
Efficient Maximal Privacy in Boardroom Voting
and Anonymous Broadcast

Jens Groth1,2

1 BRICS?, University of Aarhus, Ny Munkegade bd. 540, 8000 Århus C, Denmark
2 Cryptomathic A/S??, Jægerg̊ardsgade 118, 8000 Århus C, Denmark

jg@brics.dk

Abstract. Most voting schemes rely on a number of authorities. If too
many of these authorities are dishonest then voter privacy may be vio-
lated. To give stronger guarantees of voter privacy Kiayias and Yung [1]
introduced the concept of elections with perfect ballot secrecy. In this
type of election scheme it is guaranteed that the only thing revealed
about voters’ choices is the result of the election, no matter how many
parties are corrupt. Our first contribution is to suggest a simple voting
scheme with perfect ballot secrecy that is more efficient than [1].
Considering the question of achieving maximal privacy in other proto-
cols, we look at anonymous broadcast. We suggest the notion of perfect
message secrecy; meaning that nothing is revealed about who sent which
message, no matter how many parties are corrupt. Our second contri-
bution is an anonymous broadcast channel with perfect message secrecy
built on top of a broadcast channel.

1 Introduction

Voting schemes are legion in the cryptographic literature. Common for most of
them is that they rely on some authorities to conduct the election. Furthermore,
if a large group of authorities is dishonest then individual votes may be revealed.
To some extend this is unavoidable, some degree of privacy violation is inherent
in any election; a group of voters may subtract their own votes from the result
and thereby obtain some information about the remaining voters’ choice. In
terms of privacy, the best we can hope for is to ensure that nobody can deduce
more about the distribution of honest voters’ votes than what can be deduced
from the result and knowledge of dishonest voters’ choices. We call this type of
security perfect ballot secrecy.

Kiayias and Yung [1] introduced the notion of perfect ballot secrecy together
with self-tallying and dispute-freeness. Self-tallying means there is no need for
authorities to tally the votes. Once all votes have been cast, the result can
be tallied and verified by anybody. Dispute-freeness says that anybody may

? Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

?? www.cryptomathic.com



verify that indeed the parties do follow the protocol. In other words, it is public
knowledge whether a party performed correctly or tried to cheat.

Kiayias and Yung [1] presented a self-tallying dispute-free voting scheme
with perfect ballot secrecy with security based on the Decisional Diffie-Hellman
(DDH) assumption. Later Damg̊ard and Jurik [2] suggested a somewhat similar
scheme based on the Decisional Composite Residuosity (DCR) assumption [3].
Both schemes work in the random oracle model and assume an authenticated
broadcast channel; in the present paper, we use this model too.

Kiayias and Yung [1, 4, 5] rely on a method they call zero-sharing for achieving
maximal privacy. Not only do they build a voting protocol from this, but they
also suggest protocols for anonymous vetoing and simultaneous disclosure of
secrets.

Our contributions. Our first contribution is a new voting scheme that has the
same security properties as [1, 2] but is simpler and more efficient. We base our
scheme on the DDH assumption, i.e., ElGamal encryption, but the same ideas
can be used in combination with the DCR assumption. The reason for this choice
is that it is easy to generate in a distributed manner suitable groups where the
DDH assumption is well founded. Distributed generation of a suitable group for
the DCR assumption is more complicated [6].

Our second contribution is to construct an anonymous broadcast channel
with perfect message secrecy, i.e., no matter which parties are dishonest, they
are not able to tell among the honest senders who sent a particular message.
This scheme is related to voting in the sense that using this anonymous channel
to cast votes gives us a self-tallying voting scheme with perfect ballot secrecy,
but it may of course also have many other applications.

1.1 Model

Throughout the paper, we assume all parties have access to an authenticated
broadcast channel with memory. We imagine this in the form of a message board
that all parties can access. Each party has a special designated area where he,
and nobody else, can write. No party can delete any messages from the message
board. One way of implementing such a message board would be to have a central
server on the Internet handling the messages. We discuss this further in Section
4.

When considering security of the protocols we imagine that there is an active
polynomial time adversary A trying to break them. A is static, i.e., from the
beginning of the protocol it has control over a fixed set of parties.

The parties in the protocol work semi-synchronously; the protocol proceeds
in phases and in each phase parties may act in random order. We let the ad-
versary decide when to change to the next phase. Since the protocols we design
are intended for use with a small number of participants, we find this to be a
reasonable assumption. Should several parties by accident happen to execute
their action at the same time anyway, then it is quite easy to recover.



2 Self-tallying Voting Scheme with Perfect Ballot Secrecy

2.1 Security Definitions

The requirements we want the voting scheme to satisfy are the following.

Perfect ballot secrecy: This is an extension of the usual privacy requirement.
In a voting scheme with perfect ballot secrecy the partial tally of a group
of voters is only accessible to a coalition consisting of all remaining voters.
This is the best type of anonymity we can hope for in elections where we
publish the result, since a coalition of voters may of course always subtract
their own votes.

