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Abstract. Structure-preserving signatures are signatures defined over bilinear groups that
rely on generic group operations. In particular, the messages and signatures consist of group
elements and the verification of signatures consists of evaluating pairing product equations.
Due to their purist nature structure-preserving signatures blend well with other pairing-
based protocols.
We show that structure-preserving signatures must consist of at least 3 group elements when
the signer uses generic group operations. Usually, the generic group model is used to rule out
classes of attacks by an adversary trying to break a cryptographic assumption. In contrast,
here we use the generic group model to prove a lower bound on the complexity of digital
signature schemes.
We also give constructions of structure-preserving signatures that consist of 3 group elements
only. This improves significantly on previous structure-preserving signatures that used 7
group elements and matches our lower bound. Our structure-preserving signatures have
additional nice properties such as strong existential unforgeability and can sign multiple
group elements at once.
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1 Introduction

Digital signatures are fundamental cryptographic primitives used as building blocks in countless
scenarios. Often, signatures are combined with zero-knowledge (ZK) proof systems, for example
when constructing privacy-preserving cryptographic protocols. While suitable signature schemes
for such cases have long been known, e.g., the schemes of Camenisch and Lysyanskaya [CL02,CL04],
they were constructed with the intent to be used with interactive ZK proofs. The reason was the
absence of an efficient non-interactive zero-knowledge (NIZK) proof system. Moreover, the only
way to construct efficient NIZK proofs was using certain heuristics, e.g., random oracles, which
transform interactive ZK proofs into NIZK proofs. In [GS08], Groth and Sahai presented the first
practical NIZK proof system for a non-trivial class of languages which does not resort to such
heuristics. It is based on bilinear maps and is designed to be used on certain satisfiable systems of
equations. The most interesting type of equation is the so-called “pairing-product equation” for
which the proofs are also fully extractable, and therefore the proof system yields NIZK proofs of
knowledge.

As pointed out in [AFG+10], many previous signatures scheme were not fully “compatible”
with pairing-product equations. Even if the verification algorithm used pairing-product equations,
the signatures and messages were not composed entirely of group elements and thus were not ideal
counterparts for the pairing product equations of Groth-Sahai proofs. That is why [AFG+10] de-
fined the notion of structure-preserving signatures which requires verification keys, messages, and
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signatures to be composed entirely of group elements and the verification equations to use pairing-
product equations. Equipped with such signatures, one can easily design modular cryptographic
protocols which rely on signatures and NIZK proofs and instantiate them efficiently. Of course
some cryptographic protocols find other ingenious efficient solutions but these are specific to their
tasks. In contrast, modular design makes constructions easier to build, less prone to errors, and
provide a good alternative for efficiency comparisons. Moreover, modular constructions can be
realized under different assumptions by choosing appropriate instantiations of the building blocks.
Applications of structure-preserving signatures combined with Groth-Sahai proofs are numerous:
group signatures, blind signatures, delegatable credentials, oblivious transfer, credential-based
identification/key-exchange with hierarchical certification, etc.

Efficient structure-preserving signatures were presented in [AFG+10] and were applied to the
construction of round-optimal blind signatures and fully-secure group signatures with concurrent
join protocols. Although they were efficient, it was left as an open problem to find the optimal
signature size and determine whether more efficient schemes can be constructed. These are the
problems we consider in this work.

1.1 Our contribution

Results. We prove lower bounds on the complexity of structure-preserving signatures based on
asymmetric bilinear groups. As far as we are aware, this is the first non-trivial lower bound for
the complexity of practical signature schemes. We also construct a structure-preserving signature
scheme that matches the lower bounds giving an optimal solution in terms of efficiency.

We demonstrate that a structure-preserving signature scheme must use at least two pairing
product equations to verify a signature. Any structure-preserving signature scheme where the
verification only uses one pairing product equation can be broken with a random message attack.

We also give a lower bound on the size of a signature. A structure-preserving signature with
less than 3 group elements is vulnerable to a random message attack. The lower bound holds even
when the message is a single group element.

Finally, we prove that the lower bounds are optimal by presenting a structure-preserving sig-
nature scheme where the verification of signatures uses only two verification equations and the
signatures consist of only 3 group elements.

Our signature scheme has several nice properties. First, it is structure preserving. Second, it
is strongly existentially unforgeable against adaptive chosen message attacks. Third, messages to
be signed can consist of many group elements, which can be drawn from both of the base groups
of the bilinear map.

The existential unforgeability of our signature scheme against adaptive chosen message attacks
corresponds to an interactive cryptographic assumption, which we prove is true when the adversary
only uses generic group operations. By adding a few extra group elements to the signatures (1
or 3 depending on whether the messages only contain elements in one base group or contains a
mix of elements from both base groups) we can base security on a non-interactive cryptographic
assumption.

Techniques. The lower bound on the number of pairing product equations needed in the verification
process follows from a demonstration that any two signatures on two different random messages
can be combined to yield signatures on different messages.

However, when there are two or more verification equations, the analysis of the number of
group elements involved in a signature becomes intricate. We base our analysis on the signer
being a generic algorithm. This differs from the standard use of the generic group model to rule
out classes of attacks on cryptographic assumptions since the analysis is based on what the signing
algorithm can do, not what some arbitrary unknown adversary can do. Arguably this is a more
compelling way to use the generic group model since the analysis only fails for signature schemes
where the designer invents a non-generic signing algorithm.

A generic signer must create signatures that are related to the messages in a specific way.
Furthermore, the correctness of the signature scheme implies that signatures created this way must
be valid signatures. With these two facts in mind, we analyze the pairing product equations in the



verification and show that all pairing product equations must be linearly related if the signatures
consist of 1 or 2 group elements. We conclude that they can be replaced by an equivalent single
verification equation. But that would make the signature scheme vulnerable to a random message
attack.

Our work on lower bounds on structure-preserving signatures gives insight into what a structure-
preserving signature with more group elements should look like. The verification equations must
be organized such that a generic signer can use the secret signing key to solve them for arbitrary
messages. A random choice of 2 or more verification equations is unlikely to be solvable for a
generic signing algorithm. With signature sizes of 3 or more group elements, however, it is pos-
sible to carefully select the verification equations such that they are solvable by a generic signer.
We find such a set of verification equations that are solvable by a generic signer and at the same
time resists generic attackers with access to an adaptive chosen message attack.

1.2 Related work

Lower bounds for cryptographic protocols have been studied extensively. For some tasks it is pos-
sible to give information-theoretic lower bounds; ciphertexts must, for instance, be longer than
plaintexts to enable correct decryption. In the context of zero-knowledge proofs lower bounds on
the round complexity [GO94] have been found by exploiting the tension between soundness and
zero-knowledge. However, these lower bounds do not readily apply to digital signatures where the
hash-and-sign paradigm rules out strong information-theoretic bounds on the size and the proto-
cols are non-interactive by definition. Gennaro, Gertner and Katz [GGK03] instead investigated
the complexity of digital signatures that only make black-box calls to a one-way permutation and
found asymptotic lower bounds on the number of black-box queries. In contrast, our lower bounds
apply to practical pairing-based signature schemes.

The generic group model [Nec94,Sho97] is widely used in pairing-based cryptography to rule
out generic attacks on cryptographic assumptions. However, there has been little work on using
the generic group model to prove lower bounds on the efficiency of cryptographic protocols except
for Bangerter, Camenisch and Krenn [BCK10] that gave lower bounds on the knowledge error
in certain Sigma-protocols and Ostrovsky and Skeith [OS08] that gave lower bounds on single-
server private information retrieval protocols based on homomorphic encryption. The generic group
model has not been used to give lower bounds for the complexity of signature schemes.

