
Efficient Zero-Knowledge Arguments from Two-Tiered
Homomorphic Commitments

Jens Groth?

University College London
j.groth@ucl.ac.uk

Abstract. We construct practical and efficient zero-knowledge arguments with sublinear com-
munication complexity. The arguments have perfect completeness, perfect special honest verifier
zero-knowledge and computational soundness. Our zero-knowledge arguments rely on two-tiered
homomorphic commitments for which pairing-based constructions already exist.
As a concrete application of our new zero-knowledge techniques, we look at the case of range
proofs. To demonstrate a committed value belongs to a specific N -bit integer interval we only need

to communicate O(N
1
3) group elements.

Keywords: Zero-knowledge arguments, sublinear communication, circuit satisfiability, range proofs,
two-tiered homomorphic commitments.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [21] are fundamental build-
ing blocks in cryptography that are used in secure multi-party computation and numerous other
protocols. Zero-knowledge proofs enable a prover to convince a verifier of the truth of a state-
ment without leaking any other information. The central properties are captured in the notions
of completeness, soundness and zero-knowledge.

Completeness: The prover can convince the verifier if the prover knows a witness testifying
to the truth of the statement.

Soundness: A malicious prover cannot convince the verifier if the statement is false. We dis-
tinguish between computational soundness that protects against polynomial time cheating
provers and statistical or perfect soundness where even an unbounded prover cannot convince
the verifier of a false statement. We will call computationally sound proofs for arguments.

Zero-knowledge: A malicious verifier learns nothing except that the statement is true. We
distinguish between computational zero-knowledge, where a polynomial time verifier learns
nothing from the proof and statistical or perfect zero-knowledge, where even a verifier with
unlimited resources learns nothing from the proof.

Recent works on zero-knowledge proofs [27] give us proofs with a communication complexity
that grows linearly in the size of the statement to be proven and [27, 28] also give us proofs
where the communication complexity depends quasi-linearly on the witness-length. These works
rely on standard assumptions; if one is willing to assume the existence of fully homomorphic
encryption [17] the communication complexity can be reduced to the witness-length plus a small
additive overhead [16, 18].

For zero-knowledge arguments the communication complexity can be even lower. Kilian [29]
gave a zero-knowledge argument for circuit satisfiability with polylogarithmic communication.
His argument goes through the PCP-theorem [3, 2, 13] and uses a collision-free hash-function to

? Supported by EPSRC grant number EP/G013829/1.

build a hash-tree that includes the entire PCP though. Even with the best PCP constructions
known to date [5] Kilian’s argument has high computational complexity for practical parameters.
Goldwasser, Kalai and Rothblum [20] improve that state of affairs by constructing arguments
that have both low communication complexity and highly efficient verification.

A large body of research starting with Schnorr’s identification protocols [34] deals with zero-
knowledge proofs and arguments over prime order groups. A class of zero-knowledge proofs and
arguments known as Σ-protocols [9] is often used in practical applications. Groth [25] also used
prime order groups to develop practical sublinear size zero-knowledge arguments for statements
relating to linear algebra over Zp for large primes p.

One particular example of zero-knowledge arguments that has appeared in several applica-
tions, e.g., e-voting [12] and auctions [32] are range proofs. Here the prover holds a commitment
to a value w and wants to convince the verifier that the value belongs to a specific integer in-
terval [A;B). Boudot [6], Lipmaa [31] and Groth [23] have given constant size zero-knowledge
argument for interval membership based on the strong RSA assumption.

In prime order groups the best range proof technique known was for a long time to commit
to the bits of the value and use OR-proofs [9] to show that the committed bits were 0 or
1. For N -bit integers this communicates O(N) group elements. Camenisch, Chaabouni and
Shelat [7] improved this in the bilinear group setting by giving a zero-knowledge range proof
with communication complexity O(N

logN). Chaabouni, Lipmaa and Shelat [8] improved this
complexity with a factor 2.

Our contribution. We construct zero-knowledge arguments for circuit satisfiability and range
proofs that have perfect completeness and perfect zero-knowledge. For simplicity our construc-
tions are in the common reference string model, but typically the common reference string can
be chosen by the verifier at the cost of one extra round in the beginning to get zero-knowledge
arguments in the plain model; we refer to the remarks at end of Section 2.2 for further discussion.

The circuit satisfiability argument has communication complexity O(N
1
3) group elements

when the circuit has N gates. The range proof has a size of O(N
1
3) group elements for N -bit

intervals. The arguments have quasi-linear computational complexity for the prover and very
efficient verification. An efficiency comparison of the arguments can be found in Tables 1 and 2.

Rounds Comm. Prover comp. Verifier comp. Assumption

Cramer et al. [9] 3 O(N) G O(N) E O(N) E Dlog

Groth [25] 5 O(N
1
2) G O(N log2 N) M O(N) M DLog

This paper 7 O(N
1
3) G O(N log2 N) M O(N) M DPair

Table 1. Zero-knowledge arguments for satisfiability of circuits with N NAND-gates measured in group elements
G, exponentiations E, and multiplications M.

Rounds Comm. Prover comp. Verifier comp. Assumption

Camenisch et al. [7] 3 O(N
logN

) G O(N
logN

) E O(N
logN

) E q-SDH

Chaabouni et al [8] 3 O(N
logN

) G O(N
logN

) E O(N
logN

) E q-SDH

This paper 7 O(N
1
3) G O(N log2 N) M O(N

1
3) M DPair

Table 2. Range proofs in prime order groups measured in group elements G, exponentiations E, and multiplica-
tions M.

In the tables we give the conservative estimate of O(N log2N) estimate for the prover’s
computation, but as we will discuss at the end of Section 3 it can often be reduced to O(N logN)
using Fast Fourier Transform techniques. When comparing the range proofs, we are assuming a
common reference string is available. This permits the incorporation of the initial messages in
[7, 8] into the common reference string such that their range proofs only use 3 rounds instead of
4 rounds.

Our zero-knowledge arguments can be instantiated in asymmetric bilinear groups where the
computational double pairing assumption (Section 2.1) holds. In comparison, the range proofs [7,
8] are based on the q-SDH assumption in bilinear groups.

Techniques. Our main technical contribution is the batch product argument that can be found in
Section 3. Using homomorphic commitments to group elements [1, 25] we can in combination with

Pedersen commitments to multiple elements commit to N elements in Zp using only N
1
3 group

elements. Given 3N committed elements ui, vi, wi ∈ Zp we generalize techniques from [26, 25]
to develop a communication-efficient zero-knowledge argument for proving that the committed
values all satisfy uivi = wi.

Since the commitments are homomorphic we can now do both additions and multiplications
on the committed elements. This enables the prover to commit to the wires in a circuit and
prove that they respect the NAND-gates.

For the range proof we commit to the bits w1, . . . , wN of the committed value. Using the batch
product argument we can show with a communication complexity of O(N

1
3) group elements that

the committed bits satify wiwi = wi, which can only be true if wi ∈ {0, 1}. Once we have the
committed bits, we can then use the homomorphic properties of the commitment schemes to
compute w =

∑N
i=1wi2

i−1. This shows that w belongs to the range [0; 2N) and can be generalized
to a range of the form [A;B).

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We write
y ← A(x) for the process of picking randomness r at random and setting y = A(x; r). We also
write y ← S for sampling y uniformly at random from the set S.

We will give a security parameter λ written in unary as input to all parties in our protocols.
Intuitively, the higher the security parameter the more secure the protocol. We say a function
f : N → [0, 1] is negligible if f(λ) = O(λ−c) for every constant c > 0. We write f ≈ g when
|f(λ)− g(λ)| is negligible. We say f is overwhelming if f ≈ 1.