Self-tallying: After all votes have been cast, it is possible for anybody, both
voters and third parties, to compute the result.

Fairness: Nobody has access to a partial tally before the deadline. We will in-
terpret this demand in a relaxed way such that it is guaranteed by a hopefully
honest authority.

Dispute-freeness: This notion extends universal verifiability. A scheme is
dispute-free if everybody can check whether voters act according to the pro-
tocol or not. In particular, this means that the result is publicly verifiable.

2.2 The voting protocol

The basic idea. To quickly describe our idea let us use an analogue with the
physical world. Assume a group of people want to vote yes or no to a proposal.
To do this the voters take a box with a small slot and each voter puts a padlock
on the box. Taking turns the voters one by one drop a white (yes) stone or a
black (no) stone into the box and remove their padlock. When the last voter has
removed his padlock, they may open the box and see the result of the election.
The protocol has perfect ballot secrecy since the box cannot be opened before
all honest voters have cast their vote, and thus any honest voter’s vote is mixed
in with the rest of the honest voters’ votes.

Overview of the protocol. For simplicity, we first describe the protocol in the
honest-but-curious setting, i.e., corrupted voters may leak information but follow
the protocol. For simplicity, we also assume there are just two candidates that
the voters can choose between.

Initialization: First, the voters agree on a group Gq of order q where the DDH
problem is hard. Let g be a generator for Gq.
All voters now select at random an element in Zq. Each voter j keeps his
element xj secret but publishes hj = gxj .

Casting votes: Voters may vote in any adaptively chosen order, however, for
simplicity we assume in this example that they vote in the order 1, 2, . . . , n.
Let their choices be v1, v2, . . . , vn ∈ {0, 1}.
The election now proceeds like this:
1. Voter 1 selects at random r1 ∈ Zq and publishes (gr1 , (

∏n
i=2 hi)r1gv1).



2. Voter 2 selects at random r2 ∈ Zq and computes (gr2 , (
∏n

i=2 hi)r2gv2).
Multiplying this to the first vote, he gets (gr1+r2 , (

∏n
i=2 hi)r1+r2gv1+v2).

With his knowledge of the secret key x2, he may peel of a layer of this
ElGamal encryption of the partial result. In other words, he computes
(gr1+r2 , (

∏n
i=3 hi)r1+r2gv1+v2). He publishes this on the message board.

3. Voter 3 performs the same type of operations as voter 2. He ends up pub-
lishing (gr1+r2+r3 , (

∏n
i=4 hi)r1+r2+r3gv1+v2+v3) on the message board.

...
n. Voter n performs the same type of operations as the previous voters.

When he is done, his output is (g
∑n

i=1 ri , g
∑n

i=1 vi).
Tallying: From the last voter’s output we can read off g

∑n
i=1 vi . We compute

the discrete logarithm, this is possible since the exponent is at most n, to
get

∑n
i=1 vi. This is the number of 1-votes in the election.

The full protocol. The protocol as described is not fair, it is possible for the
last voter to know the result before casting his own vote. As in [1] we deal with
this by saying that a special election authority must act like a voter and cast a
zero-vote in the end. Since it is a zero-vote, it does not affect the result. On the
other hand, the perfect ballot secrecy of the voting scheme ensures that up to
this point nobody but the authority can know any partial tally. Therefore, if the
authority is honest then the voting scheme is fair.

To go beyond the honest-but-curious assumption and deal with all kinds of
adversaries all we have to do is to add zero-knowledge proofs of knowledge of
correctness. These proofs will be the typical 3-move honest verifier proofs (Σ-
protocols [7]), where using the Fiat-Shamir heuristic we can make very efficient
non-interactive zero-knowledge proofs. Security of the protocol will be proved in
the random oracle model [8].

We wish to support a set W of possible votes. Let us write the c candidates
in W as candidates as 0, . . . , c− 1. We do this by encoding candidate number i
as (n + 1)i. From a sum

∑n
i=1 vi of votes with this encoding we can read off the

number of votes on each candidate. To compute the result, we have to compute
the discrete logarithm of g

∑n
i=1 vi . With n voters and c candidates, the number

of possible results is
(
c+n−1

c−1

)
. With a small number of voters or a small number

of candidates, it is possible to compute the discrete logarithm. If we have a
larger number of voters and candidates, we may use a cryptosystem similar to
the one in [2]. This allows computing discrete logarithms efficiently, but on the
other hand the key generation becomes much more complicated. Alternatively,
we may use the anonymous broadcast protocol we present in the next section.

The full protocol can be seen in Figure 1.

Performance. Let n be the number of voters, c be the number of candidates,
and k be the security parameter. We assume that nc ≤ q.

For each voter it takes O(1) exponentiations to compute the key hi and the
associated proof. The size of the key is O(k). Verification of the n keys takes
O(n) exponentiations.



