Fully Anonymous Group Signatures without Random Oracles

Jens Groth*
University College London
J-groth@ucl.ac.uk

March 25, 2013

Abstract

We construct a new group signature scheme using bilinear groups. The group signature scheme is
practical, both keys and group signatures consist of a constant number of group elements, and the scheme
permits dynamic enrollment of new members. The scheme satisfies strong security requirements, in
particular providing protection against key exposures and not relying on random oracles in the security
proof.

Keywords: Group signatures, certified signatures, bilinear groups.

1 Introduction

Group signatures make it possible for a member of a group to sign messages anonymously so that outsiders
and other group members cannot see which member signed the message. The group is controlled by a group
manager that handles enrollment of members and also has the ability to identify the signer of a message.
Group signatures are useful in contexts where it is desirable to preserve the signer’s privacy, yet in case of
abuse we want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst [CvH91] and have been the subject of much
research. Most of the proposed group signatures have been proven secure in the random oracle model [BR93]
and now quite efficient schemes exist in the random oracle model [ACJT00, BBS04, CL04, CG04, FIO5,
KYO05]. The random oracle model has been the subject of criticism though. Canetti, Goldreich and Halevi
[CGH98] demonstrated the existence of an insecure signature scheme that has a security proof in the random
oracle model. Other works showing weaknesses of the random oracle model are [Nie02, GK03, BBP04,
CGHO4].

There are a few group signature schemes that avoid the random oracle model. Bellare, Micciancio and
Warinschi [BMWO03] suggested security definitions for group signatures and offered a construction based
on trapdoor permutations. Their security model assumed the group was static and all members were given
their honestly generated keys right away. Bellare, Shi and Zhang [BSZ05] strengthened the security model
to include dynamic enrollment of members. This security model also separated the group manager’s role
into two parts: issuer and opener. The issuer is responsible for enrolling members, but cannot trace who
has signed a group signature. The opener on the other hand cannot enroll members, but can open a group
signature to see who signed it. Moreover, it was required that this opener should be able to prove that
said member made the group signature to avoid false accusations of members. [BSZ05] demonstrated that
trapdoor permutations suffice also for constructing group signatures in this model. Both of these schemes use

*Work done while at UCLA supported by NSF ITR/Cybertrust grant No. 0456717.

general and complicated primitives and are very inefficient. Groth [Gro06] used bilinear groups to construct
a group signature scheme in the BSZ-model, with nice asymptotic performance, where each group signature
consists of a constant number of group elements. Still the constant is enormous and a group signature consists
of thousands or perhaps even millions of group elements.

There are also a few practical group signature schemes with security proofs in the standard model. Ate-
niese, Camenisch, Hohenberger and de Medeiros [ACHdMOS5] give a highly efficient group signature scheme,
where each group signature consists of 8 group elements in prime order bilinear groups. This scheme is se-
cure against a non-adaptive adversary that never gets to see private keys of honest members. If a member’s
key is exposed, however, it is easy to identify all group signatures she has made, so their scheme is not secure
in the BMW/BSZ-models.

Boyen and Waters [BW06, BW07] suggest group signatures that are secure against key exposure attacks.
Their constructions are secure in a restricted version of the BMW-model where the anonymity of the mem-
bers relies on the adversary not being able to see any openings of group signatures. In the latter scheme
[BWO7], the group signatures consist of 6 group elements in a composite order bilinear group. The public
key in [BWO07] grows logarithmically in the size of the message space though and will for practical purposes
typically contain a couple of hundred group elements.

OUR CONTRIBUTION. We propose a new group signature scheme based on prime order bilinear groups. All
parts of the group signature scheme, including the group public key and the group signatures, consist of a
constant number of group elements. The constants are reasonable for practical purposes; for instance using
1000-bit prime order bilinear groups, a group public key would be 2 KB and a group signature 6 KB.

We prove under some well-known assumptions, the strong Diffie-Hellman assumption [BB08] and the
decisional linear assumption [BBS04], as well as a new assumption that the scheme is secure in the BSZ-
model. This means the scheme permits dynamic enrollment of members, preserves anonymity of a group
signature even if the adversary can see arbitrary key exposures or arbitrary openings of other group signatures,
and separates the role of the issuer and opener such that they can operate independently.