2.1 Two-tiered homomorphic commitments

A commitment scheme allows Alice to compute and send a commitment to a secret message a.
Later Alice may open the commitment and reveal to Bob that she committed to a. Commitments
must be binding and hiding. Binding means that Alice cannot change her mind; a commitment
can only be opened to one message a. Hiding means that Bob does not learn which message
Alice committed to.

In the Pedersen commitment scheme [33] the public key contains the description of a group of
prime order p and group elements g, h. A commitment to a ∈ Zp is constructed by picking r ← Zp
and computing c = gahr. This commitment scheme is very useful because it is homomorphic, i.e.,
the product of two commitments is c · c′ = (gahr)(gbhs) = ga+bhr+s, which is a commitment to
a+b. The Pedersen commitment can be generalized such that the public key contains g1, . . . , gn, h
and a commitment to (a1, . . . , an) ∈ Znp is computed as hr

∏n
k=1 g

ak
k .

Abe, Fuchsbauer, Groth, Haralambiev and Ohkubo [1, 24] proposed commitment schemes for
group elements. One of the commitment schemes uses a bilinear group with a pairing e : G×Ĝ→
T. Here G, Ĝ,T are cyclic groups of prime order p where we call G, Ĝ the base groups and T the
target group. The pairing is efficiently computable, non-trivial and bilinear, i.e., for all x, y, a, b
we have e(xa, yb) = e(x, y)ab. The commitment scheme specifies non-trivial group elements
v, u1, . . . , um ∈ Ĝ and a commitment to (c1, . . . , cm) ∈ G is computed by picking at random
t ∈ G and computing C = e(t, v)

∏m
j=1 e(cj , uj). The commitment scheme is computationally

binding under the computational double pairing assumption, which states that given random
u, v ∈ Ĝ it is hard to find non-trivial s, t ∈ G such that e(s, u) = e(t, v). The hardness of the
computational double pairing assumption is implied by the decision Diffie-Hellman assumption
in Ĝ [1, 24].1 Furthermore, the bilinearity of the pairing means that the commitment scheme is
homomorphic in the sense that

C · C ′ =

e(t, v)

m∏
j=1

e(cj , uj)

e(t′, v)

m∏
j=1

e(c′j , uj)

 = e(tt′, v)

m∏
j=1

e(cjc
′
j , uj)

is a commitment to the entry-wise product of the messages.

Combining the two types of commitment schemes it is possible to commit to commitments.
If we compute cj = hrj

∏n
k=1 g

ajk
k and C = e(t, v)

∏m
j=1 e(cj , uj) we have a single target group

element that is a commitment to mn values {ajk}m,nj=1,k=1. Since both commitment schemes are
homomorphic the product of two commitments C · C ′ is a commitment to the sums of the
messages ajk + a′jk. In our zero-knowledge arguments both the homomorphic and the length-
reducing properties will be crucial because it allows the prover to do computations on committed
values in a verifiable manner and with little communication.

The commitment schemes described above provide an example of what we will call a two-
tiered commitment scheme. With the Pedersen commitment scheme in mind we will for simplicity
assume the randomness is drawn from Zp but it would be easy to generalize to other randomizer
spaces. Furthermore, in the example given above the Pedersen commitments are perfectly hiding
and we can therefore use trivial randomness t = 1 in the commitments to Pedersen commitments.
This observation is incorporated in the following definition of a two-tiered commitment scheme.

A two-tiered commitment scheme consists of three polynomial time algorithms (K, com, com(2)).
K is a key generator that on security parameter λ and integers m,n returns a public key ck.
The commitment key specifies cyclic groups Zp, G and T of prime order p. It also specifies how

to efficiently compute comck : Znp × Zp → G and com
(2)
ck : Gm → T.

Definition 1 (Homomorphic). We say the two-tiered commitment scheme is homomorphic,

when the maps comck and com
(2)
ck are Zp-linear.

Definition 2 (Computationally binding). The two-tiered commitment scheme (K, com, com(2))
is computationally binding if for all non-uniform polynomial time adversaries A and for all
m,n = λO(1)

Pr
[
ck ← K(1λ,m, n); (a, b, r, s, c,d)← A(ck) : a 6= b ∈ Znp r, s ∈ Zp c 6= d ∈ Gm

comck(a; r) = comck(b; s) or com
(2)
ck (c) = com

(2)
ck (d)

]
≈ 0.

1 Galbraith, Paterson and Smart [14] classified bilinear groups into 3 types. The commitment scheme described
above uses type II or type III bilinear groups. In a type I bilinear group we could instead use the decisional
linear assumption based commitment scheme from [24].

Definition 3 (Perfectly hiding). The two-tiered commitment scheme (K, com, com(2)) is per-
fectly hiding if for all stateful adversaries A and all m,n ∈ λO(1)

Pr
[
ck ← K(1λ,m, n);a0,a1 ← Znp ; b← {0, 1}; c← comck(ab) : A(ck,a0,a1, c) = b

]
=

1

2
.

The zero-knowledge arguments we describe will work over any two-tiered homomorphic com-
mitment scheme with a large prime p. When giving concrete efficiency estimates we will assume
we are using the bilinear group based scheme described earlier in this section. The public key for
this commitment scheme consists of a description of a bilinear group (p,G, Ĝ,T, e) and m+n+2
group elements in G and Ĝ. We will be looking at statements of size N and the minimal com-
munication complexity will be obtained when m = O(N

1
3) and n = O(N

1
3) giving a public key

size of O(N
1
3) group elements.

2.2 Special honest verifier zero-knowledge arguments of knowledge

We will for simplicity describe how our arguments work in the common reference string model
and how to obtain zero-knowledge against honest-but-curious verifiers. Both of these restrictions
can be removed at very small cost to get full zero-knowledge in the plain model as described in
the remarks at the end.

Consider a triple of probabilistic polynomial time interactive algorithms (K,P,V) called the
common reference string generator, the prover and the verifier. The common reference string
generator takes the security parameter λ as input in unary and some auxilliary input m,n that
specifies the size of the statements we are interested in and generates a common reference string.
In the zero-knowledge arguments in this paper, the common reference string will contain the
public key ck for a two-tiered commitment scheme.

Let R be a polynomial time decidable ternary relation. For a statement x we call w a witness
if (ck, x, w) ∈ R. We define a corresponding common reference string dependent language Lck
consisting of statements x that have a witness w such that (ck, x, w) ∈ R. This is a natural
generalization of NP-languages; when R ignores ck we have the standard notion of an NP-
language.

We write tr← 〈P(s),V(t)〉 for the public transcript produced by P and V when interacting
on inputs s and t. This transcript ends with V either accepting or rejecting. We sometimes
shorten the notation by saying 〈P(s),V(t)〉 = b, where b = 0 corresponds to V rejecting and
b = 1 corresponds to V accepting.

Definition 4 (Argument). The triple (K,P,V) is an argument for relation R with perfect
completeness if for all non-uniform polynomial time interactive adversaries A and all m,n =
λO(1) we have

Perfect completeness:

Pr
[
ck ← K(1λ,m, n); (x,w)← A(ck) : (ck, x, w) /∈ R or 〈P(ck, x, w),V(ck, x)〉 = 1

]
= 1.

Computational soundness:

Pr
[
ck ← K(1λ,m, n);x← A(ck) : x /∈ Lck and 〈A,V(ck, x)〉 = 1

]
≈ 0.

Definition 5 (Public coin argument). An argument (K,P,V) is public coin if the verifier’s
messages are chosen uniformly at random independently of the messages sent by the prover.

We shall define an argument of knowledge through witness-extended emulation [22, 30]. In-
formally, the definition says: given an adversary that produces an acceptable argument with
probability ε, there exists an emulator that produces a similar argument with roughly the same
probability ε and at the same time provides a witness.