Voting Protocol

Setup: The voters agree on a suitable group Gq of order q where the DDH
assumption holds. Let g be a generator for Gq.

Key Registration: Voter i selects at random xi ∈ Zq and sets hi = gxi . He
publishes hi and makes a proof of knowledge of xi, PK[xi : hi = gxi ].
Any voters who did not supply a key are removed from the list of eligible
voters. Set the current state of the election to be (1, 1).

Voting: Voter i wishing to cast a vote vi ∈ W downloads the current state of the
election (u, v), and verifies the correctness of keys and all votes cast up to now.
Then he selects ri at random from Zq, sets U = ugri and
V = vu−xi(

∏
j∈T hj)

rigvi , where T is the set of remaining voters. He
broadcasts (U, V ) as the new state of the election together with a zero
knowledge proof of knowledge
PK[(ri, vi, xi) : hi = gxi ∧ U = ugri ∧ V = vu−xi(

∏
j∈T hj)

rigvi ∧ vi ∈ W ], i.e.,
a proof that he knows ri, vi, xi making his vote correct.

Tallying: After all voters have cast their votes the state (u, v) has v = g
∑n

i=1 vi .
The discrete logarithm

∑n
i=1 vi can be computed if there are not too many

voters and candidates, and from this the result can be extracted.
Fault-correction: If some voters abstained from voting it is possible that the

remaining voters still want to carry out the election. In that case, they can
repeat the voting step with the now reduced set of voters. They may gain a
factor log c in efficiency by proving that they cast the same vote as in the first
voting phase instead of proving from scratch that the vote belongs to W .

Fig. 1. The voting protocol

In the voting phase, it takes O(log c) exponentiations to compute the vote
and the proof associated with it.3 The vote has size O(k log c). It takes O(n log c)
exponentiations to verify all the voters’ proofs.

In comparison, the protocol in [1] lets the voter do O(n) exponentiations in
the key registration phase, the key has size O(nk), and verification of the keys
takes O(n2) exponentiations. In the voting phase, the voter must do O(log c)
exponentiations, the vote has size O(k log c), and it takes O(n log c) exponenti-
ations to verify all the votes.

The Kiayias and Yung protocol does have the advantage that many voters
can vote at the same time, whereas we demand that they download the current

3 Let us sketch where the log c factor comes from. In the proof of correctness of a
vote the voter has to argue that the encrypted vote is on the form (1 + n)i for
i ∈ {0, . . . , c−1}. Let {b1, . . . , bdlog ce} be a set of positive integers with the following
property: for any number 1, . . . , c− 1 there is a subset where the numbers have this
sum, and for no number larger than c − 1 is there a subset with elements having

this sum. Write the vote as (1 + n)v = (1 + n)
∑dlog ce

i=1 ai =
∏dlog ce

i=1 (1 + n)ai , where
a1 = b1 ∨ a1 = 0, . . . , adlog ce = bdlog ce ∨ adlog ce = 0. This shows that the vote can
be built as a product of dlog ce elements. It is possible to prove correctness of such
elements and make proofs of products in O(1) exponentiations, giving a total of
O(log c) exponentiations.



state and use that in making their vote. Since the voting protocols are designed
for self-tallying and demand that all voters participate we can only see them as
being realistic in settings with few voters though. With few voters, we believe it is
reasonable to assume that voters act one at a time; and even if they occasionally
do not it is easy to correct.

2.3 Security.

To argue perfect ballot secrecy of the voting protocol in Figure 1 we will show
that a real-life execution of the protocol can be simulated with knowledge of
the sum of the honest voters’ votes only. To do so we define two experiments, a
real-life experiment, and a simulation experiment.

Real-life experiment. In the real-life experiment the voters V1, . . . , Vn have votes
v1, . . . , vn that they want to cast. An adversary A tries to break the protocol.
A has full control over a fixed set of corrupt voters and gets as input a string
z. A controls the flow of the protocol, i.e., it decides when to shift to the next
phase, and within each phase it can adaptively activate voters. Upon activation,
a voter reads the contents of the message board, computes its input according
to the voting protocol, and posts it on the message board. After an honest voter
has been activated control is passed back to A. Please note that A may choose
not to activate a voter, in that case the voter does not get to submit a vote.
Once the election is over A computes an output s and halts. The output of the
experiment is (s, cont, result), where cont is the contents of the message board
and result is the outcome of the election if this can be computed from cont.

We write Expreal
V1,...,Vn,A(v1, . . . , vn, z) to denote the distribution of

(s, cont, result) from the real-life experiment.