The first structure-preserving signatures were presented by Groth [Gro06] who used them to
build group signatures. Groth’s signature scheme is based on the decision linear assumption but
consists of thousands of group elements and is therefore not practical.

Green and Hohenberger [GH08] presented a structure-preserving signature scheme that pro-
vides security against random-message attacks, which they used to build a universally composable
adaptive oblivious transfer protocol.

Cathalo, Libert and Yung [CLY09] constructed a partially structure-preserving signature scheme
which signs only a single group element and used it for the construction of a group-encryption
scheme.

Fuchsbauer [Fuc09] presented a structure-preserving signature scheme for signing messages
that are Diffie-Hellman pairs. Fuchsbauer’s scheme is automorphic, i.e., the public verification
keys belong to the message space. Automorphic signatures have several applications including
blind signatures, group signatures, anonymous proxy signatures and anonymous delegatable cre-
dentials [Fuc09,FV10,Fuc11].

Abe, Haralambiev and Ohkubo [AHO10] presented several constructions of structure-preserving
signatures and found applications to blind signatures and group signatures. A merged version
of [Fuc09,AHO10,Gro09] first coined the term structure-preserving signatures. The most efficient
structure-preserving signature scheme from [AFG+10] can sign multiple group elements belonging
to one of the base groups with signatures that consist of 7 group elements and use two pairing
product equations in the verification. In comparison, we present a scheme that can sign mes-
sages that contain group elements from both base groups and only uses 3 group elements in the
signatures.



2 Preliminaries

2.1 Bilinear groups

Throughout the paper we let G be a bilinear group generator that on security parameter k returns
(p,G,H,T, e,G,H)← G(1k) with the following properties:

– G,H,T are groups of prime order p.
– e : G×H→ T is a bilinear map such that ∀U ∈ G, ∀V ∈ H, ∀a, b ∈ Z : e(Ua, V b) = e(U, V )ab.
– G generates G, H generates H and e(G,H) generates T.
– There are efficient algorithms for computing group operations, evaluating the bilinear map,

comparing group elements and deciding membership of the groups.

There are many ways to set up bilinear groups. We will work in what Galbraith, Paterson and
Smart [GPS08] call type III groups, where there are no efficiently computable isomorphisms G→ H
or H → G. We focus on type III groups here because they have the most efficient instantiations
and therefore the highest relevance for cryptographic purposes.

In a group (p,G,H,T, e,G,H) generated by G we refer to deciding group membership, com-
puting group operations in G,H or T, comparing group elements and evaluating the bilinear map
as the generic group operations. In the signature schemes we construct we only use generic group
operations.

As a matter of notation, we will mostly use capital letters A,G,M,R, S, U for group elements
in G and capital letters B,H,N, T, V,W for group elements in H and capital letter Z for group
elements in T. We will use small letters r, s, t, . . . for discrete logarithms of group elements with
respect to base G or base H. We use Greek letters α, β, . . . for hidden field elements in Zp chosen
by algorithms as part of their operation.

2.2 Secure signature schemes

A digital signature scheme over groups generated by a bilinear group generator G is a triple of
efficient algorithms (K,S,V). The key generation algorithm K takes a description of the bilinear
group as input and returns a public verification key V K and a secret signing key SK. The signing
algorithm S takes a signing key SK and a message M in the message space M defined by GK
and V K as input and returns a signature Σ. The verification algorithm V takes the verification
key V K, a message M and the signature Σ and returns either 1 (accept) or 0 (reject).

Definition 1 (Correctness). We say the signature scheme (K,S,V) over bilinear group gener-
ator G is (perfectly) correct if for all security parameters k ∈ N

Pr[GK ← G(1k); (V K, SK)← K(GK);M ←M;Σ ← SSK(M) : VVK(M,Σ) = 1] = 1.

A signature scheme is said to be existentially unforgeable if it is hard to forge a signature on a
new message that has not been signed before. The adversary may see signatures on other messages
before making the forgery. We distinguish between a random message attack, where the adversary
gets pairs of random messages and corresponding signatures, and an adaptive chosen message
attack where the adversary can choose arbitrary messages and receive signatures on them. Our
signatures will be secure against adaptive chosen message attack, but our lower bounds on the
complexity of signature schemes will hold even for the weaker random message attacks. We now
formally define existential unforgeability against an adaptive chosen message attacks.

Definition 2 (EUF-CMA). A signature scheme (K,S,V) over bilinear group generator G is
existentially unforgeable against adaptive chosen message attacks if for all non-uniform polynomial
time A

Pr[GK ← G(1k); (V K, SK)← K(GK); (M,Σ)← ASSK(·)(V K) :

M /∈ Q ∧ VV K(M,Σ) = 1] = negl(k),

where Q is the set of queries made by A to the signing oracle.



Sometimes it is also useful to prevent the adversary from issuing a new signature for a message
that has already been signed. A signature scheme is strongly existentially unforgeable if it is hard
to find a signature on a message that has not been signed before and also hard to find a new
signature for a message that has already been signed.

Definition 3 (sEUF-CMA). A signature scheme (K,S,V) over bilinear group generator G is
strongly existentially unforgeable against adaptive chosen message attacks if for all non-uniform
polynomial time A

Pr[GK ← G(1k); (V K, SK)← K(GK); (M,Σ)← ASSK(·)(V K) :

(M,Σ) /∈ Q ∧ VV K(M,Σ) = 1] = negl(k),

where Q is the set of message-signature pairs from A’s queries to the signing oracle.

2.3 Structure-preserving signature schemes

In this paper, we study structure-preserving signature schemes [AFG+10]. In a structure preserv-
ing signature scheme the verification key, the messages and the signatures consist only of group
elements and the verification algorithm evaluates the signature by deciding group membership of
elements in the signature and by evaluating pairing product equations, which are equations of the
form ∏

i

∏
j

e(Ai, Bj)
aij = Z,

where A1, A2, . . . ∈ G, B1, B2, . . . ∈ H, Z ∈ T are group elements appearing in GK,V K,M or Σ
and a11, a12, . . . ∈ Z are constants. Structure-preserving signatures are extremely versatile because
they mix well with other pairing-based protocols. Groth-Sahai proofs [GS08] are for instance
designed with pairing product equations in mind and can therefore easily be applied to structure-
preserving signatures.

Definition 4 (Structure-preserving signatures). A signature scheme (K,S,V) over bilinear
group generator G is said to be structure preserving if

– G generates a bilinear group GK = (p,G,H,T, e,G,H),

– the verification key consists of GK and group elements in G and H,

– the messages consist of group elements in G and H,

– the signatures consist of group elements in G and H, and

– the verification algorithm evaluates membership in G and H and pairing product equations
with Z = 1.

Our signatures are structure-preserving as defined above. When proving our lower bounds, we will
relax the definition of structure-preserving signatures to allow arbitrary target group elements
Z ∈ T to be included in the verification key and to appear in the verification equations. This
strengthens our results, getting lower bounds in a relaxed model of structure-preserving signatures
and constructing signatures in a strict model of structure-preserving signatures.

