm+1 = comck(0; 0) and

m∏
i=0

c x
i

Ai = comck(~a
(`), r(`))

m∏
j=0

c x
m−j

Bj = comck(~b
(`); s`))

2m∏
k=0

c x
k

Dk
= comck(~a

(`) ∗~b(`); t(`)).

Since the vectors (1, xi, . . . , x
2m
i) form the columns of a transposed Vandermonde matrix and all the the

xi’s are different we can find the inverse matrix X−1. Define ~dx = (a(0) ∗ b(0), . . . , a(2m) ∗ b(2m)) and
~tx = (t(0), . . . , t(2m)), this gives for each i = 0, . . . , 2m an opening of cDi applying ~cD = (~cXD)X

−1
=

comck(~dx;~tx)X
−1

= comck(~dxX
−1;~txX

−1). The emulator gets openings of cA0 , . . . , cAm and cB0 , . . . , cBm
in a similar manner.

Having openings of ~cA,~cB,~cD to values ~a0, . . . ,~am,~b0, . . . ,~bm, d0, . . . , d2m the binding property of the
commitment scheme implies that the answer to a random challenge x is of the form

~a =

m∑
i=0

xi~ai ~b =

m∑
j=0

xm−j~bj satisfying
2m∑
k=0

dkx
k = ~a ∗~b.

This implies
2m∑
k=0

dkx
k =

(
m∑
i=0

xi~ai

)
∗

 m∑
j=0

xm−j~bj

 .

The Schwartz-Zippel lemma implies that the prover has negligible chance of making an acceptable argument
unless dm+1 =

∑m
i=1~ai ∗ ~bi−1. Since dm+1 = 0 this gives us that the extracted openings satisfy 0 =∑m

i=1~ai ∗~bi−1.

24

5.3 Single value product argument

For completeness we restate the following 3-move argument of knowledge [Gro10] of committed single
values having a particular product.

Common reference string: pk, ck.

Statement: ca ∈ G and b ∈ Zq.

Prover’s witness: ~a ∈ Znq , r ∈ Zq such that

ca = comck(~a; r) and b =
n∏
i=1

ai.

Initial message: Compute

b1 = a1 b2 = a1a2 . . . bn =
n∏
i=1

ai.

Pick d1, . . . , dn, rd ← Zq. Define δ1 = d1 and δn = 0 and pick δ2, . . . , δn−1 ← Zq. Pick s1, sx ← Zq
and compute

cd = comck(~d; rd) cδ = comck(−δ1d2, . . . ,−δn−1dn; s1)

c∆ = comck(δ2 − a2δ1 − b1d2, . . . , δn − anδn−1 − bn−1dn; sx).

Send: cd, cδ, c∆.

Challenge: x← Z∗q .

Answer: Compute
ã1 = xa1 + d1 . . . ãn = xan + dn r̃ = xr + rd

b̃1 = xb1 + δ1 . . . b̃n = xbn + δn s̃ = xsx + s1.

Send: ã1, b̃1, . . . , ãn, b̃n, r̃, s̃.

Verification: The verifier accepts if cd, cδ, c∆ ∈ G and ã1, b̃1, . . . , ãn, b̃n r̃, s̃ ∈ Zq and

cxacd = comck(ã1, . . . , ãn; r̃) cx∆cδ = comck(xb̃2 − b̃1ã2, . . . , xb̃n − b̃n−1ãn; s̃)

b̃1 = ã1 b̃n = xb.

Theorem 11. The protocol is a public coin perfect SHVZK argument of knowledge of an opening a1, . . . , an, r
such that ca = comck(~a; r) and b =

∏n
i=1 ai.

Proof. Perfect completeness follows from

xb̃i − b̃i−1ãi = x(xbi + δi)− (xbi−1 + δi−1)(xai + di) = x(δi − δi−1ai − bi−1di)− δi−1di

for i = 2, . . . , n since bi = bi−1ai.
We will now argue that we have perfect SHVZK. The simulator gets the challenge x and has to make

a convincing transcript. It picks ã1, . . . , ãn, r̃ ← Zq and sets cd = ~c −xa comck(ã1, . . . , ãn; r̃). It picks at
random sx and sets c∆ = comck(0, . . . , 0; sx). It picks at random b̃2, . . . , b̃n−1, s̃ ← Zq, sets b̃1 = ã1 and
b̃n = xb and computes cδ = c−x∆ comck(xb̃2− b̃1ã2, . . . , xb̃n− b̃n−1ãn; s̃). To see this is a perfect simulation
note that c∆ is a perfectly hiding commitment just like in a real proof, and ã1, . . . , ãn, r̃ and b̃1, . . . , b̃n, s̃

25

are distributed just like in a real proof. These choices uniquely determine cd, cδ according to the verification
equations giving us that simulated and real proofs are identically distributed.