Simulation. In this experiment, a simulator S has to simulate the election. S
gets as input a string z, including a list of corrupt voters. S controls the random
oracle; this enables it to simulate zero-knowledge proofs. In the simulation, we
let a trusted party T handle the message board as well as computation of the
result. T learns the votes v1, . . . , vn and which voters are corrupt. In the key
registration phase, the voting phase and the fault correction phase, T expects to
receive also the witnesses when S submits a valid key or a valid vote on behalf
of a corrupt voter. In particular, this means that T learns the plaintext vote
whenever a corrupt voter tries to cast a vote. Due to the self-tallying property
of the voting scheme, the honest voters’ partial tally may be revealed at some
point. We formulate the following rule for letting T reveal this partial tally to
S. First, T notes which honest voters did not participate in the setup phase or
the key-registration phase. In the voting phase, if S is about to activate the last
remaining honest voter then it may query T for the partial tally of the honest
voters. Afterwards, we demand that S posts a vote on behalf of this simulated
voter. After the election, S halts with output s. T computes the result using
the plaintext votes and the honest voters votes, and outputs the contents of the
message board and the result.



We write Expsim
T ,S(v1, . . . , vn, z) to denote the distribution of (s, cont, result)

in the simulation.

The simulator S. S runs a copy of A and simulates everything that A sees,
including the behavior of the honest voters. When A changes phase in the pro-
tocol so does S. If A lets a corrupt voter post something on the message board,
S verifies the proof. If the proof is valid, S uses rewinding techniques to extract
the witness. It then submits the entire thing to T . In particular, this means that
the vote is submitted in plaintext to T . If A activates an honest party in the key
registration phase, S selects hi at random and simulates the proof of knowledge
of xi. It submits hi and the simulated proof to T . If A activates an honest voter
in the voting phase, and this is not the last remaining honest voter to vote, S
picks (U, V ) at random and simulates a proof of knowledge of the corresponding
xi, ri, vi. If the activated honest voter is the last honest voter to submit a vote,
then S queries T for the partial tally of the honest voters. Knowing the witnesses
for the corrupt voters’ submissions it can then compute the partial tally of voters
that have voted so far. Let S be the set of voters that have voted, including the
voter to vote right now. Let T be the set of remaining eligible voters; all of them
are corrupt. S picks U at random and computes V = U

∑
j∈T xj g

∑
i∈S vi . It then

simulates the proof for having computed (U, V ) correctly and gives it to T . At
some point the simulated A halts with output s. S outputs s and halts.

Lemma 1. For any adversary A there exists a simulator S such that the distri-
butions Expreal

V1,...,Vn,A(v1, . . . , vn, z) and Expsim
T ,S(v1, . . . , vn, z) are indistinguish-

able for all v1, . . . , vn, z.

Proof. We use the simulator S described above. To show indistinguishabil-
ity we will go through a series of intermediate experiments Exp1, . . . , Exp3.
We then show that Expreal

V1,...,Vn,A(v1, . . . , vn, z) ≈ Exp1(v1, . . . , vn, z) ≈
Exp2(v1, . . . , vn, z) ≈ Exp3(v1, . . . , vn, z) ≈ Expsim

T ,S(v1, . . . , vn, z).
Exp1 works like Expreal

V1,...,Vn,A except whenever A submits a valid input on
behalf of a corrupt voter. In these cases, we use rewinding techniques to extract
the corresponding witnesses in expected polynomial time. This way for each
key registration from a corrupt voter we know the corresponding exponent xi,
and for each vote we know the vote vi as well as the randomness ri and xi.
Having knowledge of the witnesses, we may now run the entire protocol using
the trusted party T from the simulation experiment to control the message
board. The outputs of the two experiments are the same, so indistinguishability
is obvious.

Exp2 works like Exp1 except we simulate all proofs made by honest voters.
Typically, these proofs are statistical zero-knowledge and then we get statistical
indistinguishability between Exp1 and Exp2.

Let us consider Exp2 a little further. Define gi = gri and hij = hri
j , where ri

is the randomness used by voter i. Consider the voting phase, denote at a given
time S to be the voters that have cast votes already and T to be the voters that



have not yet acted in this phase. The state at this time is

(u, v) = (
∏
i∈S

gi, (
∏
i∈S

∏
j∈T

hij)g
∑

i∈S vi).

Since we are simulating the proofs, we do not need knowledge of xi, ri for honest
voters. Therefore, to carry out Exp2 we can first compute a table of the gi’s,hj ’s
and hij ’s for the honest voters and then use these values.

Define Exp3 to be Exp2 where we choose the gi’s,hj ’s and hij ’s randomly
from Gq. By a hybrid argument using the DDH assumption, the tables of these
elements in Exp2 and Exp3 are indistinguishable. Therefore, the two experiments
Exp2 and Exp3 are indistinguishable.

Remaining is the fact that we still use individual votes vi from honest
voters to perform the experiment. However, note that in the voting phase
when an honest voter Vi updates from (u, v) to (U, V ) he sets U = ugi and
V = v(

∏
j∈S h−1

ji )(
∏

j∈T hij)gvi . The elements {hij}j∈T contain new random-
ness and therefore the vote vi is perfectly hidden unless T has no honest voters,
i.e., Vi is the last honest voter to vote.