Generic signer. Abe et al. [AFG+10] did not explicitly require the signing algorithm to only use
generic group operations when they defined structure-preserving signatures. However, it would be
a natural addition to the definition of structure-preserving signatures because otherwise the cryp-
tographic designer would have to invent some non-generic operations to be used in the signature
scheme and that would be a surprising result in itself. All our signature schemes have a generic
signer; as do all earlier structure-preserving signatures in the literature.



3 Lower bounds on structure-preserving signatures

In this section, we will prove lower bounds on the complexity of structure-preserving signatures.
We summarize our lower bounds in the following main theorem, which follows from Theorems 2,
3 and 4.

Theorem 1. All generic-signer structure-preserving signature schemes that are existentially un-
forgeable against random message attacks must use at least two verification equations and have
signatures consisting of at least three group elements drawn from both G and H. This holds even
when the messages are single group elements and even if we allow the verification key to contain
elements of T.

3.1 Impossibility of one verification equation

Theorem 2. There is no structure-preserving signature with a single verification equation that is
existentially unforgeable against random message attacks.

Proof. Consider a structure preserving signature scheme for messages M ∈ G with the verification
key containing group elements U1, U2, . . . ∈ G, V1, V2, . . . ∈ H, Z ∈ T. Signatures are of the form
(S1, S2, . . . , T1, T2, . . .) with Si ∈ G and Tj ∈ H and are verified by the following verification
equation∏

i

∏
j

e(Si, Tj)
aij ·

∏
i

∏
j

e(Si, Vj)
bij ·

∏
j

e(M,Tj)
cj ·

∏
j

e(M,Vj)
dj ·

∏
i

∏
j

e(Ui, Tj)
eij = Z.

Please note there is no need for terms of the form e(Ui, Vj) because without loss of generality
they can be incorporated into Z ∈ T.

Suppose we get a signature (S1, . . . , T1, . . .) on a random message M ∈ G. Isolating T` and M
in the verification, define for every `

A` =
∏
i

Sai`i ·
∏
i

Uei`i B` =
∏
j 6=`

T
cj
j ·

∏
j

V
dj
j .

Suppose there is an ` for which A` 6= M−c` . We can rewrite the verification equation

e(M,T`)
c`e(A`, T`)e(M,B`) ·

∏
i

∏
j 6=`

e(Si, Tj)
aij ·

∏
i

∏
j

e(Si, Vj)
bij ·

∏
i

∏
j 6=`

e(Ui, Tj)
eij = Z.

If c` = 0 then setting T ′` = T`B
−1
` while keeping the rest of the signature intact gives us a forged

signature on M ′ = MA`, where A` 6= M−c` = M0 = 1. If c` 6= 0 then setting T ′` = T−1` B
− 2

c`

`

while keeping the rest of the signature intact gives us a forged signature on M ′ = M−1A
− 2

c`

` 6= M ,
where the inequality follows from A` 6= M−c` . To avoid forged signatures must therefore, with
overwhelming probability, have A` = M−c` for all `.

If there is overwhelming probability that A`M
c` = 1 for all `, then each T` is cancelled out in

the verification. We can therefore without loss of generality ignore T1, T2, . . . and look at the case
where signatures are of the form (S1, S2, . . .) with Si ∈ G and the verification equation is of the
form ∏

i

∏
j

e(Si, Vj)
bij ·

∏
j

e(M,Vj)
dj = Z.

Obtaining two signatures (S1, S2, . . .) and (S′1, S
′
2, . . .) on two random messages M and M ′ gives

us a signature (S2
1/S

′
1, S

2
2/S

′
2, . . .) on M2/M ′. With overwhelming probability M2/M ′ /∈ {M,M ′}

and we have a forgery. �



3.2 Impossibility of unilateral signatures

Let us call a signature unilateral if it only contains group elements in G or only contains group
elements in H. In other words, a unilateral signature is either of the form (S1, S2, . . .) with Si ∈ G
or of the form (T1, T2, . . .) with Ti ∈ H.

Theorem 3. There is no unilateral generic-signer structure-preserving signature scheme that is
existentially unforgeable against random message attacks.

Proof. Let us without loss of generality look at a signature scheme for single group element messages
M ∈ G. The verification key contains group elements U1, U2, . . . ∈ G, V1, V2, . . . ∈ H, Z1, Z2, . . . ∈
T.

We first look at the case, where signatures are of the form (S1, S2, . . .) with Si ∈ G and fit a
number of verification equations of the form∏

i

∏
j

e(Si, Vj)
bqij ·

∏
j

e(M,Vj)
dqj = Zq.

Given two signatures (S1, . . .) and (S′1, . . .) on random messages M and M ′ we see that (S2
1/S

′
1, . . .)

is a signature on M2/M ′. There is negligible probability of M2/M ′ ∈ {M,M ′} so this gives us an
existential forgery.

Next, consider the case where signatures are of the form (T1, T2, . . .) with Tj ∈ H and satisfy
verification equations of the form∏

j

e(M,Tj)
cqj ·

∏
j

e(M,Vj)
dqj ·

∏
i

∏
j

e(Ui, Tj)
eqij = Zq.

A generic signer chooses (T1, . . .) independently of M because they belong to different groups.
Generating the signature independently of M combined with correctness of the signature scheme
means that the resulting signature must be valid for all messages M so it is trivial to find a
selective forgery after a one-time random message attack. �

3.3 Impossibility of signatures with 2 group elements

Theorem 4. No generic-signer structure-preserving signature scheme with signatures having two
group elements is existentially unforgeable against random message attacks.

Proof. Theorem 3 ruled out the existence of unilateral generic-signer structure-preserving signa-
tures. The remaining question is therefore, whether we can have signatures of the form (S, T )
with S ∈ G and T ∈ H. Suppose without loss of generality that we have a generic-signer
structure-preserving signature scheme for messages M ∈ G. The public verification key contains
U1, . . . ∈ G, V1, . . . ∈ H, Z1, . . . ∈ T and a signature (S, T ) on M satisfies a number of verification
equations of the form

e(S, T )aq ·
∏
j

e(S, Vj)
bqj · e(M,T )cq ·

∏
j

e(M,Vj)
dqj ·

∏
i

e(Ui, T )eqi = Zq.

Without loss of generality we may assume that the signer knows the discrete logarithms of all
the elements in the public verification key. Using generic group operations it can only construct
S = MαGβ and T = Hτ , where α, β, τ may be correlated to each other and the public verification
key but are independent of M . Taking discrete logarithms of the verification equations, we get
equations of the form

(αm+ β)τaq + (αm+ β)
∑
j

vjbqj +mτcq +m
∑
j

vjdqj + τ
∑
i

uieqi = zq.

The correctness of the signature scheme means that these equations are satisfied for any choice of
m. Defining bq =

∑
j vjbqj , dq =

∑
j vjdqj , eq =

∑
i uieqi this means that the choice of α, β and τ

must satisfy pairs of equations of the form

aqατ + bqα+ cqτ + dq = 0 aqβτ + bqβ + eqτ = zq.



By taking suitable non-trivial linear combinations of two such pairs of equations, say equation
q1 and q2, we can eliminate the ατ and βτ terms to get a pair of equations of the form

bα+ cτ + d = 0 bβ + eτ = z.

If b = 0 and c 6= 0 or b = 0 and e 6= 0 we get a fixed τ and T = Hτ is uniquely determined. This
T can therefore without loss of generality be published as part of the verification key making the
signature scheme unilateral. Theorem 3 therefore tells us that if b = 0 then c = 0 and e = 0. This
implies d = 0 and z = 0 as well, and we conclude that the two verification equations q1 and q2 are
linearly related and one of them can without loss of generality be eliminated from the signature
scheme. From Theorem 2 we deduce that there must be at least two verification equations that
are not linearly related giving a linear combination with b 6= 0.