Finally, we will show that the protocol has witness-extended emulation. The witness-extended emulator
runs the argument on a random challenge x. If the prover is successful, the witness-extended emulator
rewinds to the second move until it gets another convincing arguments on a challenge x′. Now, if x 6= x′ we
have

cxacd = comck(ã1, . . . , ãn; r̃) cx
′
a cd = comck(ã

′
1, . . . , ã

′
n; r̃′),

which implies cx−x
′

a = comck(ã1 − ã′1, . . . , ãn − ã′n; r̃ − r̃′) giving us an opening of ca. The equation
cd = c−xa comck(ã1, . . . , ãn; r̃) then gives us an opening of cd. Similarly, we can get openings of cδ, c∆

provided x 6= x′.
It remains to argue that there is negligible probability of extracting an opening a1, . . . , an, r of ~ca such

that b 6=
∏n
i=1 ai. Using b̃1 = ã1 and xb̃i = b̃i−1ãi + p1(x) where p1(x) is a degree 1 polynomial in x, we

get that the verification equations imply

xnb = xn−1b̃n =

n∏
i=1

ãi + pn−1(x),

where pn−1 is a fixed degree n−1 polynomial determined by the committed values. Since ãi = xai+di the
Schwartz-Zippel lemma implies that there is negligible probability of satisfying this equation for random x
unless indeed b =

∏n
i=1 aj .

6 Implementation and Comparison

We will now compare our protocol with the most efficient shuffle arguments for ElGamal encryption. First,
we compare the theoretical performance of the schemes without any optimization. Second, we compare
an implementation of our protocol with the implementation by Furukawa et al. [FMM+02] and with the
implementation in the Verificatum mix-net library [Wik10].

Theoretical comparison. Previous work in the literature mainly investigated the case where we use El-
Gamal encryption and commitments over the same group G, i.e., H = G×G. Table 1 gives the asymptotic
behavior of these protocols compared to our protocol for N = mn as m and n grows.

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[FS01] 3 8N 10N 5N G+ N Zq
[FMM+02] 5 9N 10N 5N G + N Zq
[Gro10] 7 6N 6N 3N Zq
[Fur05] 3 7N 8N N G+ 2N Zq
[TW10] 5 9N 11N 3N G + 4N Zq
[GI08] 7 3mN 4N 3m2 G+ 3n Zq
This paper 9 2 log(m)N 4N 11m G+ 5n Zq

Table 1: Comparison of the protocols with ElGamal encryption.

In our protocol, we may as detailed in Section 4.1 use FFT techniques to reduce the prover’s computation
to O(N logm) exponentiations as listed in Table 1. Furthermore, by increasing the round complexity as in

26

Section 4.2 we could even get a linear complexity of O(N) exponentiations. These techniques do not apply
to the other shuffle arguments; in particular it is not possible to use FFT techniques to reduce the factor m
in the shuffle by Groth and Ishai [GI08].

As the multi-exponentiation argument, which is the most expensive step, already starts in round 3 we
can insert two rounds of interactive reduction as described in Section 4.2 without increasing the round
complexity above 9 rounds. For practical parameters this would give us enough of a reduction to make the
prover’s computation comparable to the schemes with linear O(N) computation.

The figures in Table 1 are for non-optimized versions of the schemes. All of the schemes may for
instance benefit from the use of multi-exponentiation techniques, see e.g. Lim [Lim00] for how to compute
a product of n exponentiations using only O(n

logn) multiplications. The schemes may also benefit from
randomization techniques, where the verifier does a batch verification of all the equations it has to check.

Experimental results. We implemented our shuffle argument in C++ using the NTL library by Shoup [Sho09]
for the underlying modular arithmetic. We experimented with five different implementations to compare
their relative merit:

1. Without any optimizations at all.

2. Using multi-exponentiation techniques.

3. Using multi-exponentiation and the Fast Fourier transform.

4. Using multi-exponentiation and a round of the interactive technique with µ = 4 and Toom-Cook for
m′ = 4 giving m = µm′ = 16.