These considerations lead us to modify Exp3 the following way. An honest
voter who is not the last honest voter to act in the voting phase computes the
new state (U, V ) by picking it at random in Gq × Gq. An honest voter Vi who
is the last honest voter to vote computes

∑
i∈S vi, picks U at random from Gq

and sets V = U
∑

i∈T xig
∑

i∈S vi .
This modifies Exp3 into Expsim

T ,S , so these two experiments are perfectly
indistinguishable. ut

Lemma 1 says that the election can be simulated without knowledge of the
honest voters’ individual votes. Moreover, it forces the simulator to submit plain-
text votes on behalf of corrupt voters, so their votes cannot be related to the
honest voters’ votes.

Theorem 1. The voting protocol described in Figure 1 is self-tallying, dispute-
free, and has perfect ballot secrecy. If the last voter is an honest authority that
submits a zero-vote then the protocol is fair.

Proof. It is easy to see that the protocol is self-tallying if all parties act according
to the protocol, and the zero-knowledge proofs force the parties to act according
to the protocol. Likewise, since the zero-knowledge proofs force parties to act
according to the protocol it follows that the protocol is dispute-free. Perfect
ballot secrecy follows from Lemma 1. Fairness follows from perfect ballot secrecy,
since perfect ballot secrecy implies that we cannot compute any partial result
before the authority submits its vote, and if honest the authority does not submit
its vote before the end of the election. ut

2.4 A Veto Protocol

Kiayias and Yung suggested a veto-protocol in [5]. By this, we mean that any
party may veto a proposal, however, it should not be possible to learn who vetoed
the proposal or how many vetoed a proposal.



It is easy to implement such a veto protocol with the voting scheme we have
suggested. We let acceptance of the proposal correspond to a 0-vote. On the
other hand, a veto is a vote on a random element from Zq. This way, if nobody
vetoed we get a tally, which is 0. On the other hand, if anybody vetoed, then we
get a tally, which is a random number from Zq. Discrete logarithms are difficult
to compute, however, we do not have to do that, all we need to do is to verify
that gresult 6= 1.

One problem, which also pertains to the scheme in [5], remains with this
scheme, since any vetoer knows his own random element and therefore he may
check whether he is the only one who vetoed. To guard against that we may rely
on the authority disclosing the result to raise (u, v) to a random exponent from
Z∗q before decrypting. This way it is impossible for any cheating vetoer to see
whether he is the only one to veto the proposal.

3 Self-disclosing Anonymous Broadcast with Perfect
Message Secrecy

3.1 Security Definitions

In this section, we deal with the possibility of building an anonymous broadcast
channel on top of an authenticated broadcast channel. We want some strict
security requirements to be satisfied. The security requirements are quite similar
to those for self-tallying elections with perfect ballot secrecy but we rename the
latter notion to stress that anonymous broadcast has many other applications
than voting.

Perfect message secrecy: Knowledge of the set of messages to be broadcast
is only accessible to a coalition of all remaining senders, and this knowledge
does not include the connection between senders and messages. This means
that a sender is hidden completely among the group of honest senders.

Self-disclosing: Once the last sender has submitted his message, anybody may
see which messages were broadcast.

Fairness: Until the deadline is reached it is impossible to know what messages
will be broadcast. Again, we will only demand fairness in a restricted sense,
namely it will be ensured by a hopefully honest authority.

Dispute-freeness: It is publicly verifiable whether senders follow the protocol
or not.

3.2 The Anonymous Broadcast Protocol

Physical analogue. The senders one after another enter a room alone. Bringing
with them they take a box, all boxes look alike, and a padlock for each of the
remaining senders. In the room, they write down their message, put it in the box,
and lock the box with the padlocks corresponding to the remaining senders. Then
they shuffle around the boxes so nobody can tell them apart. In the presence



of the remaining senders, they now remove one lock from each box, namely the
locks that fit their key. As the last sender removes the locks, the messages are
revealed.

Idea in the protocol. We use similar ideas as we did in the voting protocol. Each
voter encrypts his message with the keys of the remaining senders. This means
that the message will not be revealed until all honest voters have been involved in
the protocol and peeled off the layer of encryption corresponding to their secret
key. The sender will rely on this last honest sender to anonymize his message
with respect to all the honest senders.

Since the sender cannot know whether he is the last honest sender, he must
also ensure himself that his message is mixed with the messages of the previous
senders. Since ElGamal encryption is homomorphic, it is easy to permute and
rerandomize (shuffle) all the ciphertexts made up to this point. Furthermore,
efficient proofs of a correct shuffle exist, see [9–11].