TECHNIQUE. We use in our group signature scheme a certified signature scheme. Certified signatures, the
notion stemming from Boldyreva, Fischlin, Palacio and Warinschi [BFPWO07], allow a user to pick keys for
a signature scheme and use them to sign messages. The user can ask a certification authority to certify her
public verification key for the signature scheme. The verification algorithm checks both the certificate and
the signature and accepts if both of them are acceptable. A trivial way to build a certified signature schemes
is just to let the certification authority output a standard signature on the user’s public verification key. Non-
trivial solutions such as for instance using an aggregate signature scheme [BGLS03] also exist. Certified
signature schemes may be more efficient though since the certificate does not have to be unforgeable. In a
certified signature scheme, the requirement is just that it is infeasible to forge a certificate together with a
valid signature. We refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will create a key for a signature scheme and ask the
issuer to issue a certificate on their verification key. To make a group signature, the member will make a
certified signature. To be anonymous she will encrypt the certified signature and use non-interactive witness-
indistinguishable and non-interactive zero-knowledge proofs to demonstrate that the ciphertext contains a
valid certified signature.

In order to have efficient non-interactive proofs, it is essential to preserve as much of the bilinear group
structure of the encrypted certified signature as possible. In particular, using cryptographic hash-functions
or using group elements from one part of the certified signature as exponents in other parts of the certified
signature does not work. We will combine the signature scheme of Boneh and Boyen [BBOS8] with the
signature scheme of Zhou and Lin [Z1.06] to get a certified signature scheme that is both efficient and relies
only on generic group operations.

2 Setup

Let G be a probabilistic polynomial time algorithm that generates gk = (p, G, G, ¢, g) + G(1¥) such that

e pis a k-bit prime.

G, G are groups of order p.

g is a randomly chosen generator of G.

e c is a non-degenerate bilinear map, i.e., (g, g) is a generator of G and for all a,b € Z, we have
e(9%,9") = e(g.9).

Group operations, evaluation of the bilinear map, and membership of G, G are all efficiently com-
putable.

We will now present some of the security assumptions that will be used in the paper.

DLIN assumption. The decisional linear assumption was introduced by Boneh, Boyen and Shacham
[BBS04]. The DLIN assumption holds for G, when it is hard to distinguish for randomly chosen group
elements and exponents (f, g, h, f", g*, h') whether t = r + s or ¢ is random.

q-SDH assumption. The strong Diffie-Hellman assumption was introduced by Boneh and Boyen [BB0S].
1

The ¢-SDH assumption holds for G, when it is hard to find a pair (m,g7) € Z, x G when given

g,9%, gm2, N g"”q(k) as input. In the paper, it suffices to have ¢ being a polynomial.

¢-U assumption. We will now define the unfakeability assumption. The ¢-U assumption holds for G if for
any non-uniform polynomial time adversary A we have:

Pr [(p, G,Gr,e,g) + g(lk) ST T, Ty Ta(k) < Lp
fihyz+ G; T :=e(f,2); a;:= f"; b :=h"g""z;
(V. A, B,m,S) «+ A(p,G,Gr,e,g, f,h, T, x1,a1,b1, . . ., Tg()s Aqi)s b))
Vg g™ g 0} A (A BV)e(f,B) =T A e(S,Vg") = e(g,g)] ~ 0.

Theorem 1 The g-U assumption holds in the generic group model when q is a polynomial.

Proof. We will show that an unbounded adversary cannot break the ¢-U assumption when restricted to
using only a polynomial number of generic group operations. In the generic group model, we do not give
the adversary access to the group elements themselves. Instead we pick random bijections [-] : Z, — G
and [[-]] : Z, — Gr and give the adversary access to the representation of the group elements as random
encodings of their discrete logarithms. Picking random group elements and computing group operations can
be handled by giving the adversary the encoding [1] and access to an oracle O that works as follows

e On (multiply, [z], [y]) return [z + y].
e On (multiply, [[]], [[y]]) return [[z + y]].

e On (bilinear, [z], [y]) return [[zy]].