Definition 6 (Witness-extended emulation). We say the public coin argument (K,P,V)
has computational witness-extended emulation if for all deterministic polynomial time P∗ there
exists an expected polynomial time emulator X such that for all non-uniform polynomial time
adversaries A and all m,n = λO(1)

Pr
[
ck ← K(1λ,m, n); (x, s)← A(ck); tr← 〈P∗(ck, x, s),V(ck, x)〉 : A(tr) = 1

]
≈ Pr

[
ck ← K(1λ,m, n); (x, s)← A(ck); (tr, w)← X 〈P∗(ck,x,s),V(ck,x)〉(ck, x) :

A(tr) = 1 and if tr is accepting then (ck, x, w) ∈ R
]
,

where X has access to a transcript oracle 〈P∗(ck, x, s),V(ck, x)〉 that can be rewound to a par-
ticular round and run again with the verifier using fresh randomness.

We think of s as being the state of P∗, including the randomness. Then we have an argument
of knowledge in the sense that the emulator can extract a witness whenever P∗ is able to make
a convincing argument. This shows that the definition implies soundness. We remark that the
verifier’s randomness is part of the transcript and the prover is deterministic. So combining the
emulated transcript with ck, x, s gives us the view of both the prover and the verifier and at the
same time gives us the witness.

Please note that the standard definition of proofs of knowledge by Bellare and Goldreich [4]
does not apply in our setting, since we work in the common reference string model and are
interested in arguments of knowledge; see Damg̊ard and Fujisaki [11] for a discussion of this
issue and an alternative definition of knowledge soundness. Witness-extended emulation implies
knowledge soundness as defined by Damg̊ard and Fujisaki [22].

We define special honest verifier zero-knowledge (SHVZK) [9] for a public coin argument as
the ability to simulate the transcript for any set of challenges without access to the witness.

Definition 7 (Perfect special honest verifier zero-knowledge). The public coin argument
(K,P,V) is a perfect special honest verifier zero-knowledge argument for R if there exists a prob-
abilistic polynomial time simulator S such that for all non-uniform polynomial time adversaries
A and all m,n = λO(1)

Pr
[
ck ← K(1λ,m, n); (x,w, ρ)← A(ck); tr← 〈P(ck, x, w),V(ck, x; ρ)〉 :

(ck, x, w) ∈ R and A(tr) = 1
]

= Pr
[
ck ← K(1λ,m, n); (x,w, ρ)← A(ck); tr← S(ck, x, ρ) : (ck, x, w) ∈ R and A(tr) = 1

]
.

The plain model. We will describe our arguments in the common reference string model where
the prover and verifier have a trusted setup. If we want to work in the plain model we can add
an initial round where the verifier picks the common reference string and sends it to the prover.
Provided it can be verified that the verifier’s initial message describes a valid common reference
string this will still be perfect SHVZK because we do not rely on the simulator knowing any
trapdoor information associated with the common reference string.

Full zero-knowledge. For simplicity, we focus on SHVZK arguments in this paper. There are very
efficient standard techniques [10, 15, 22] to convert an SHVZK argument into a public-coin full
zero-knowledge argument with a cheating verifier when a common reference string is available.

If we work in the plain model and let the verifier choose the common reference string, we
can use coin-flipping techniques (for the full zero-knowledge property the coin-flips should be
simulatable against a dishonest verifier) for the challenges to get private-coin2 full zero-knowledge
arguments against a cheating verifier. Challenges in our SHVZK arguments are very short so
both in the case with and without a common reference string the overhead of getting full zero-
knowledge is insignificant compared to the cost of the SHVZK arguments.

3 Batch Product Argument

We will now present our main technical contribution, which is a batch product argument for
committed values {uijk, vijk, wijk}M,m,n

i=1,j=1,k=1 satisfying uijkvijk = wijk. More precisely, the state-
ment consists of commitments CU1 , CV1 , CW1 , . . . , CUM , CVM , CWM

∈ T. The prover will argue
knowledge of openings uijk, rij , vijk, sij , wijk, tij ∈ Zp such that

cuij = comck(uij1, . . . , uijn; rij) CUi = com
(2)
ck (cui1 , . . . , cuim)

cvij = comck(vij1, . . . , vijn; sij) CVi = com
(2)
ck (cvi1 , . . . , cvim)

cwij = comck(wij1, . . . , wijn; tij) CWi = com
(2)
ck (cwi1 , . . . , cwim)

uijkvijk = wijk.

The argument will have communication complexity O(M +m+ n). In order to explain the
idea behind the argument let us first focus on soundness and for now postpone the question
of how to get SHVZK. In the argument, the prover will demonstrate that she knows open-
ings of CUi , CVi , CWi to cuij , cvij , cwij and that she knows openings of cuij , cvij , cwij using stan-
dard techniques. She will also know openings aα, ρα, bβ, σβ ∈ Zp of intermediate commitments
caα = comck(aα; ρα), cbβ = comck(bβ, σβ) that she sends during the argument and which will be
specified later. The argument runs over 7 moves with the prover getting challenges x, y, z ∈ Z∗p
in round 2, 4 and 6. The commitments caα are sent in round 3 and the commitments cbβ are
sent in round 5. This means aα may depend on x but is independent of y and z, and bβ may
depend on both x and y but is independent of z.

The prover will demonstrate to the verifier that

M∑
i=1

m∑
j=1

n∑
k=1

(uijkvijk − wijk)xi(m+1)n+jn+k = 0. (1)

Unless uijkvijk = wijk for all choices of i, j, k this has negligible probability of holding over
a randomly chosen challenge x ∈ Z∗p. Our main obstacle is to build up this polynomial and
convince the verifier that the equality (1) holds true using only O(M +m+ n) communication.

We carefully choose appropriate linear combinations of the commitments and by the homo-
morphic property get corresponding linear combinations of the uijk, vijk, wijk values such that
the equality (1) emerges. During this process, we will also use exponentiations of some of the
commitments to powers of x such that we get linear combinations of uijkx

i(m+1)n+jn+k and

2 Goldreich and Krawczyk [19] have shown that only languages in BPP have constant-round public-coin argu-
ments.

wijkx
i(m+1)n+jn+k. Suppose for instance that the prover after seeing x computes and opens

M∏
i=1

Cx
i(m+1)n

Ui = com
(2)
ck (cu1 , . . . , cum) where cuj =

M∏
i=1

cx
i(m+1)n

uij

M∏
i=1

CVi = com
(2)
ck (cv1 , . . . , cvm) where cvj =

M∏
i=1

cvij

M∏
i=1

Cx
i(m+1)n

Wi
= com

(2)
ck (cw1 , . . . , cwm) where cwj =

M∏
i=1

cx
i(m+1)n

wij

and at the same time computes and opens

m∏
j=1

cx
jn

uj = comck(u1, . . . , un; r) where uk =

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn

m∏
j=1

cvj = comck(v1, . . . , vn; s) where vk =
M∑
i=1

m∑
j=1

vijk

m∏
j=1

cx
jn

wj = comck(w1, . . . , wn; t) where wk =

M∑
i=1

m∑
j=1

wijkx
i(m+1)n+jn

Using only 3m commitments and 3m+ 3 elements in Zp this tells the verifier

ukx
k =

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+k vk =

M∑
i=1

m∑
j=1

vijk

wkx
k =

M∑
i=1

m∑
j=1

wijkx
i(m+1)n+jn+k.

We now have that

n∑
k=1

(ukvk − wk)xk

=
n∑
k=1

(
M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+k)(

M∑
i′=1

m∑
j′=1

vi′j′k)−
M∑
i=1

m∑
j=1

wijkx
i(m+1)n+jn+k


contains the desired polynomial from (1) but there are some cross-terms corresponding to i 6= i′

or j 6= j′ so the polynomial given above may be non-zero.