Summarizing the protocol the method is as follows. The senders all register
public keys just as in the voting protocol. When a sender wants to add his mes-
sage to the pool, he encrypts it with the public keys of the remaining senders
including his own key. Then he shuffles all the ciphertexts in a random way.
Finally he peels of a layer of the encryption, namely he decrypts all the cipher-
texts with respect to his own key. He proves in zero-knowledge that all these
steps have been performed correctly.

The full protocol can be seen in Figure 2.

Performance evaluation. Key registration takes O(1) exponentiations for each
sender, and each key has size O(k). To verify the correctness of the keys we use
O(n) exponentiations.

With respect to message submission, we may use the efficient shuffle proofs
of [9–11]. This way it takes O(n) exponentiations to compute the new batch
of ciphertexts and the proofs, and such a batch has size O(nk). It takes O(n2)
exponentiations to verify all the senders’ proofs.

Simultaneous disclosure. If we remove the shuffling part of our anonymous broad-
cast protocol, we get a simultaneous disclosure protocol. We can therefore com-
pare our performance with the simultaneous disclosure protocol of [5], which
uses O(n2) exponentiations for each voter in the registration phase, and O(n)
exponentiations for each voter in the message submission phase.

3.3 Security

To argue perfect message secrecy we show that the broadcast protocol can be
simulated without knowledge of the individual messages. Very similar to the case
of the voting protocol we therefore define a real-life experiment and a simulation
experiment.



Anonymous Broadcast Protocol

Setup: The senders agree on a suitable group Gq of order q, where the DDH
problem is hard. Let g be a generator for Gq.
The senders also set up suitable keys for commitment schemes that will be
used in the zero-knowledge proofs to follow.

Key Registration: Sender i selects at random xi ∈ Zq and sets hi = gxi . He
publishes this public key together with a proof of knowledge of xi.
Any senders who did not supply a public key are removed from the list of
senders.

Message submission: Sender i wishing to send message mi ∈ Gq.
Let S be the set of senders who already sent a message, including i, and let T
be the set of senders who did not send a message. Let {(uj , vj)}j∈S\{i} be the
ciphertexts constituting the state.
Sender i first checks that all proofs of the previous senders are correct. Then
he encrypts his message as (ui, vi) = (gri , (

∏
j∈T∪{i} hj)

rimi). He picks at

random a permutation πi over S, permutes all ciphertexts {(uj , vj)}j∈S

according to this permutation, and rerandomizes them into {(Uj , V
′

j )}j∈S .
Finally, he removes the layer of encryption corresponding to his own private
key. I.e., he computes {(Uj , Vj) = (Uj , V

′
j U−xi

j )}j∈S .
He broadcasts this list of ciphertexts together with a proof of knowledge of
having done all this correctly.

Broadcasting: The last senders’ output contains Vj ’s that are the messages
permuted according to the permutations selected by the senders.

Fault-correction: We do not have a clever fault correction algorithm; we simply
start the protocol over again. Depending on the user requirements, we may
now demand that the senders prove in zero-knowledge that they are
submitting the same message as before.

Fig. 2. The anonymous broadcast protocol

Real-life experiment. We have parties P1, . . . , Pn with messages m1, . . . ,mn that
they want to broadcast anonymously. An adversary A with input z controls a
fixed set of these parties. A also controls the scheduling in the protocol, in other
words, A decides when to proceed to the next phase, and within each phase A
activates parties adaptively. When activated a party receives the contents of the
message board, computes its input according to the protocol, and posts it on
the message board. Control then passes back to A. In the end, A outputs some
string s and halts.

We denote by Expreal
P1,...,Pn,A(m1, . . . ,mn, z) the distribution of outputs

(s, cont,messages) from the experiment, where cont is the content of the message
board, and messages is a sorted list of messages from cont.

Simulation. Again, we have a trusted party T and a simulator S. T controls the
message board and has as input m1, . . . ,mn and a list of corrupted parties. Dur-
ing the execution of the protocol it expects S to provide witnesses for correctness
of the actions performed by corrupted parties. When only one honest party re-



mains in the broadcast phase, S can query T for the set of messages m1, . . . ,mk

submitted by honest parties. After this S must then submit this honest party’s
broadcast to T . In the end, S halts with output s, and T outputs the contents
of the message board and the set of messages submitted in lexicographic order.

We write Expsim
T ,S(m1, . . . ,mn, z) for the distribution of (s, cont,messages).