If b 6= 0 we have

α = −c
b
τ − d

b
β = −e

b
τ +

z

b
.

Plugging them into the verification equations gives us equations of the form

−aq
c

b
τ2 + (cq − aq

d

b
− bq

c

b
)τ = bq

d

b
− dq − aq

e

b
τ2 + (eq + aq

z

b
− bq

e

b
)τ = −bq

z

b
+ zq.

If one of the quadratic equations in τ is non-trivial then T can take at most two possible values
T0 or T1. After obtaining signatures on three random messages, two of them would be using the
same T . The adversary would thus have signatures (S, T ) and (S′, T ) on messages M and M ′ and
this would give a signature (S2/S′, T ) on M2/M ′, which with overwhelming probability gives an
existential forgery.

If all the quadratic equations are trivial there are two possibilities. The first possibility is that
a1 = 0, a2 = 0, . . . but then

cq = bq
c

b
dq = bq

d

b
eq = bq

e

b
zq = bq

z

b

and it can be seen that all the verification equations are linearly related and can be replaced with
a single verification equation. Theorem 2 rules out this possibility. The other possibility is that
c = 0 and e = 0. This gives us

cq = aq
d

b
dq = bq

d

b
eq = −aq

z

b
zq = bq

z

b
α = −d

b
β =

z

b
.

Plugging S = MαGβ into the verification equations shows the verification equations completely
ignore T . With all verification equations ignoring T we are back in the unilateral case that we
ruled out in Theorem 3. �

4 Minimal structure-preserving signatures

We will now present a structure-preserving signature scheme that matches the lower bounds we
found in Section 3. The signature scheme is strongly existentially unforgeable against adaptive
chosen message attacks. We can simultaneously sign tuples of messages in G and tuples of messages
in H. A signature consists of three group elements and is verified using two verification equations.

Let us first discuss the case of signing a pair of group elements (M,N) ∈ G×H. Working over
a bilinear group (p,G,H,T, e,G,H) the verification key is of the form (U, V,W,Z) ∈ G × H3. A
signature on a message (M,N) ∈ G×H is of the form (R,S, T ) ∈ G2 ×H and is verified by two
verification equations

e(R, V )e(S,H)e(M,W ) = e(G,Z) e(R, T )e(U,N) = e(G,H).

It is instructive to look at the verification equations from a generic signer’s perspective in
light of the same type of equations we used to prove the lower bounds in Section 3. Using R =



MαGβ , S = MγGδ and T = N εHη we get after taking discrete logarithms of the verification
equations

(αm+ β)v + (γm+ δ) +mw = z (αm+ β)(εn+ η) + un = 1.

The signer does not know the discrete logarithms of M and N so the verification equations should
hold for all choices of m and n. The signer must therefore choose α, β, γ, δ, ε, η ∈ Zp such that the
following equations are satisfied

vα+ γ + w = 0 βv + δ = z αε = 0 αη = 0 βε+ u = 0 βη = 1.

This gives six constraints on α, β, γ, δ, ε, η. An arbitrary pair of equations could in contrast give
eight constraints on the six variables and might not be solvable. Furthermore, if we pick α = 0 we
are left with only four constrains

γ = −w βv + δ = z βε+ u = 0 βη = 1

on the five variables β, γ, δ, ε, η. This makes it possible to have many different solutions to the
equations and avoids R,S or T being constrained to a single fixed value, which would bring us
into conflict with the lower bounds from Section 3.

We extend the signature scheme sketched above in a natural way to sign messages in GkM×HkN .
The full signature scheme can be found in Figure 1.

Key generation K(GK): Parse GK as (p,G,H,T, e, G,H).
Pick at random u1, . . . , ukN , v, w1, . . . , wkM , z ← Z∗p and compute

Ui = Gui V = Hv Wi = Hwi Z = Hz.

Return the verification key V K = (GK,U1, . . . , UkN , V,W1, . . . ,WkM , Z) and the signing key
SK = (V K, u1, . . . , ukN , v, w1, . . . , wkM , z).

Signing SSK(M1, . . . ,MkM , N1, . . . , NkN ):
Given (M1, . . . ,MkM , N1, . . . , NkN ) ∈ GkM ×HkM pick r ← Z∗p and compute

R = Gr S = Gz−rv
∏
i

M−wi
i T = (H

∏
i

N−ui
i )

1
r .

Return the signature (R,S, T ).
Verification VVK((M1, . . . ,MkM , N1, . . . , NkN ), (R,S, T )):

Accept if M1, . . . ,MkM , R, S ∈ G and N1, . . . , NkN , T ∈ H and

e(R, V )e(S,H)
∏
i

e(Mi,Wi) = e(G,Z) ∧ e(R, T )
∏
i

e(Ui, Ni) = e(G,H).

Fig. 1. Structure-preserving signature scheme for messages in GkM ×HkN .

Theorem 5. The signature scheme (K,S,V) described in Figure 1 is a structure-preserving sig-
nature scheme over G that is strongly existentially unforgeable against adaptive chosen message
attacks in the generic group model.

Proof. The verification key, the messages and the signatures consist of group elements in G and
H and the verification consists of verifying two pairing product equations, so it is a structure-
preserving scheme. Correctness follows from verifying that

e(Gr, Hv)e(Gz−vr
∏
i

M−wi
i , H)

∏
i

e(Mi, H
wi) = e(G,Hz)

e(Gr, (H
∏
i

N−ui
i )

1
r )
∏
i

e(Gui , Ni) = e(G,H).



Lemma 1 shows that the signature scheme is secure in the generic group model for kM = 1
and kN = 2. We will show that if the signature scheme is secure for kM = 1 and kN = 2, then
the signature scheme is also secure when using arbitrary constants kM ≥ 1 and kN ≥ 2. In the
following we write (K,S,V) and (K′,S ′,V ′) to distinguish between the two settings. We will show
that if there is an adversary A′ that can break (K′,S ′,V ′), then there is an adversary A that can
break (K,S,V).

The adversary A gets as input a verification key V K = (GK,U1, U2, V,W1, Z). It picks at
random αi, βi ← Zp and γi, δi ← Zp and computes

U ′1 = Uγ11 U δ12 . . . U ′kN = U
γkN
1 U

δkN
2 W ′1 = Wα1

1 Hβ1 . . . W ′kM = W
αkM
1 HβkM .

It gives the verification key V K ′ = (GK,U ′1, . . . , U
′
kN
, V,W ′1, . . . ,W

′
kN
, Z) to A′. Conditioned on

the overwhelmingly likely event U ′i 6= 1 and W ′i 6= 1 this has the same distribution as a normal
key produced by (K′,S ′,V ′).

When A′ asks for a signature on (M ′1, . . . ,M
′
kM
, N ′1, . . . , N

′
kN

) ∈ GkM ×HkN the adversary A
computes

M =
∏
i

(M ′i)
αi N1 =

∏
i

(N ′i)
γi N2 =

∏
i

(N ′i)
δi .

It asks the signing oracle for a signature (R,S, T ) on (M,N1, N2). It then computes S′ = S
∏
i(M

′
i)
−βi .

It returns the signature (R,S′, T ) to A. It is straightforward to verify that a valid signature is
returned to A′. Furthermore, we observe that the returned signature is uniformly random over
all possible solutions to the two verification equations just like a normal signature would be. It is
therefore a good simulation.