We will choose the aα and bβ values such that they cancel out the cross-terms. However,
we have to be careful that there are only O(M + m + n) of them and that they are feasible to
compute. We will therefore use an interactive technique that will enable the verifier to pick aα
and bα after seeing x. This introduces a second concern, namely to choose them in a way such
that they do not affect the original equality we wish to get. We accomplish this by making sure
that aα and bβ are modified by factors yα and zβ for α, β 6= 0 while the desired equality does

not contain any such factors. To make this happen we will modify the opening process of the
commitments CUi and CVi described above to open

M∏
i=1

Cx
i(m+1)nyi

Ui
= com

(2)
ck (cu1 , . . . , cum)

m∏
j=1

cx
jnzj

uj = comck(u1, . . . , un; r)

M∏
i=1

Cy
−i

Vi
= com

(2)
ck (cu1 , . . . , cum)

m∏
j=1

cz
−j
vj = comck(v1, . . . , vn; r)

This gives us

ukx
k =

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+kyizj vk =

M∑
i=1

m∑
j=1

vijky
−iz−j .

We now have

n∑
k=1

ukx
kvk =

n∑
k=1

(

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+kyizj)(

M∑
i′=1

m∑
j′=1

vi′j′ky
−i′z−j

′
)

=
n∑
k=1

M∑
i=1

M∑
i′=1

m∑
j=1

m∑
j′=1

uijkx
i(m+1)n+jn+kvi′j′ky

i−i′zj−j
′

By splitting the sum into three parts corresponding to the three cases j = j′, i = i′ and j =
j′, i 6= i′ and j 6= j′ and subtracting the wkx

k’s we get

n∑
k=1

(ukvk − wk)xk =
n∑
k=1

M∑
i=1

m∑
j=1

(uijkvijk − wijk)xi(m+1)n+jn+k

+
n∑
k=1

M∑
i=1

M∑
i′=1
i′ 6=i

m∑
j=1

uijkx
i(m+1)n+jn+kvi′jky

i−i′

+
n∑
k=1

M∑
i=1

M∑
i′=1

m∑
j=1

m∑
j′=1
j′ 6=j

uijkx
i(m+1)n+jn+kvi′j′ky

i−i′zj−j
′

(2)

=

n∑
k=1

M∑
i=1

m∑
j=1

(uijkvijk − wijk)xi(m+1)n+jn+k

+
M∑

α=−M
α 6=0

M,M∑
i=1,i′=1
i−i′=α

n∑
k=1

m∑
j=1

uijkx
i(m+1)n+jn+kvi′jky

α

+

m∑
β=−m
β 6=0

m,m∑
j=1,j′=1
j−j′=β

n∑
k=1

(
M∑
i=1

uijkx
i(m+1)n+jn+kyi)(

M∑
i′=1

vi′j′ky
−i′)zβ

The prover will select

aα =

M,M∑
i=1,i′=1
i−i′=α

n∑
k=1

m∑
j=1

uijkx
i(m+1)n+jn+kvi′jk

bβ =

m,m∑
j=1,j′=1
j−j′=β

n∑
k=1

(

M∑
i=1

uijkx
i(m+1)n+jn+kyi)(

M∑
i′=1

yivi′j′ky
−i′)

and send the commitments {caα}α before seeing y and send {cbβ}β before seeing z. She will
reveal randomness R ∈ Zp such that

M∏
α=−M
α 6=0

cy
α

aα ·
m∏

β=−m
β 6=0

cz
β

bβ
= comck(

n∑
k=1

(ukvk − wk)xk;R).

This corresponds to the values in the commitments satisfying

M∑
α=−M
α 6=0

aαy
α +

m∑
β=−m
β 6=0

bβz
β =

n∑
k=1

(ukvk − wk)xk.

Keeping in mind the expansion of the right hand side (2) we get that with overwhelming prob-
ability over y, z this can only be true if equation (1) holds.

In order to make the protocol SHVZK we add some commitments and values such that
cuj , cvj , cwj and uk, vk, wk cannot reveal anything about uijk, vijk, wijk. Furthermore, we add
some dk values and cdk commitments to cancel out new cross-terms arising from the added
values. This gives us the full batch product argument below.

Common reference string: Two-tiered commitment key ck.

Statement: Commitments CU1 , CV1 , CW1 . . . , CUM , CVM , CWM
∈ T.

Prover’s witness: Values u111, v111, w111, . . . , uMmn, vMmn, wMmn ∈ Zp and randomness
r11, s11, t11, . . . , rMm, sMm, tMm ∈ Zp such that for all i ∈ {1, . . . ,M}, j ∈ {1, . . . ,m}, k ∈
{1, . . . , n} :

cuij = comck(uij1, . . . , uijn; rij) CUi = com
(2)
ck (cui1 , . . . , cuim)

cvij = comck(vij1, . . . , vijn; sij) CVi = com
(2)
ck (cvi1 , . . . , cvim)

cwij = comck(wij1, . . . , wijn; tij) CWi = com
(2)
ck (cwi1 , . . . , cwim)

uijkvijk = wijk.

1. P → V: Pick u00k, v00k, w00k ← Zp and set u0jk = v0jk = w0jk = 0 and ui0k = vi0k = wi0k = 0
for i 6= 0 and j 6= 0. Pick r00, s00, t00, τ1, . . . , τn ← Zp and pick r0j , s0j , t0j ← Zp. Compute
for j ∈ {0, . . . ,m} and k ∈ {1, . . . , n}

cu0j = comck(u0j1, . . . , u0jn; r0j) CU0 = com
(2)
ck (cu01 , . . . , cu0m)

cv0j = comck(v0j1, . . . , v0jn; s0j) CV0 = com
(2)
ck (cv01 , . . . , cv0m)

cw0j = comck(w0j1, . . . , w0jn; t0j) CW0 = com
(2)
ck (cw01 , . . . , cw0m)

dk = u00kv00k − w00k cdk = comck(dk; τk)

Send: cu00 , cv00 , cw00 , CU0 , CV0 , CW0 , {cdk}nk=1.

2. P ← V: x← Z∗p.

3. P → V: For α ∈ {−M, . . . ,−1, 1, . . . ,M} pick ρα ← Zp and compute

aα =

M,M∑
i=0,i′=0
i−i′=α

m∑
j=0

n∑
k=1

(uijkx
i(m+1)n+jn+k)vi′jk caα = comck(aα; ρα).

Send: {caα}α∈{−M,...,−1,1,...,M}.
4. P ← V: y ← Z∗p.
5. P → V: For β ∈ {−m, . . . ,−1, 1, . . . ,m} pick σβ ← Zp and compute

bβ =

m,m∑
j=0,j′=0
j−j′=β

n∑
k=1

(
M∑
i=0

uijkx
i(m+1)n+jn+kyi

)(
M∑
i′=0

vi′j′ky
−i′
)

cbβ = comck(bβ;σβ).

Compute also for j ∈ {1, . . . ,m}

cuj =

M∏
i=0

cx
i(m+1)nyi

uij cvj =

M∏
i=0

cy
−i
vij cwj =

M∏
i=0

cx
i(m+1)n

wij .