The simulator S. S runs a copy of A simulating anything A would see in a real-
life execution, including the actions of the honest parties. Whenever A changes
phase, so will S. If A lets a corrupt party submit something with a valid proof
for the message board, S uses rewinding to extract the witness. This way, in the
key registration phase S learns the exponent xi, when corrupt party Pi registers
key hi. Likewise, when corrupt party Pi makes a broadcast, then S learns the
randomizers used, the new message that was submitted, and the permutation
πi. After extracting the witness, S sends everything to the trusted party T . If
A activates an honest party Pi in the key registration phase then S picks hi at
random and simulates a proof that it knows the exponent xi. If A activates an
honest party Pi in the message submission phase, and this is not the last honest
party to act, S selects (ui, vi) at random from Gq ×Gq. For each k ∈ S, where
S is the set of senders that have been active in the protocol, including Pi, S
selects at random (Uk, V ′

k) and (Uk, Vk). It then simulates proofs that it knows
the message inside the (ui, vi) encryption, that it knows a permutation πi and
randomizers such that {(Uk, V ′

k)}k∈S is a shuffle of {(uk, vk)}k∈S , and that for
each k ∈ S, (Uk, Vk) is the decryption of (Uk, V ′

k) with key xi used to form hi. If
the sender activated is the last remaining honest sender, S queries T for the list
of messages for honest senders. Furthermore, it knows the messages submitted
by corrupt parties. It labels in random order the messages {mk}k∈S . It picks
(ui, vi) at random and picks at random (Uk, V ′

k) for k ∈ S. Then for k ∈ S it

sets Vk = U
∑

j∈T xj

k mk, where T is the set of (corrupt) senders that have not yet
been activated. S simulates the proofs of correctness and submits it all to T . In
the end the simulated A terminates with output s. S outputs s and halts.

Lemma 2. For any adversary A there exists a simulator S such that the two
distributions Expreal

P1,...,Pn,A(m1, . . . ,mn, z) and Expsim
T ,S(m1, . . . ,mn, z) are in-

distinguishable for all m1, . . . ,mn, z.

Proof. The proof is similar to the proof for Lemma 1. We use the simulator
described above. We define three intermediate experiments Exp1, Exp2 and
Exp3 and prove that Expreal

P1,...,Pn,A(m1, . . . ,mn, z) ≈ Exp1 ≈ Exp2 ≈ Exp3 ≈
Expsim

T ,S(m1, . . . ,mn, z).
Exp1 is the real-life experiment where we use rewinding techniques to extract

witnesses for valid actions thatA lets corrupt parties make. Having the witnesses,
we can then execute this experiment in the trusted message board model, giving
T the witnesses to go along with the messages.

Exp2 is a modification of Exp1 where we simulate all proofs that hon-
est parties make. Consider how an honest party Pi computes the new state
{(Uj , Vj)}j∈S , where S is the set of parties that have submitted their message.



Write T for the set of remaining parties that have not yet made a broadcast.
Pi first selects ri at random and sets (ui, vi) = (gi, (

∏
j∈T∪{i} hij)mi), where

gi = gri and hij = hri
j . Then Pi selects πi as a random permutation over S,

and computes the pairs (Uk, V ′
k) = (uπ−1

i (k)gik, vπ−1
i (k)

∏
j∈T hijk}k∈S , where

gik = grik and hijk = h
rijk

j , with the rik’s and rijk’s chosen at random from Zq.
Finally, for k ∈ S it sets (Uk, Vk) = (Uk, VkU−xi

k ) = (Uk, Vk

∏
j∈S h−1

ji ). All this
can be computed from a table of gi’s, hj ’s, hij ’s, gik’s, and hijk’s for the honest
parties without knowing the underlying randomizers.

Exp3 is a modification of Exp2 where the gi’s, hj ’s, hij ’s, gik’s and hijk’s for
honest parties are selected at random from Gq. By a hybrid argument using the
DDH assumption, Exp2 and Exp3 are indistinguishable.

Looking at Exp3, we notice that we might as well pick the elements
ui, vi, Uk, V ′

k, Vk completely at random from Gq instead of bothering with pick-
ing a permutation πi and inserting messages, as long as Pi is not the last honest
party to broadcast a message. An honest party Pi that is the last honest party
to broadcast a message chooses ui, vi, Uk, V ′

k at random. It picks a permutation

π at random and sets Vk = U
∑

j∈T xj

k mπ(k) for k ∈ S. This last experiment is
exactly what happens in the simulation so Exp3 and Expsim

T ,S are perfectly in-
distinguishable. ut

Theorem 2. The protocol described in Figure 2 is a self-disclosing, dispute-free
anonymous broadcast protocol with perfect message secrecy. If the last sender is
an honest authority (who does not submit a message himself) then the protocol
is fair.

Proof. It is easy to see that the protocol is self-disclosing. The zero-knowledge
proofs entail dispute-freeness. Perfect message secrecy follows from Lemma 2.
Finally, fairness follows from the perfect message secrecy. ut

4 Various Comments

Reusing the public keys. In both the voting protocol and the anonymous broad-
cast protocol we may reuse the public keys in many instantiations of the protocols
presented here, but some care must be taken. The reason to be careful is the
fact we must be able to rewind and extract witnesses from proofs made by the
adversary. In the simulation, however, we cannot rewind the trusted party T , so
we must be careful that we never have to rewind past a point where T gives us
a partial tally or partial set of honest senders messages. When only a single pro-
tocol is running this is no problem since in the zero-knowledge proofs we query
the random oracle with the current state. When a partial result is released we
always let an honest party act right after it, and this honest party injects some
new randomness into the state. For this reason an adversary can not predict
what the state will be after the release of a partial result, and therefore cannot
make queries before the release of the partial result that it uses after the release
of the partial result. This means that we never have to rewind back before the



release of a partial result. When running multiple protocols we have to query
the random oracle with the states of all protocols to guarantee not having to
rewind back past a point where a partial result was released. If we do this, we
may use the same public keys to run many protocols.