5. Using multi-exponentiation and two rounds of the interactive technique first with µ = 4 and Toom-
Cook for m′ = 4 giving m = µ2m′ = 64.

In our experiments we used ElGamal encryption and commitments over the same group G, which was
chosen as an order q subgroup of Z∗p, where |q| = 160 and |p| = 1024. These security parameters are on the
low end for present day use but facilitate comparison with earlier work. The results can be found in Table 2.

Optimization Total time Time P Time V Size
m = 8 Unoptimized 570 462 108 4.3 MB

Multi-expo 162 125 37
FFT 228 190 38

m = 16 Unoptimized 900 803 97 2.2 MB
Multi-expo 193 169 24
FFT 245 221 24
Toom-Cook 139 101 38 2.2 MB

m = 64 Multi-expo 615 594 21 0.7MB
FFT 328 307 20
Toom-Cook 128 91 18 MB

Table 2: Run time of the shuffle arguments in seconds on a Core2Duo 2.53 GHz, 3 MByte L2-Cache, 4
GByte Ram machine for N = 100, 000 and different choices of m.

Table 2 states the results for N = 100, 000, m = 8, 16, 64 on our machine. We see that the plain
multi-exponentiation techniques yield better results than the FFT method for small m; the better asymptotic

27

behavior of the FFT only kicks in for m > 16. As expected the Toom-Cook inspired version with added
interaction has the best running time and communication cost.

Comparison with other implementations. Furukawa, Miyauchi, Mori, Obana and Sako [FMM+02] gave
performance results for a mix-net using a version of the Furukawa-Sako [FS01] shuffle arguments. They
optimized the mix-net by combining the shuffling and decryption operations into one. They used three
shuffle centers communicating with each other and their results include both the process of shuffling and the
cost of the arguments. So, to compare the values we multiply our shuffle argument times with 3 and add the
cost of our shuffling operation on top of that. The comparison can be found in Table 3.

N = 100, 000 [FMM+02] This paper
Single argument 51 min 15 min
Argument size 66 MB 0.7 MB
Total mix-net time 3 hrs 44 min 53 min

Table 3: Runtime comparison of [FMM+02] (CPU: 1 GHz, 256 MB) to our shuffle argument (Toom-Cook
with m = 64, CPU: 1.4 GHz, 4 GB) .

We expected to get better performance than they did and indeed we see that our argument is much faster
and the communication is a factor 100 smaller. When adding the cost of shuffling and decryption to our
argument we still have a speedup of a factor 3 in Table 3 when comparing the two mix-net implementations
and taking the difference in the machines into account.

Recently, Furukawa et al. [FMS10] announced a new implementation based on elliptic curve groups.
Due to the speed of using elliptic curves this gave them a speedup of a factor 3. A similar speedup can be
expected for our shuffle argument if we switch to using elliptic curves in our implementation.

Stamer [Sta05] reported on an implementation of Groth’s shuffle [Gro10]. However, this was an unop-
timized version and he only reported on results up to N = 1, 000.

Recently Wikström made a complete implementation of a mix-net in Java in [Wik10] called Verificatum,
which is based on the shuffle argument in [TW10]. To produce comparable data, we ran the demo file
with only one mix party in the non-interactive mode using the same modular group as in our protocol.
We only counted the time of the relevant parts. As described in Table 1 the theoretical performance of
the shuffle argument takes 20N exponentiations, our prover needs with Toom-Cook and 2 extra rounds of
interaction 12N exponentiations and our verifier 4N , so in total 16N exponentiations. So we expect a
similar running time for the Verificatum mix-net. As shown in Table 4 we perform slightly better, but due to
the different programming languages used and different levels of optimization in the code we will not draw
any conclusion except that both protocols are efficient and usable in current applications. In terms of size
it is clear that our arguments leave a much smaller footprint than Verificatum; we save a factor 50 in the
communication.

N = 100, 000 [TW10] This paper Toom-Cook
Single argument 5 min 2 min
Argument size 37.7 MB 0.7 MB

Table 4: Runtime comparison of [TW10] to our shuffle argument on our machine (CPU: 2.54 GHz, MB) .

28

Acknowledgment

We would like to thank Douglas Wikström for discussions and help regarding our comparison with the
shuffle argument used in Verificatum [Wik10].