Suppose A′ produces a signature (R′, S′, T ′) on some (M ′1, . . . ,M
′
kM
, N ′1, . . . , N

′
kN

) satisfying
the two verification equations using the key V K ′. A can translate that into a valid signature
(R′, S, T ′) on a message (M,N1, N2) using V K by computing

S = S′
∏
i

(M ′i)
βi M =

∏
i

(M ′i)
αi N1 =

∏
i

(N ′i)
γi N2 =

∏
i

(N ′i)
δ.

We now have a strong existential forgery unless (R′, S, T ′) has been used before in some query q

to sign a message (M (q), N
(q)
1 , N

(q)
2 ) = (M,N1, N2). That would give∏

i

(M ′i)
αi =

∏
i

(M
(q)′

i )αi

∏
i

(N ′i)
γi =

∏
i

(N
(q)′

i )γi .

Observe that αi and γi are information-theoretically hidden to A′ who only sees W ′i = Wαi
1 Hβi

and U ′i = Uγi1 U
δi
2 . Furthermore, no matter the values of αi, γi the adversary gets uniformly random

signatures as answer to the chosen message attacks, so these signatures do not reveal anything
about the αi’s and the γi’s either. The only way the adversary can have more than negligible

chance of success is by choosing M ′1 = M
(q)′

1 , . . . ,M ′kM = M
(q)′

kM
, N ′1 = N

(q)′

1 , . . . , N ′kN = N
(q)′

kN
.

This means A′ has repeated the message from query q and some calculation shows that it has also
repeated the signature (R(q)′ , S(q)′ , T (q)′). We conclude that A′ has negligible chance of breaking
the strong existential unforgeability against chosen message attacks on the signature scheme with
kM ≥ 1 and kN ≥ 2.

The remaining case to consider is kM = 0 or kN ∈ {0, 1}. Here it is easy to get a secure
signature scheme, because we can simply require that the signer always uses M = 1 or N1 = 1 or
N2 = 1, which can be checked in the verification step. Furthermore, when we always have M = 1
or N1 = 1 or N2 = 1 then the corresponding W1 or U1 or U2 is not needed in the verification key.
�

Lemma 1. The signature scheme (K,S,V) described in Figure 1 is strongly existentially unforge-
able against adaptive chosen message attacks in the generic group model for messages (M,N1, N2) ∈
G×H2.



Proof. Let us for ease of notation write W instead of W1 and U,U ′ instead of U1, U2. We write
(M,N,N ′) ∈ G × H2 for the messages we are signing. We consider an adversary that only uses
generic group operations on the group elements it sees and is unaware of the random u, u′, v, w, z
used in the public key and is unaware of the randomness ri used to form the signature in sign-
ing query number i. Seeing signatures (Ri, Si, Ti) on queries (Mi, Ni, N

′
i) the generic adversary

is restricted to picking ρ, ρu, ρu′ , ρ1, ρ
′
1, . . . , σ, σu, σu′ , σ1, σ

′
1, . . . , τ, τv, τw, τz, τ1, . . . ∈ Zp and com-

puting

R = GρUρu(U ′)ρu′
∏
i

Rρii S
ρ′i
i , S = GσUσu(U ′)σu′

∏
i

Rσii S
σ′
i
i , T = HτV τvW τwZτz

∏
i

T τii .

The queries (Mi, Ni, N
′
i) are computed as products ofG,U,U ′, R1, S1, . . . , Ri−1, Si−1 andH,V,W,Z, T1, . . . , Ti−1

raised to exponents chosen by the adversary and the message (M,N,N ′) for which a forgery is
obtained is computed similarly. Taking discrete logarithms we have

mi = linear combination of 1, u, u′, r1, s1, . . . , ri−1, si−1

m = linear combination of 1, u, u′, r1, s1, . . . , rq, sq

r = ρ+ ρuu+ ρu′u′ +
∑
i

ρiri +
∑
i

ρ′i(z − riv −miw)

s = σ + σuu+ σu′u′ +
∑
i

σiri +
∑
i

σ′i(z − riv −miw)

ni, n
′
i = linear combination of 1, v, w, z, t1, . . . , ti−1

n, n′ = linear combination of 1, v, w, z, t1, . . . , tq

t = τ + τvv + τww + τzz +
∑
i

τi
1− uni − u′n′i

ri

We first consider elements formal polynomials in the variables u, u′, v, w, z, r1, . . . , rq and show that
the generic adversary cannot make an existential forgery when they are viewed as formal multi-
variate polynomials. Later, we will then consider the risk of two different formal polynomials result-
ing in identical values when evaluated over concrete random choices of u, u′, v, w, z, r1, . . . , rq ∈ Z∗p.

Taking discrete logarithms of the first verification equation gives us rv + s + mw = z, which
means

0 = ρv + ρuuv + ρu′u′v +
∑
i

ρiriv +
∑
i

ρ′i(vz − riv2 −mivw)

+ σ + σuu+ σu′u′ +
∑
i

σiri +
∑
i

σ′i(z − riv −miw) +mw − z.

Since si = z − riv − miw we have that m1, . . . ,mq and m are multi-variate polynomials in
u, u′, v, w, z, r1, . . . , rq. Each mi has degree at most i and m has degree at most q + 1.

Looking at the coefficients for 1, u, u′, ri we see that σ = 0, σu = 0, σu′ = 0 and σi = 0 giving us
s =

∑
i σ
′
i(z−riv−miw). Looking at the coefficients for v, uv, u′v, riv

2 we get ρ = 0, ρu = 0, ρu′ =
0, ρ′i = 0 giving us r =

∑
i ρiri. The coefficients for riv give us σ′i = ρi so s =

∑
i ρi(z−riv−miv).

Switching to the second verification equation we have rt + un + u′n′ = 1. Define π =
∏
i ri

and πj =
∏
i6=j ri such that π = πjrj . Multiplying the equation on both sides with π we get

rtπ + unπ + u′n′π = π so

0 =

(∑
i

ρiri

)τπ + τvvπ + τwwπ + τzzπ +
∑
j

τj(πj − unjπj − u′n′jπj)


+unπ + u′n′π − π.

Observe, n1, n
′
1, . . . , nq, n

′
q, n, n

′ are polynomials in u, u′, v, w, z, r−11 , . . . , r−1q . Each r−1i has at most
degree 1 and a closer inspection reveals that n1π1, n

′
1π1, . . . , nqπq, n

′
qπq and nπ, n′π are polynomials

in u, u′, v, w, z, r1, . . . , rq of degree at most q + 1.



Looking at the coefficients for π we see that there must exist some ` such that ρ` 6= 0 and
τ` 6= 0. Looking at the coefficients for r`π, r`vπ, r`wπ, r`zπ we see that τ = 0, τv = 0, τw = 0, τz = 0.
Looking at the coefficients for r`πj we see that τj = 0 for j 6= `. Looking at the coefficients for

riπ` we see that ρi = 0 for i 6= `. This means r = ρ`r` and t = τ`
1−un`−u′n′

`

r`
. We now have

ρ`r` · τ`
1− un` − u′n′`

r`
π − unπ − π = 0.