Universal composability. The statement of our lemmas is somewhat inspired
by the universal composability framework of Canetti [12, 13]. However, we have
not proved the protocols to be universally composable. In particular, we do not
include a party Z to model the exterior environment. It is possible to make the
protocols universally composable against non-adaptive adversaries by generating
a key for a public key cryptosystem in the setup phase. After this we can in the
key registration phase encrypt the keys xi and prove to have done so in zero-
knowledge. We can set this up so the simulator knows the corresponding secret
key for the cryptosystem, and therefore it can make a straight-line extraction
of the xi’s. Knowing the xi’s it can then extract votes and messages, and carry
on the simulation without ever having to rewind. Unfortunately, the technique
above may make the protocols considerably less efficient and we have therefore
not pursued this option in the paper.

Flexibility in participation. It is easy to set up an election where only a part
of the participants is allowed to participate. In that case, we simply ignore the
public keys of those not allowed to participate in this instance of the protocol.

In the voting protocol, it is easy to include new voters that may participate
in future election. We can choose the group Gq ≤ Zq specified by p, q, g in a
publicly verifiable manner, e.g., chosen at random from the binary expansion of
π, or chosen from a string of hashes on some random value. Considering uniform
adversaries it would seem reasonable that this gives us a suitably hard group.4

Since the new voter can trust this group, he simply needs to register a public
key himself in order to join.

In the anonymous broadcast protocol, we may also include new senders.
However, here the new senders have to beware of the risk that the commitment
scheme may be chosen with a trapdoor known to the senders already registered.
Therefore, the new sender will have to update this commitment key in a publicly
verifiable way.

The authenticated broadcast channel. We do not need something fancy to form
this channel. We may for instance assume that a central server stores all the
data, and this central server may act like the authority too.

To ensure correctness of the data we will assume that all communication
is signed with a digital signature. We cannot rely on a certification authority
to issue these digital signatures in the strict setting we are working in. Instead,

4 While it varies from group to group how hard it is to compute discrete logarithms,
we do not know of any groups where the DDH problem can be efficiently solved,
provided the groups are some subgroup of Z∗

p where q, p are suitably large primes.
See also [14] on this issue.



each participant must certify each other participants public key. Since we assume
only a few voters or senders are participating in the protocol, this is a reasonable
burden to put on the participants.

Imagine now that the central server fails. Since everything is digitally signed,
the participants may restore the state of the message board from their own
data. They may now simply set up a new server to run the protocol. It is easy
to modify the votes in a publicly verifiable manner such that the data fits the
public key of the new authority.

References

1. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: pro-
ceedings of PKC ’02, LNCS series, volume 2274. (2002) 141–158

2. Damg̊ard, I., Jurik, M.J.: A length-flexible threshold cryptosystem with applica-
tions. In: proceedings of ACISP ’03, LNCS series, volume 2727. (2003) 350–364

3. Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In:
proceedings of EUROCRYPT ’99, LNCS series, volume 1592. (1999) 223–239

4. Kiayias, A., Yung, M.: Robust verifiable non-interactive zero-sharing. In Gritzalis,
D., ed.: Secure Electronic Voting. Kluwer Academic Publishers (2003) 139–151

5. Kiayias, A., Yung, M.: Non-interactive zero-sharing with applications to private
distributed decision making. In: proceedings of Financial Crypto, LNCS series,
volume 2742. (2003) 303–320

6. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: pro-
ceedings of CRYPTO ’02, LNCS series, volume 2442. (2002) 417–432

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: proceedings of CRYPTO ’94,
LNCS series, volume 893. (1994) 174–187

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security 1993. (1993) 62–73

9. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: proceedings
of CRYPTO ’01, LNCS series, volume 2139. (2001) 368–387

10. Neff, A.C.: A verifiable secret shuffle and its application to e-voting. In: ACM
CCS ’01. (2001) 116–125

11. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: proceedings
of PKC ’03, LNCS series, volume 2567. (2003) 145–160

12. Canetti, R.: Security and composition of multi-party cryptographic protocols.
Journal of Cryptology 13 (2000) 143–202

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. (2001) 136–145

14. Gordon, D.M.: Designing and detecting trapdoors for discrete log cryptosystems.
In: proceedings of CRYPTO ’92, LNCS series, volume 740. (1992) 66–75