Send: {cbβ}β∈{−m,...,−1,1,...,m}, {cuj , cvj , cwj}mj=1.
6. P ← V: z ← Z∗p.
7. P → V: Compute for k ∈ {1, . . . , n}

uk = u00k +

m∑
j=1

M∑
i=0

uijkx
i(m+1)n+jnyizj r = r00 +

m∑
j=1

M∑
i=0

rijx
i(m+1)n+jnyizj

vk = v00k +
m∑
j=1

M∑
i=0

vijky
−iz−j s = s00 +

m∑
j=1

M∑
i=0

sijy
−iz−j

wk = w00k +
m∑
j=1

M∑
i=0

wijkx
i(m+1)n+jn t = t00 +

m∑
j=1

M∑
i=0

tijx
i(m+1)n+jn

R =

n∑
k=1

τkx
k +

M∑
α=−M
α 6=0

ραy
α +

m∑
β=−m
β 6=0

σβz
β

Send: {uk, vk, wk}nk=1, r, s, t, R.
Verification: Accept the argument if the following holds

cu00

m∏
j=1

cx
jnzj

uj = comck(u1, . . . , un; r)
M∏
i=0

Cx
i(m+1)nyi

Ui
= com

(2)
ck (cu1 , . . . , cum)

cv00

m∏
j=1

cz
−j
vj = comck(v1, . . . , vn; s)

M∏
i=0

Cy
−i

Vi
= com

(2)
ck (cv1 , . . . , cvm)

cw00

m∏
j=1

cx
jn

wj = comck(w1, . . . , wn; t)
M∏
i=0

Cx
i(m+1)n

Wi
= com

(2)
ck (cw1 , . . . , cwm)

n∏
k=1

cx
k

dk
·

M∏
α=−M
α 6=0

cy
α

aα ·
m∏

β=−m
β 6=0

cz
β

bβ
= comck(

n∑
k=1

(ukvk − wk)xk;R)

Theorem 1. The argument given above has perfect completeness, perfect SHVZK and witness-
extended emulation if the two-tiered commitment scheme is binding.

Proof. We will first show the argument has perfect completeness. Looking at the committed
values in the last equation we need

n∑
k=1

dkx
k +

M∑
α=−M
α 6=0

aαy
α +

m∑
β=−m
β 6=0

bβz
β =

n∑
k=1

(ukvk − wk)xk.

To see this holds, observe that since ui0k = vi0k = wi0k = 0 for i 6= 0 we have

uk =

m∑
j=0

M∑
i=0

uijkx
i(m+1)n+jnyizj vk =

m∑
j=0

M∑
i=0

vijky
−iz−j wk =

m∑
j=0

M∑
i=0

wijkx
i(m+1)n+jn.

n∑
k=1

(ukvk − wk)xk

=
n∑
k=1

(

m∑
j=0

M∑
i=0

uijkx
i(m+1)n+jnyizj)(

m∑
j′=0

M∑
i′=0

vi′j′ky
−i′z−j

′
)− wk

xk

=
n∑
k=1

 m∑
j=0

m∑
j′=0

M∑
i=0

M∑
i′=0

uijkx
i(m+1)n+jn+kvi′j′ky

i−i′zj−j
′ − wkxk


=

n∑
k=1

 m∑
j=0

M∑
i=0

uijkx
i(m+1)n+jn+kvijk −

m∑
j=0

M∑
i=0

wijkx
i(m+1)n+jn+k


+

n∑
k=1

m∑
j=0

M∑
i=0

M∑
i′=0
i′ 6=i

uijkx
i(m+1)n+jn+kvi′jky

i−i′

+
n∑
k=1

m∑
j=0

m∑
j′=0
j′ 6=j

M∑
i=0

M∑
i′=0

uijkx
i(m+1)n+jn+kvi′j′ky

i−i′zj−j
′

=
n∑
k=1

(u00kv00k − w00k)x
k (because uijkvijk − wijk = 0 unless i = j = 0)

+
n∑
k=1

m∑
j=0

M∑
α=−M
α 6=0

M,M∑
i=0,i′=0
i−i′=α

uijkx
i(m+1)n+jn+kvi′jky

α

+
n∑
k=1

m∑
β=−m
β 6=0

m,m∑
j=0,j′=0
j−j′=β

(
M∑
i=0

uijkx
i(m+1)n+jn+kyi)(

M∑
i′=0

vi′j′ky
−i′)zβ

=

n∑
k=1

dkx
k +

M∑
α=−M
α 6=0

aαy
α +

m∑
β=−m
β 6=0

bβz
β

The remaining equalities follow by straightforward verification giving us perfect completeness.
We will now describe SHVZK simulator S. It gets as input the common reference string ck,

the statement CU1 , . . . , CWM
and the challenges x, y, z. It picks at random uk, vk, wk ← Zp as

well as r, s, t, R ← Zp. It picks cuj , cvj , cwj ← comck(0, . . . , 0) and cdk , caα , cbβ ← comck(0). It
now computes

cu00 =
m∏
j=1

c−x
jnzj

uj comck(u1, . . . , un; r) CU0 =
M∏
i=1

C−x
i(m+1)nyi

Ui
com

(2)
ck (cu1 , . . . , cum)

cv00 =

m∏
j=1

c−z
−j

vj comck(v1, . . . , vn; s) CV0 =

M∏
i=1

C−y
−i

Vi
com

(2)
ck (cv1 , . . . , cvm)

cw00 =
m∏
j=1

c−x
jn

wj comck(w1, . . . , wn; t) CW0 =
M∏
i=1

C−x
i(m+1)n

Wi
com

(2)
ck (cw1 , . . . , cwm)

cd1 =

 n∏
k=2

c−x
k

dk
·

M∏
α=−M
α 6=0

c−y
α

aα ·
m∏

β=−m
β 6=0

c−z
β

bβ
comck(

n∑
k=1

(ukvk − wk)xk;R)


x−1

The simulated argument is

{cu0j , cv0j , cw0j}mj=0, CU0 , CV0 , CW0 , {cdk}
n
k=1, x , {caα}α∈{−M,...,−1,1,...,M},

y , {cbβ}β∈{−m,...,−1,1,...,m}, {cuj , cvj , cwj}
m
j=1, z , {uk, vk, wk}nk=1, r, s, t, R.

By construction, it is a valid argument just as a real argument is valid. Both simulated argu-
ments and real arguments give uniformly random uk, vk, wk, r, s, t, R ∈ Zp. Furthermore, since
the commitments are perfectly hiding simulated arguments and real arguments have identical
distributions of commitments cuj , cvj , cwj , cdk , caα , cbβ for k 6= 1. Finally, both in simulated ar-
guments and in real arguments the remaining commitments cu00 , cv00 , cw00 , CU0 , CV0 , CW0 , cd1
are uniquely determined. This means simulated arguments and real arguments have identical
probability distributions and therefore the argument has perfect SHVZK.

Let us now describe the witness-extended emulator. It starts by running 〈P∗,V〉 to get a
transcript that it will output as the emulated argument. If the verifier rejects on the transcript
the emulator has a simulated transcript and it is done. However, if the verifier accepts the emu-
lator will try to extract a witness. The emulator uses repeated rewinding until it has accepting
arguments on challenges (xi, yij , zijk) for i ∈ {1, . . . , (M + 1)(m+ 1)n}, j ∈ {1, . . . , 2M + 1}, k ∈
{1, . . . , 2m + 1}. If 〈P∗,V〉 has ε > 0 chance of returning an accepting transcript, then it will

on average rewind (2M+1)(M+1)(2m+1)(m+1)n
ε times. Since the emulator only rewinds when the

transcript is accepting it uses an average of (2M + 1)(M + 1)(2m + 1)(m + 1)n rewinds so it
runs in expected polynomial time.

Since the emulator runs in expected polynomial time there is negligible probability of break-
ing the binding property of the commitment scheme, so we will in the analysis assume this
does not happen. Also, it is possible that the emulator has to rewind and that two accepting
transcripts will use the same challenge, for instance yij = yij′ . However, since the emulator runs
in expected polynomial time there is negligible probability that we encounter this event. We can
therefore in our analysis focus on the case where all the challenges xi, yij , zijk in the accepting
transcripts differ from each other.