From the coefficient of π we deduce that τ` = 1
ρ`

. The equation now reads

π − un`π − u′n′`π + unπ + u′n′π − π = 0,

which implies un`π + u′n`′π = unπ + u′n′`π. Plugging in all the possible linear combinations of

1, v, w, z,
1−un1−u′n′

1

r1
, . . . ,

1−unq−u′n′
q

rq
that can make n, n′, n`, n

′
` in this equation, we get n = n`

and n′ = n′`.
Going back to the first equation we now have r = ρ`r` and therefore s = ρ`(z − r`v −m`v),

which gives us the equality

ρ`r`v + ρ`(z − r`v −m`v) +mv − z = 0.

Looking at the coefficient of z we conclude ρ` = 1. That tells us m = m`. The adversary has
therefore reused m = m` and n = n`, n

′ = n′` for some ` and not obtained an existential forgery.
Furthermore, r = r`, s = s`, t = t` so the adversary cannot even find a new signature on the same
message.

We have now seen that the adversary cannot make an existential forgery when viewing group
elements as formal multi-variate polynomials. However, it may be the case that for concrete choices
of variables, two formally different polynomials evaluate to the same value. In this case, we cannot
simulate the generic group and it may be that the adversary can make an existential forgery.
The verification equations can be evaluated using generic group operations, so without loss of
generality we can assume the adversary knows it when it has made a successful forgery. Since the
polynomials have degree O(q) we get with a birthday paradox argument and the Schwartz-Zippel
lemma that the probability of this type of error occurring in the generic group simulation is a

negligible O( q
3

p ) when the adversary makes O(q) generic group operations. �

5 Other aspects of structure-preserving signatures

5.1 Strong one-time signatures based on standard assumptions

We present below a strong one-time signature scheme for messages from GkM×HkN with signature
size 5 group elements. If the message is one-sided, i.e., (M1, . . . ,MkM ) ∈ GkM , there is a simpler
signature with 2 group elements and a single verification equation e(R,H)e(S, V )

∏
i e(Mi, Vi) =

e(G,W ) [AHO10]. These schemes complement the lower bounds in Section 3 where it was shown
that structure-preserving signature schemes with a single verification equation or with unilateral
signatures or with signatures with less than 3 group elements do not exist if the adversary gets
access to signatures on two random messages.

Key generation K(GK): Parse GK as (p,G,H,T, e,G,H).
Pick w, u, u1, . . . , ukN , v, z, v1, . . . , vkM ← Z∗p at random and compute

W = Hw, U = Gu, U1 = Gu1 , . . . , UkN = GukN , and
Z = Hz, V = Hv, V1 = Hv1 , . . . , VkM = HvkM .

Return verification key V K = (GK,U,U1, . . . , UkN , V, Z, V1, . . . , VkM ,W ) and signing key
SK = (V K,w, u, u1, . . . , ukN , v, z, v1, . . . , vkM ).



Signing SSK(M1, . . . ,MkM , N1, . . . , NkN ): Given (M1, . . . ,MkM , N1, . . . , NkN ) ∈ GkM × HkN
pick at random s1, s2, t← Z∗p and compute

T = Gt, S2 = Hs2 , R2 = HtS−u2

∏
i

N−ui
i

S1 = Gs1 , R1 = GwS−v1 T−z
∏
i

M−vii

Verification VV K((M1, . . . ,MkM , N1, . . . , NkN ), (R1, S1, T,R2, S2)):
Accept if M1, . . . ,MkM , R1, S1, T ∈ G and N1, . . . , NkN , R2, S2 ∈ H and

e(R1, H)e(S1, V )e(T,Z)
∏
i

e(Mi, Vi) = e(G,W ) ∧

e(G,R2)e(U, S2)
∏
i

e(Ui, Ni) = e(T,H)

Theorem 6. The signature scheme is strongly existentially unforgeable against one-time chosen
message attacks if the DDH assumption holds in G and H.

Proof. Let’s denote with (M1, . . . ,MkM , N1, . . . , NkN ) the message queried by the adversary and
with (R1, S1, T,R2, S2) the signature returned by the signing oracle; and with (M ′1, . . . ,M

′
kM
, N ′1, . . . , N

′
kN

)
and (R′1, S

′
1, T

′, R′2, S
′
2) the forged message/signature. We consider two forgery types:

Type 1: (R1, S1, T,M1, . . . ,MkM ) = (R′1, S
′
1, T

′,M ′1, . . . ,M
′
kM

). For such forgeries, we break
the double pairing assumption [AFG+10] which is implied by DDH in G, which states that given
G,F ∈ G is is hard to find non-trivial X,Y ∈ H such that e(G,X)e(F, Y ) = 1. The verification
key and secret key are generated differently for the U,U1, . . . , UkN . Given G,F ∈ G as challenge
group elements for the double pairing assumption, choose α1, β1, . . . , αkN , βkN ← Zp, and set U =
F,U1 = Gα1F β1 , . . . , UkN = GαkN F βkN . Note that Ui 6= 1, for i = 1, . . . , kN , with overwhelming
probability. The other elements of the verification key are computed as described in the key
generation algorithm along with the corresponding secret key elements.

A signing query for a message (M1, . . . ,MkM , N1, . . . , NkN ) is answered by choosing γ, δ ← Z∗p
and setting T = GγF δ. Then, set

R2 = Hγ
∏
i

N−αi
i and S2 = Hδ

∏
i

N−βi

i .

The rest of the signature, R1 and S1, is computed like in the signing algorithm. It is easy to verify
that the verification equations hold.

When the adversary produces a forgery, by the type constrains, it is true that
(R2, S2, N1, . . . , NkN ) 6= (R′2, S

′
2, N

′
1, . . . , N

′
kN

). But then the following equation holds too:

e

(
G,

R2

R′2

)
e

(
U,
S2

S′2

)∏
i

e

(
Ui,

Ni
N ′i

)

= e

(
G,

R2

R′2

∏
i

(
Ni
N ′i

)αi
)
e

(
F,
S2

S′2

∏
i

(
Ni
N ′i

)βi
)

= 1

Let X = R2

R′
2

∏
i

(
Ni

N ′
i

)αi

. If there is j such that Nj 6= N ′j , then with overwhelming probability it is

true that X 6= 1 due to the term (
Nj

N ′
j
)αj and αj being information theoretically hidden from the

adversary’s view. To observe the latter, note that for any choice of αi there is consistent choice of
the parameters chosen by the reduction algorithm which produces the same view for the adversary.
If Ni = N ′i for all i ∈ {1, . . . , kN}, then (R2, S2) 6= (R′2, S

′
2) and e(G,R2/R

′
2)e(F, S2/S

′
2) = 1; that

implies X 6= 1. So, the above equation yields a pair of group elements (X,Y ) 6= (1, 1) for which



e(G,X)e(F, Y ) = 1 which violates the double pairing assumption. Therefore, if DDH holds in G,
any efficient adversary can forge a signature of this type only with a negligible probability.

Type 2: (R1, S1, T,M1, . . . ,MkM ) 6= (R′1, S
′
1, T

′,M ′1, . . . ,M
′
kM

). We break the “dual” of the
double pairing assumption which is implied by DDH in H. The U -elements are computed like in
the key generation algorithm together with the corresponding exponents from the secret key. For
the other elements of the public key, let H,F ∈ H be the challenge pair for the “dual double
pairing assumption”. Then, select αt, βt, α1, β1, . . . , αkM , βkM , γ, δ ← Zp and set W = HγF δ,
V = F , Z = HαtF βt , V1 = Hα1F β1 , . . . , VkM = HαkM F βkM . Like for the previous forgery type,
any V -element is the identity element of H only with negligible probability, so we ignore such
possibility.