References

[Abe98] M. Abe. Universally verifiable mix-net with verification work independent of the number of
mix-servers. EUROCRYPT, LNCS vol. 1403:437–447, 1998.

[Abe99] M. Abe. Mix-networks on permutation networks. ASIACRYPT, LNCS vol. 1716:258–273,
1999.

[AH01] M. Abe and F. Hoshino. Remarks on mix-network based on permutation networks. PKC,
LNCS vol. 1992:317–324, 2001.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–88, 1981.

[Coo66] S. Cook. On the minimum computation time of functions. PhD thesis, Department of Mathe-
matics, Harvard University, 1966. http://cr.yp.to/bib/1966/cook.html.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Math. Comp., 19:297–301, 1965.

[DK00] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. EURO-
CRYPT, LNCS vol. 1807:557–572, 2000.

[ElG84] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
CRYPTO, LNCS vol. 196:10–18, 1984.

[FMM+02] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implementation of a universally
verifiable electronic voting scheme based on shuffling. Financial Cryptography, LNCS vol.
2357:16–30, 2002.

[FMS10] J. Furukawa, K. Mori, and K. Sako. An implementation of a mix-net based network vot-
ing scheme and its use in a private organization. Towards Trustworthy Elections, LNCS vol.
6000:141–154, 2010.

[FS01] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. CRYPTO, LNCS vol.
2139:368–387, 2001.

[Fur05] J. Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions,
88-A(1):172–188, 2005.

[GI08] J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. EU-
ROCRYPT, LNCS vol. 4965:379–396, 2008.

[GL07] J. Groth and S. Lu. Verifiable shuffle of large size ciphertexts. PKC, LNCS vol. 4450:377–392,
2007.

[GMY06] J. Garay, P. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signa-
tures. J. Cryptology, 19(2):169–209, 2006.

29

[Gro04] J. Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3,
BRICS, 2004. PhD thesis. xii+119, 2004.

[Gro09] J. Groth. Linear algebra with sub-linear zero-knowledge arguments. CRYPTO, LNCS vol.
5677:192–208, 2009.

[Gro10] J. Groth. A verifiable secret shuffle of homomorphic encryptions. J. Cryptology, 23(4):546–
579, 2010.

[JJR02] M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting by ran-
domized partial checking. USENIX Security Symposium, pages 339–353, 2002.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics
Dokl., 7:595–596, 1963.

[Lim00] C. Lim. Efficient multi-exponentiation and application to batch verification of digital signa-
tures. http://dasan.sejong.ac.kr/˜chlim/pub/multiexp.ps, 2000.

[Lin03] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol-
ogy, 16(3):143–184, 2003.

[Nef01] C. A. Neff. A verifiable secret shuffle and its application to e-voting. ACM CCS, pages 116–
125, 2001.

[Nef03] C. A. Neff. Verifiable mixing (shuffling) of elgamal pairs. http://people.csail.mit.
edu/rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf,
2003.

[PBDV04] K. Peng, C. Boyd, E. Dawson, and K. Viswanathan. A correct, private, and efficient mix
network. PKC, LNCS vol. 2947:439–454, 2004.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
CRYPTO, LNCS vol. 576:129–140, 1991.

[Sho09] V. Shoup. Ntl library. http://www.shoup.net/ntl/, 2009.

[SK95] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the imple-
mentation of a voting booth. EUROCRYPT, LNCS vol. 921:393–403, 1995.

[Sta05] H. Stamer. Efficient electronic gambling: An extended implementation of the toolbox for
mental card games. WEWoRC, P-74:1–12, 2005.

[Too00] A. Toom. The complexity of a scheme of functional elements realizing the multiplication
of integers. http://www.de.ufpe.br/˜toom/my_articles/engmat/MULT-E.
PDF, 2000.

[TW10] B. Terelius and D. Wikström. Proofs of restricted shuffles. AFRICACRYPT, LNCS vol.
6055:100–113, 2010.

[Wik02] D. Wikström. The security of a mix-center based on a semantically secure cryptosystem. IN-
DOCRYPT, LNCS vol. 2551:368–381, 2002.

[Wik09] D. Wikström. A commitment-consistent proof of a shuffle. ACISP, LNCS vol. 5594:407–421,
2009.

[Wik10] D. Wikström. Verificatum. http://www.verificatum.com/, 2010.

30