Consider now accepting transcripts with challenges x1, . . . , xM(m+1)n+1. The vectors (1, . . . , x
M(m+1)n
`)

are rows in a Vandermonde matrix. Since a Vandermonde matrix is invertible when the x-values

are different, we can for any i′ find a linear combination (φ1, . . . , φM(m+1)n+1) of the vectors
that yields (0, . . . , 1, 0, . . . , 0) where the single 1 is in position i′. For each x` we have the ver-

ification equation
∏M
i=0C

x
i(m+1)n
j

Wi
= com

(2)
ck (c

(j)
w1 , . . . , c

(j)
w1). By taking linear combinations of the

verification equations, we get that CWi′ is

M(m+1)n+1∏
j=1

(
M∏
i=0

C
x
i(m+1)n
j

Wi

)φj
= com

(2)
ck

M(m+1)n+1∏
j=1

(c(j)w1
)φj , . . . ,

M(m+1)n+1∏
j=1

(c(j)wm)φj

 .

This gives us an opening cwi′1 , . . . , cwi′m of CWi′ . Using similar types of calculations we obtain
openings of all the commitments, i.e., for each transcript we have openings uijk, rij , vijk, sij , wijk, tij ,
dk, τk, aα, ρα, bβ, σβ. The remaining question is whether the extracted uijk, vijk, wijk satisfy uijkvijk =
wijk for i ∈ {1, . . . ,M}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , n}.

For each transcript, the binding property of the commitment scheme implies

cuj =
M∏
i=0

cx
i(m+1)nyi

uij cvj =
M∏
i=0

cy
−i
vij cwj =

M∏
i=0

cx
i(m+1)n

wij .

Define ui0k = vi0k = wi0k = 0 for i 6= 0 to get for each transcript

uk =
m∑
j=0

M∑
i=0

uijkx
i(m+1)n+jnyizj vk =

m∑
j=0

M∑
i=0

vijky
−iz−j wk =

m∑
j=0

M∑
i=0

wijkx
i(m+1)n+jn.

The last verification equation now shows that for each transcript

n∑
k=1

dkx
k +

M∑
α=−M
α 6=0

aαy
α +

m∑
β=−m
β 6=0

bβz
β

=
n∑
k=1

(
m∑
j=0

M∑
i=0

uijkx
i(m+1)n+jn+kyizj)(

m∑
j=0

M∑
i=0

vijky
−iz−j)−

m∑
j=0

M∑
i=0

wijkx
i(m+1)n+jn+k

 .

Multiply both sides by yMzm to get a polynomial identity. Since for each transcript with chal-
lenges x, y we have 2m + 1 different z-values where the equality holds we get by polynomial
interpolation

n∑
k=1

dkx
k +

M∑
α=−M
α 6=0

aαy
α

=
n∑
k=1

m∑
j=0

(
M∑
i=0

uijkx
i(m+1)n+jn+kyi)(

M∑
i=0

vijky
−i)−

M∑
i=0

wijkx
i(m+1)n+jn+k

)
.

For each transcript with challenge x there are 2M + 1 choices of y-values where the equality
holds so we get

n∑
k=1

dkx
k =

n∑
k=1

m∑
j=0

M∑
i=0

(uijkx
i(m+1)n+jn+kvijk − wijkxi(m+1)n+jn+k).

This equality holds for (M + 1)(m + 1)n different x-values and therefore the two polynomials
are identical so we have for each i, j, k 6= 0 that uijkvijk − wijk = 0. �

Complexity. The communication complexity of the batch product argument is 3 elements in T,
2M + 5m+ n+ 1 elements in G and 3n+ 7 elements in Zp.

Let us estimate the computation complexity assuming that we use the two-tiered commitment
scheme we described in Section 2.1 in an asymmetric bilinear group with base groups G, Ĝ and
target group T. The verifier’s computation is 3m pairings and exponentiations in the target
group T and 5M + 2m+ 4n exponentiations in the base group G. Using standard techniques for
batch verification some of the equations can be combined in a randomized manner and we may
also use multi-exponentiation techniques to reduce the complexity further to O(M+m+n

log(M+m+n))
exponentiations.

A näıve implementation of the prover would require 3m pairings and O(M +m+ n) expo-
nentiations and O(N(M +m)) multiplications in Zp, where N −Mmn. When M or m are large
the latter complexity dominates. However, we observe that the commitments CU0 , CV0 , CW0 are
commitments to cu0j , cv0j , cw0j , which themselves are commitments to 0. Therefore, each of the
latter is a power of h, and therefore we can use the bilinear properties of the pairing to rewrite
the computation to allow us to compute CU0 , CV0 , CW0 using 3 pairings and 3m exponentiations.

We can use techniques for polynomial multiplication to reduce the prover’s computation.
Consider as an example the computation in round 3, where the prover computes

aα =

M,M∑
i=0,i′=0
i−i′=α

m∑
j=0

n∑
k=1

(uijkx
i(m+1)n+jn+k)vi′jk

for α = −M, . . . ,−1, 1, . . . ,M . Define ui = (ui01x
i(m+1)n+0n+1, . . . , uimnx

i(m+1)n+mn+n) and
vi′ = (vi′01, . . . , vi′mn), which allows us to rewrite it as

aα =

M,M∑
i=0,i′=0
i−i′=α

uiv
>
i′ .

Observe that aα is the M + α’th coefficient of the polynomial

p(ω) =

(
M∑
i=0

ωiui

)(
M∑
i′=0

ωM−i
′
v>i′

)
∈ Zp[ω].

The degree of the polynomial is 2M so if we evaluate it in 2M+1 different points ω1, . . . , ω2M+1 ∈
Zp we can use polynomial interpolation to recover the coefficients. The evaluation of

∑M
i=0 ω

iui
and

∑M
i′=0 ω

M−i′v>i′ in 2M + 1 different points can be done using O(N log2M) multiplications.
If 2M |p− 1 and M is a power of 2 we can pick ω1, . . . , ω2M as 2M -roots of unity, i.e., ω2M

k = 1
and use the Fast Fourier Transform to reduce the cost further down to O(N logM) multiplica-
tions.3 Similarly, we can compute b−m, . . . , b−1, b1, . . . , bm using O(N log2m) multiplications or
O(N logm) multiplications if 2m|p− 1 and m is a power of 2.

Known values. Sometimes it will be useful to use publicly known values uijk in the argument. The
trivial way to handle this is to use commitments cuij = comck(uij1, . . . , uijn; 0). Since they use
trivial randomness, the verifier can check directly that CU1 , . . . , CUM contain the correct values.
A more careful inspection reveals that some efficiency savings can be made by abandoning the

3 It takes a while before the assymptotic behaviour kicks in, so for small M it may be better to use Toom-Cook
related methods for computing the coefficients a−M , . . . , aM .

commitments cuij altogether. Since the uijk values are public we do not need to hide them, so
the prover may choose u0jk = 0. The verifier can now herself compute the resulting uk values
without using the commitments at all.

A similar analysis reveals that when wijk are known the prover does not need to communicate
any CWi or cwj commitments since the verifier can compute wk himself. In the special case where
wijk = 0 this simplifies to fixing wk = 0.

3.1 Inner product argument

A slight modification of the batch product argument allows the prover to demonstrate instead∑M
i=1

∑m
j=1

∑n
k=1 uijkvijk =

∑M
i=1

∑m
j=1

∑n
k=1wijk. The main observation is that we can fix

x = 1 instead of letting the verifier choose it, in which case equation (1) gives us the desired
equality.

The only issue in following this idea is the cross-terms arising from u0jk, v0jk, w0jk. We
therefore compute CxU0

, CxV0 , C
x
W0
, cxu00 , c

x
v00 , c

x
w00

giving us commitments to u0jkx, v0jkx,w0jkx.
Since x ∈ Z∗p these values will still ensure that cuj , cvj , cwj , uk, vk, wk do not leak any information
about uijk, vijk, wijk. But since they are modified by a random factor x throughout the argument

they will not interfere with the equation
∑M

i=1

∑m
j=1

∑n
k=1 uijkvijk =

∑M
i=1

∑m
j=1

∑n
k=1wijk. To

get perfect completeness, we use two commitments to d1 and d2 values to cancel out cross-terms
corresponding to x and x2.