To sign a message (M1, . . . ,MkM , N1, . . . , NkN ), compute (T,R2, S2) like in the signing algo-
rithm, which is possible because the corresponding parts of the secret key are known, and set

R1 = GγT−αt

∏
i

M−αi
i and S1 = GδT−βt

∏
i

M−βi

i .

The verification equations hold for the signature (R1, S1, T,R2, S2). Then, let

X =
R1

R′1

(
T

T ′

)αt ∏
i

(
Mi

M ′i

)αi

and Y =
S1

S′1

(
T

T ′

)βt ∏
i

(
Mi

M ′i

)βi

.

Since the verification equations hold both for the queried and the forged signature-message pairs,
it must be true that e(X,H)e(Y, F ) = 1. And from the type constrains, similarly to the earlier
argument, it follows that (X,Y ) 6= (1, 1). Therefore, any adversary which produces a forgery of this
type for the strong one-time signature scheme with non-negligible probability implies an algorithm
which breaks the “dual double pairing assumption”, which in turns implies DDH does not hold in
H.

Therefore, if DDH holds in both G and H, the described scheme is strongly existentially
unforgeable against one-time message attack. �

5.2 Non-interactive assumptions

The existential unforgeability of our signature scheme in Figure 1 against adaptive chosen message
attacks corresponds to an interactive cryptographic assumption. It would be nice to base the
security of the signature scheme on a non-interactive assumption but we do not know of any such
security reduction.

By adding a few group elements to the signature it is possible to base the signature scheme on a
non-interactive cryptographic assumption though. Consider the following variant of the signature
scheme in Figure 1, where the signer picks M1 ← G and N1, N2 ← H at random when mak-
ing signatures. In other words, we can sign messages of the form (M2, . . . ,MkM , N3, . . . , NkN ) ∈
GkM−1 ×HkN−2 and a signature consists of (R,S,M1, T,N1, N2) ∈ G3 ×H3, which is verified by
the verification equations

e(R, V )e(S,H)
∏
i

e(Mi,Wi) = e(G,Z) and e(R, T )
∏
i

e(Ui, Ni) = e(G,H).

The signature scheme is strongly existentially unforgeable against adaptive chosen message attacks
if the following non-interactive assumption holds for G, which essentially says the signature scheme
(K,S,V) from Figure 1 is strongly existentially unforgeable against random message attacks for
message space G×H2.

Assumption 1 Given a random bilinear group (p,G,H,T, e,G,H) ← G(1k) and uniformly ran-
dom group elements (U, Û , V,W,Z) ∈ G2×H3 and uniformly random (R1, S1,M1, T1, N1, N̂1), . . . ,
(Rq, Sq,Mq, Tq, Nq, N̂q) ∈ G3 ×H3 such that

e(Rj , V )e(Sj , H)e(Mj ,W ) = e(G,Z) and e(Rj , Tj)e(U,Nj)e(Û , N̂j) = e(G,H)

a non-uniform polynomial time adversary has negligible probability of finding a different tuple
(R,S,M, T,N, N̂) ∈ G3 ×H3 satisfying the two pairing product equations.



Lemma 1 implies that Assumption 1 holds in the generic group model. Actually, a careful analysis
of the proof of Lemma 1 shows that a generic adversary usingO(q) group operations has probability

O( q
2

p ) of breaking Assumption 1.

Theorem 7. If Assumption 1 holds, then the signature scheme (K,S,V) in Figure 1 is strongly
existentially unforgeable against adaptive chosen message attacks when the signer always chooses
M1 ← G and N1, N2 ← H at random.

Proof. Suppose we have an adversaryA′ that may produce a new pair consisting of a valid signature
(R′, S′,M ′1, T

′, N ′1, N
′
2) ∈ G3 × H3 and message (M ′2, . . . ,M

′
kM
, N ′3, . . . , N

′
kN

) ∈ GkM−1 × HkN−2
after an adaptive chosen message attack. We will use A′ in a black box manner to construct an
adversary A that breaks Assumption 1.

The algorithmA onGK = (p,G,H,T, e,G,H) and (U, Û , V,W,Z) and tuples (Rj , Sj ,Mj , Tj , Nj , N̂j)

starts by picking αi, βi, γi, δi ← Zp and computing W ′i = WαiHβi for i > 1 and U ′i = UγiÛδii for

i > 2. It setsW ′1 = W and U ′1 = U and U ′2 = Û . It returnsGK and V K ′ = (U ′1, . . . , U
′
kN
, V,W ′1, . . . ,W

′
kM
, Z)

to A′ as the keys for the signature scheme. Conditioned on the overwhelmingly likely event that
all elements are non-trivial this looks like a random public key.

When A′ makes the jth signing query (M ′2, . . . ,M
′
kM
, N ′3, . . . , N

′
kN

) A computes

S′ = Sj
∏
i>1

(M ′i)
−βi M ′1 = Mj

∏
i>1

(M ′i)
−αi N ′1 = Nj

∏
i>2

(N ′i)
−γi N ′2 = N̂j

∏
i>2

(N ′i)
−δi .

It returns the signature (Rj , S
′,M ′1, Tj , N

′
1, N

′
2). We observe that this is a valid signature and with

overwhelmingly high probability Rj 6= 1 making the signature uniformly random over all valid
signatures.

In the endA′ outputs a message (M ′2, . . . ,M
′
kM
, N ′3, . . . , N

′
kN

) and a signature (R′, S′,M ′1, T
′, N ′1, N

′
2).

A can now compute

S = S′
∏
i>1

(M ′1)βi M = M ′1
∏
i>1

(M ′i)
αi N = N ′1

∏
i>2

(N ′i)
γi N̂ = N ′2

∏
i>2

(N ′i)
δi .

It returns (R′, S,M, T ′, N, N̂) as the possible breach of the assumption.
If A′ has given a valid message-signature pair to A, then the output by A is a tuple of the

form required in Assumption 1. If it is a new tuple, then A has broken the assumption. Let us see
what the consequences are if it is one of the previous tuples, say, (Rj , Sj ,Mj , Tj , Nj , N̂j). In that
case, we get

M
(j)′

1

∏
i>1

(M
(j)′

i )αi = M ′1
∏
i>1

(M ′i)
αi and N

(j)′

1

∏
i>2

(N
(j)′

i )γi = N ′1
∏
i>2

(N ′i)
γi .

Observe that the αi and γi values are hidden to A′. Furthermore, regardless of the values of αi
and βi the returned signatures have the same distribution. Unless M ′i = M

(j)′

i and N ′i = N
(j)′

i

they have negligible probability of being true. But in that case, A′ has repeated the message from
query j and some further computation shows that the signature is also the same as query j, so A′
did not produced a strong existential forgery. �
The signature scheme we just described has signatures consisting of 6 group elements. By setting
U1 = 1, . . . , UkN = 1 and dropping N1 and N2 from a signature, the scheme can be used to sign
messages of the form (M2, . . . ,MkM ) ∈ GkM−1 using only 4 group elements. This variant is secure
under a related non-interactive assumption.

5.3 Rerandomizable signatures

The signature scheme in Figure 1 is strongly existentially unforgeable, so it is not possible even
to forge a new signature on a message that has already been signed before. In some cases strong
existential unforgeability is a useful feature, while in other cases standard existential unforgeability
suffices. In this section, we present a rerandomizable signature scheme where a signature can be



modified into a different signature for the same message. Rerandomizability may for instance be
useful in settings where the signature has to be hidden. One might choose to hide the signature
by encrypting it but if the signature is rerandomizable it may be possible to send part of the
rerandomized signature in the clear. An additional advantage of the rerandomizable signature
scheme we are about to present is that after rerandomization we may only need to hide elements
in one of the groups H. This makes it possible to use special purpose variants of Groth-Sahai
proofs (they refer to it as the linear case) that are particularly efficient.

We do not know how to construct a rerandomizable signature scheme with 3 group elements
that can simultaneously sign messages both in G and H. But by setting Wi = 1 and Z = 1 in the
signature scheme in Figure 1 we get an efficient rerandomizable signature scheme for messages
containing group elements in H. The full description of our rerandomizable signature scheme can
be found below.

Key generator K(GK): Parse GK as (p,G,H,T, e,G,H).
Pick at random u1, . . . , ukN , v ← Z∗p and compute

U1 = Gu1 . . . UkN = GukN V = Hv.

Return V K = (GK,U1, . . . , UkN , V ) and SK = (V K, u1, . . . , ukN , v).
Signing SSK(N1, . . . , NkN ): Given (N1, . . . , NkN ) ∈ HkN pick r ← Z∗p and set

R = Gr S = Rv T = (H
∏
i

N−ui
i )

1
r .

Rerandomization RV K(R,S, T ) :

Pick r′ ← Z∗p and return the rerandomized signature (R′, S′, T ′) = (Rr
′
, Sr

′
, T

1
r′ ).

Verification VV K((N1, . . . , NkN ), (R,S, T )):
Accept if R,S ∈ G and N1, . . . , NkN , T ∈ H and

e(R, V ) = e(S,H) ∧ e(R, T )
∏
i

e(Ui, Ni) = e(G,H).

Theorem 8. The signature scheme (K,S,V) over G described above is a rerandomizable structure-
preserving signature scheme that is existentially unforgeable against adaptive chosen message at-
tacks in the generic group model.

Proof. The verification key, the messages and the signatures consist of group elements in G and
H and the verification consists of verifying two pairing product equations, so it is a structure-
preserving scheme. Correctness follows from verifying that

e(Gr, Hv) = e(Grv, H) ∧ e(Gr, (H
∏
i

N−ui
i )

1
r )
∏
i

e(Gui , Ni) = e(G,H).

It is straightforward to see that rerandomization corresponds to generating a fresh signature with
randomness rr′.

A similar argument as we used in the proof of Theorem 5 shows that the signature scheme is
existentially unforgeable against adaptive chosen message attacks for general kN if it is existentially
unforgeable against adaptive chosen message attacks in the special case where kN = 2. Lemma 2
shows that the signature scheme is secure against generic adversaries when kN = 2. �

Lemma 2. The signature scheme presented in Section 5.3 is secure against generic adversaries
when kN = 2.

Proof. For notational simplicity, we write U for U1 and W for U2 and we write M for N1 and N
for N2. The verification equations then read

e(R, V ) = e(S,H) ∧ e(R, T )e(U,M)e(W,N) = e(G,H).



We consider an adversary that only uses generic group operations on the group elements it
sees and is unaware of the random u, v, w used in the public key and is unaware of the random-
ness rj used to form the signature in query number j. Seeing signatures (Ri, Si, Ti) ∈ G2 × H
on queries (Mi, Ni) ∈ H2 the adversary using generic group operations is restricted to picking
ρ, ρu, ρw, ρ1, ρ

′
1, . . . , σ, σu, σw, σ1, σ

′
1, . . . ,

τ, τv, τ1, . . . ∈ Zp and computing

R = GρUρuW ρw
∏
i

Rρii S
ρ′i
i S = GσUσuWσw

∏
i

Rσi
i S

σ′
i
i T = HτV τv

∏
i

T τii .

The queries (Mi, Ni) are computed as products of H,V, T1, . . . , Ti−1 raised to exponents chosen
by the adversary and the message (M,N) for which a forgery is obtained is computed similarly.
Taking discrete logarithms we have

r = ρ+ ρuu+ ρww +
∑
i

ρiri +
∑
i

ρ′isi = ρ+ ρuu+ ρww +
∑
i

ρiri +
∑
i

ρ′iriv

s = σ + σuu+ σww +
∑
i

σiri +
∑
i

σ′isi = σ + σuu+ σww +
∑
i

σiri +
∑
i

σ′iriv

mi, ni = linear combination of 1, v, t1, . . . , ti−1

m,n = linear combination of 1, v, t1, . . . , tq

t = τ + τvv +
∑
i

τiti = τ + τvv +
∑
i

τi
1− umi − wni

ri

We first show that a generic adversary cannot break the signature scheme when these values are
viewed as formal multi-variate Laurent polynomials in u, v, w, r1, . . . , rq.

Taking discrete logarithms of the first verification equation gives us rv = s, which means

ρv + ρuuv + ρwvw +
∑
i

ρiriv +
∑
i

ρ′iriv
2 = σ + σuu+ σww +

∑
i

σiri +
∑
i

σ′iriv.

Looking at the coefficients of v, uv, vw and riv
2 we see that ρ = 0, ρu = 0, ρw = 0 and ρ′i = 0. This

means we can write r =
∑
i ρiri.

The second verification equation gives us rt+um+wn = 1. Define π =
∏
i ri and πj =

∏
i 6=j ri

such that π = πjrj . Multiplying the equation on both sides with π we get rtπ + umπ + wnπ = π
so (∑

i

ρiri

)τπ + τvvπ +
∑
j

τj(πj − umjπj − wnjπj)

+ umπ + wmπ − π = 0.

Observe, m1, n1, . . . ,mq, nq,m, n are multi-variate polynomials in u, v, w, r−11 , . . . , r−1q . Each r−1i
has at most degree 1 and a closer inspection reveals that m1π1, n1π1, . . . ,mqπq, nqπq and mπ, nπ
are polynomials in u, v, w, r1, . . . , rq of degree at most q + 1. Looking at the coefficient for π we
see that there must exist some ` such that ρ` 6= 0 and τ` 6= 0. Looking at the coefficients for r`π
and r`vπ we see that τ = 0 and τv = 0. Looking at the coefficients for r`πj we see that τj = 0 for
j 6= `. Looking at the coefficients for riπ` we see that ρi = 0 for i 6= `. This means r = ρ`r` and
t = τ`

1−um`−wn`

r`
. We now have

ρ`r` · τ`
1− um` − wm`

r`
π + umπ + wnπ − π = 0.

From the coefficient of π we deduce that τ` = 1
ρ`

. The equation now reads

π − um`π − wn`π + umπ + wnπ − π = 0,

which implies um`+wn` = um+wn. Plugging in all possible choices of polynomials for m`, n`,m, n
we see that m = m` and n = n`. The adversary has therefore reused a previously signed message
and failed in making an existential forgery.



We have now seen that the adversary cannot make an existential forgery when viewing group
elements as formal multi-variate polynomials. However, it may be the case that for concrete choices
of variables, two formally different polynomials evaluate to the same value. In this case, we cannot
simulate the generic group and it may be that the adversary can make an existential forgery.
The verification equations can be evaluated using generic group operations, so without loss of
generality we can assume the adversary knows it when it has made a successful forgery. Since the
polynomials have degree O(q) we get with a birthday paradox argument and the Schwartz-Zippel
lemma that the probability of this type of error occurring in the generic group simulation is a

negligible O( q
3

p ) when the adversary uses O(q) generic group operations. �
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