4 Arguments for Circuit Satisfiability

Using the batch product argument from Section 3 we can give a 7-move SHVZK argument
for circuit satisfiability. Consider a boolean circuit consisting of N − 1 NAND-gates where the
prover wants to convince the verifier that there is a satisfying assignment making the circuit
output 1. If the output wire is w, we can add a new variable u and add a self-looping gate of
the form w = ¬(w ∧ u), which can only be satisfied if w = 1. The prover now has a circuit with
N NAND-gates and no output and wants to demonstrate that there is an internally consistent
assignment to the wires that respects all gates.

Let us without loss of generality consider a circuit with N = Mmn NAND-gates for which
the prover wants to demonstrate that there is a consistent assignment. The prover enumerates
the two inputs and the output of each gate as uijk, vijk, wijk. The task is now to show that the
committed values correspond to a satisfying assignment for the circuit.

The prover first shows that all the committed values are either 0 or 1 corresponding to truth
values. This is done by using batch product arguments to show uijkuijk = uijk, vijkvijk = vijk
and wijkwijk = wijk, which can only be true if uijk, vijk, wijk ∈ {0, 1}.

The prover then uses the homomorphic property of the commitment scheme to compute
commitments to 1−wijk. Using another batch product argument it can show uijkvijk = 1−wijk,
which means the committed values respect the NAND-gates.

Finally, using a technique from [25] it uses an inner product argument to show that all
committed values uijk, vijk and wijk corresponding to the same wire x` are consistent with each
other. We describe this technique in the full circuit satisfiability argument below.

Common reference string: Two-tiered commitment key ck.

Statement: N = Mmn NAND-gates x`2 = ¬(x`0 ∧ x`1) over variables x`.

Prover’s witness: An assigment to {x`} respecting all NAND-gates.

Argument: Label the inputs and outputs of the gates {uijk, vijk, wijk}M,m,n
i=1,j=1,k=1. Pick rij , sij , tij ←

Zp and compute the commitments

cuij = comck(uij1, . . . , uijn; rij) CUi = com
(2)
ck (cui1 , . . . , cuim)

cvij = comck(vij1, . . . , vijn; sij) CVi = com
(2)
ck (cvi1 , . . . , cvim)

cwij = comck(wij1, . . . , wijn; tij) CWi = com
(2)
ck (cwi1 , . . . , cwim)

Send {CUi , CVi , CWi}Mi=1 to the verifier.
Engage in three batch product arguments with statements {CUi , CUi , CUi}Mi=1, {CVi , CVi , CVi}Mi=1

and {CWi , CWi , CWi}Mi=1 in order to show that uijk, vijk, wijk ∈ {0, 1}.
Define c1 = comck(1, . . . , 1; 0) and C1 = com

(2)
ck (c1, . . . , c1). Engage in a batch product proof

with statement {CU1 , CV1 , C1C
−1
Wi
}Mi=1 to show that the NAND-gates are respected.

There are 3N = 3Mmn committed values uijk, vijk, wijk. Let us rename them {bi}3Ni=1 and
the corresponding commitments to {CBi}3Mi=1. The same variable x` may appear n` times in
the circuit as bi1 , . . . , bin` . Define π as the permutation in S3N such that for each variable x`
appearing n` times in the circuit the permutation makes a complete cycle i1 → i2 → . . . →
in` → i1 corresponding to those appearances.
The prover receives a challenge y from the verifier and defines ai = yi − yπ(i). It uses the
inner product argument4 from Section 3.1 to demonstrate

∑3N
i=1 aibi = 0. This shows that

for random y
3N∑
i=1

aibi =
3N∑
i=1

(yi − yπ(i))bi =
3N∑
i=1

yi(bi − bπ−1(i)) = 0.

With overwhelming probability over y this shows bπ(i) = bi for all i thus proving that the
values bi and hence the values uijk, vijk, wijk are consistent with the wires x`.

Verification: Verify the 4 batch product proofs and the inner product argument.

Theorem 2. The argument for circuit satisfiability has perfect completeness, perfect SHVZK
and witness-extended emulation.

Proof. Perfect completeness follows from the perfect completeness of the batch product argument
and the inner product argument.

The SHVZK simulator starts by generating trapdoor commitments cuij , cvij , cwij ← comck(0)

and setting CUi = com
(2)
ck (cui1 , . . . , cuim), CVi = com

(2)
ck (cvi1 , . . . , cvim), CWi = com

(2)
ck (cwi1 , . . . , cwim).

It then runs the SHVZK simulation to simulate the four batch product commitments and the
last inner product argument.

To see this is a perfect SHVZK simulation consider a hybrid argument where we have com-
mitments cuij , cvij , cwij to a real witness uijk, vijk, wijk and then proceed to simulate the batch
product and the inner product arguments. By the perfect hiding property of the commitment
scheme the hybrid argument is perfectly indistinguishable from a simulated argument. At the
same time, the perfect SHVZK property implies that for all choices of challenges the hybrid
argument and the real argument look identical.

The witness-extended emulator runs the batch product argument emulator and the inner
product argument emulator to extract openings of CUi , CVi , CWi . The binding property of the
commitment scheme implies that the extracted openings are consistent with each other in the
four batch product arguments and the inner product argument. The first three batch product

4 The first round of the inner product argument can be run independently of y such that the total round
complexity remains 7.

arguments show that uijk, vijk, wijk ∈ {0, 1} and the fourth batch product argument shows
1 − wijk = uijkvijk, which implies wijk = ¬(uijk ∧ vijk). Finally, the inner product argument
shows with overwhelming probability over the choice of y that all committed vaues corresponding
to the same wire x` are the same. This shows that the extracted witness satisfies the circuit. �

Arithmetic circuits. Using similar techniques as in the circuit satisfiability argument, we can also
get an argument for the satisfiability of arithmetic circuits consisting of addition and multiplica-
tion gates over Zp. The prover commits to the values and uses the homomorphic property of the
commitment scheme to show that addition gates are respected and the batch product argument
to show that multiplication gates are respected. If there are publicly known constants (without
loss of generality a multiple of mn) involved in the circuit, the prover commits to these using
randomness 0 so the verifier can check directly that they are correct. As in the circuit satisfia-
bility argument the prover also demonstrates that the committed values are consistent with the
wiring of the arithmetic circuit. This gives an arithmetic circuit argument with communication
complexity O(M +m+ n).

5 Range Arguments

As a concrete application of our batch product argument we will give a communication-efficient
range proof. The prover has a commitment c and wants to convince the verifier that she knows an
opening w, t such that c = comck(w; t) and w ∈ [A;B). Since the commitment is homomorphic,
the problem can be simplified to demonstrating that she knows an opening of c · comck(−A; 0)
in the range [0;B −A). Let N = blog(B −A)c. The prover can construct a commitment c0/1 =
comck(b; s) and show that it contains 0 or 1 using standard techniques. By showing that c ·
comck(−A; 0) · cA−B+2N

0/1 contains a value in the range [0; 2N) she convinces the verifier that

w ∈ [A;B).
We can therefore without loss of generality focus on demonstrating that a committed value w

belongs to the interval [0; 2N). We will now give such a range argument that only communicates

O(N
1
3) elements. The idea is that the prover will commit to the bit representation of w. Using

a batch product argument the prover can demonstrate that the committed bits are 0 or 1.
Furthermore, using techniques similar to the buildup of wk in the batch product argument the
prover will demonstrate that w =

∑M
i=1

∑m
j=1

∑n
k=1wijk2

(i−1)mn+(j−1)n+k−1 using O(M+m+n)

communication, where N = Mmn. If M = O(N
1
3),m = O(N

1
3), n = O(N

1
3) the communication

complexity is O(N
1
3) elements.

Common reference string: ck.
Statement: c ∈ G.
Prover’s witness: w, t ∈ Zp such that w ∈ [0; 2N) and c = comck(w; t).

Argument: Let {wijk}M,m,n
i=1,j=1,k=1 be the bits of w. Pick rij ← Zp and compute

cwij = comck(wij1, . . . , wijn; rij) CWi = com
(2)
ck (cwi1 , . . . , cwim) cwj =

M∏
i=1

c2
(i−1)mn

wij .

Pick w01, . . . , w0n ← Zp and r0, sd ← Zp and compute cw0 = comck(w01, . . . , w0n; r0) and
cd = comck(

∑n
k=1w0k2

k−1; sd).
Send {CWi}Mi=1, {cwj}mj=0 and cd to the verifier and get a challenge x← Z∗p back. Compute

wk = xw0k+
M∑
i=1

m∑
j=1

wijk2
(i−1)mn+(j−1)n r = xr0+

M∑
i=1

m∑
j=1

rij2
(i−1)mn+(j−1)n s = sdx+t

and send them to the verifier.
In parallel, engage in a batch product argument with statement {CWi , CWi , CWi}Mi=1 to show
that each wijk satisfies wijkwijk = wijk, which implies wijk ∈ {0, 1}.

Verification: Verify that the batch product argument is valid and

M∏
i=1

C2(i−1)mn

Wi
= com

(2)
ck (cw1 , . . . , cwm) cxw0

m∏
j=1

c2
(j−1)n

wj = comck(w1, . . . , wn; r)

cxdc = comck(
n∑
k=1

wk2
k−1; s).

Theorem 3. The range argument given above has perfect completeness, perfect SHVZK and
witness-extended emulation.

Proof. Perfect completeness follows from the perfect completeness of the batch product argument
and straightforward verification.

The SHVZK simulator on challenge x ∈ Z∗p generates commitments cwij ← comck(0, . . . , 0)
and picks w1, . . . , wn, r, s ← Zp at random. It then computes Cwi , cwj as in the real argument
and sets

cw0 =

 m∏
j=1

c−2
(j−1)n

wj comck(w1, . . . , wn; r)

x−1

cd =

(
c−1comck(

n∑
k=1

wk2
k−1; s)

)x−1

.

It runs the SHVZK simulator for the batch product argument.
To see this is a perfect simulation note that the perfect hiding property of the commitment

scheme means that the commitments cwij are distributed just as in a real argument. Also, both
in simulated arguments and in real arguments w1, . . . , wn, r, s are uniformly random in Zp. The
remaining components are now uniquely determined by the verification equations and therefore
simulated arguments and real arguments on challenge x are perfectly indistinguishable.

The witness-extended emulator runs the emulator for the batch product argument to get wijk
and rij when seeing a succesful transcript. It also rewinds and runs the argument again with fresh
challenges x′ until getting another acceptable transcript. The two transcripts with extracted wijk
and rij give us cxdc = comck(

∑n
k=1wk2

k−1; s) and cx
′
d c = comck(

∑n
k=1w

′
k2
k−1; s′). If x 6= x′ we

can take appropriate linear combinations to get openings w, t and d, sd of c and cd. Similarly, we
can by taking appropriate linear combinations of cxw0

∏m
j=1 c

2(j−1)n

wj = comck(w1, . . . , wn; r) and

cx
′
w0

∏m
j=1 c

2(j−1)n

wj = comck(w
′
1, . . . , w

′
n; r′) get an opening w01, . . . , w0n, r0 of cw0 . By the binding

property of the commitment scheme the last verification equality implies

dx+ w =

n∑
k=1

wk2
k−1 =

n∑
k=1

w0kx+

M∑
i=1

m∑
j=1

wijk2
(i−1)mn+(j−1)n

 2k−1.

Since this holds for two different x, we have w =
∑M

i=1

∑m
j=1

∑n
k=1wijk2

(i−1)mn+(j−1)n+k−1. The

batch product argument guarantees wijk ∈ {0, 1} giving us w ∈ [0; 2Mmn). �

Acknowledgment

We thank Rafik Chaabouni and Benedikt Bünz for helpful corrections.

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving signatures and
commitments to group elements. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
209–236, 2010.

2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approxi-
mation problems. Journal of the ACM, 45(3):501–555, May 1998.

3. S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM,
45(1):70–122, 1998.

4. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO, volume 740 of Lecture Notes in
Computer Science, pages 390–420, 1992.

5. E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan. Short PCPs verifiable in polylogarithmic
time. In IEEE Conference on Computational Complexity, pages 120–134, 2005.

6. F. Boudot. Efficient proofs that a committed number lies in an interval. In EUROCRYPT, volume 1807 of
Lecture Notes in Computer Science, pages 431–444, 2002.

7. J. Camenisch, R. Chaabouni, and A. Shelat. Efficient protocols for set membership and range proofs. In
ASIACRYPT, volume 5350 of Lecture Notes in Computer Science, pages 234–252, 2008.

8. R. Chaabouni, H. Lipmaa, and A. Shelat. Additive combinatorics and discrete logarithm based range proto-
cols. In ACISP, volume 6168 of Lecture Notes in Computer Science, pages 336–351, 2010.

9. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness
hiding protocols. In CRYPTO, volume 893 of Lecture Notes in Computer Science, pages 174–187, 1994.

10. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In EUROCRYPT, volume
1807 of Lecture Notes in Computer Science, pages 418–430, 2000.

11. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups with hidden
order. In ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 125–142, 2002.

12. I. Damg̊ard and M. J. Jurik. A generalisation, a simplification and some applications of paillier’s probabilistic
public-key system. In PKC, volume 1992 of Lecture Notes in Computer Science, 2001.

13. I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3), 2007.
14. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics,

156(16):3113–3121, 2008.
15. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signatures. Journal

of Cryptology, 19(2):169–209, 2006.
16. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
17. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
18. C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. D. Smith. Using fully homomorphic hybrid

encryption to minimize non-interactive zero-knowledge proofs. J. Cryptology, 28(4):820–843, 2015.
19. O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof systems. SIAM Journal on

Computing, 25(1):169–192, 1996.
20. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for muggles.

Journal of the ACM, 62(4):27, 2015.
21. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proofs. SIAM Journal on

Computing, 18(1):186–208, 1989.
22. J. Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3, BRICS, 2004. PhD

thesis. xii+119 pp.
23. J. Groth. Non-interactive zero-knowledge arguments for voting. In ACNS, volume 3531 of Lecture Notes in

Computer Science, 2005.
24. J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive, Report

2009/007, 2009.
25. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO, volume 5677 of Lecture

Notes in Computer Science, pages 192–208, 2009.
26. J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In EUROCRYPT,

volume 4965 of Lecture Notes in Computer Science, pages 379–396, 2008.
27. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from secure multiparty compu-

tation. SIAM Journal on Computing, 39(3):1121–1152, 2009.
28. Y. T. Kalai and R. Raz. Interactive pcp. In ICALP, volume 5126 of Lecture Notes in Computer Science,

pages 536–547, 2008.
29. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC, pages 723–732, 1992.
30. Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of Cryptology,

16(3):143–184, 2003.

31. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In ASIACRYPT, volume
2894 of Lecture Notes in Computer Science, pages 398–415, 2003.

32. H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey auctions without threshold trust. In Financial Cryp-
tography, volume 2357 of Lecture Notes in Computer Science, pages 87–101, 2002.

33. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 129–140, 1991.

34. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.