Given elements [{1], . .., [§,] the oracle for instance enables A to pick ao, ..., an € Z, and compute linear
combinations [ag + Y ;- ; a;i&] = ao[l] + > i ail&].
We can reformulate the theorem in the generic group model as follows:

Pr [(p, G,Gr,e,9) «— G(1%) ; x1,r, ... s Tak)Tqk) < Lp s [1] =g
G0, C Ly [Zp < G [[]] = Zp < G5
([v], [al, [b], m, [s]) < A®(p, G, Gz, e, [1], [¢], [n], [[6¢]],
x1, [or], [or1 + o1r +C o Ty, [D7g] (k) + Ty k) +C)

[v] & {lz1],- - [zqul} A llaln+v) +¢b]] = [[¢c]] A [[s(v+m)]] = [[1]]| =~ 0.

To prove the theorem, observe first that the elements A can generate in G and G'r using the or-
acle encode low degree polynomials in Zy[¢,n,(, 71, ... ,rq(k)]. The resulting condition for success
[[a(n 4+ v) + ¢b — ¢C]] = [[0]] and [[s(v + m) — 1]] = [[0]] corresponds to having low-degree polynomi-
als in Zy[¢,n,(, 71, - -, Tq(k)] evaluate to O for randomly chosen ¢, 7, (, 71, . .., 7). The Schwarz-Zippel
theorem says that a low-degree polynomial has negligible probability of evaluating to 0 in randomly chosen

®n,C, 71, -+ -, Tq(k) unless it is identical zero. What remains in the proof if to rule out that generic group
oracle enables A to actually construct [v], [a], [b], m, [s] such that a(n + v) + ¢b — ¢C and s(v + m) — 1 are
the zero-polynomials, and at the same time v ¢ {1, ..., Ty }-

Since a, b, v, s are constructed with calls to O we can write them as

q(k) q(k)
a=ag+asd+apn+ Y agdri+ Y ap(qri + ziri +)
i=1 i=1
q(k) q(k)
b=by+br+bpn+Y badri+ Y by (nri+wiri+ ()
i=1 i=1
a(k) q(k)
V=14 + Uf¢ + vpn + Zvai¢ri =+ vai(nri + x;r; + C)
i=1 i=1
q(k) q(k)
5=8g+8rp+spn+ Z Sq, QT + Z sp, (nri + zir; + Q)
i=1 i=1

for known ag, . . ., Sbycky € L.

Let us start with the requirement that A outputs [v], m, [s] such that s(v + m) — 1 = 0. We will show
that this can only be satisfied by picking s = s, and v = v, with all other coefficient being 0.

First, suppose v, 7# 0. The coefficient of 7727“1'2 is sp,vp, = 0 giving us s, = 0. We can then look at
the coefficients 772rirj giving us sp; = 0 for all j. The coefficients of n¢r;r; gives us s,; = 0 for all j, the
coefficient of n%r; gives us s5, = 0, the coefficient of ¢nr; gives us s ¢ = 0 and the coefficient of 7r; gives us
s4 = 0. This means s = 0 making the equation unsatisfiable, so we conclude v;, = 0 for all i. A symmetrical
argument shows s, = 0 for all 7.

Next, suppose v,, # 0. The coefficient of ¢?r? gives us s,, = 0 and the coefficients of ¢?r;r; gives us
Sa; = 0 for all j. The coefficients of neor;, ¢2ri and ¢r; then give us s, = 0,5y = 0,5, = 0. This shows
s = 0, which makes the equation unsatisfiable, so we conlude v,;, = O for all . A similar argument shows
8q; = 0 for all 7.

Looking at the coefficients of 02,1, 7, respectively, we conclude in a similar manner v, = 0 and
sp, = 0. The coefficients of ¢2, ¢ give us vy = 0and sy = 0. We are now left with s = s, and v = vy, with
84,0y € Zp known to the adversary.

We will now use the equation
a(n+vg) + ¢b — ¢¢ = 0.

Looking at the coefficient for ¢¢ we have Zfikl) by, = 1 so there exists some b, # 0. The coefficient for
énr; gives us aq,; + by, = 050 ag, = —by,. The coefficient for ¢r; tells us aq,vg + by, x; = by, (x; —vg) =0
s0 vy = x;. This implies v € {z1, ..., Ty} O

3 Certified Signatures

Typically, using a signature in a public key infrastructure works like this: A user that wants to set up a
signature scheme, generates a public verification key vk and a secret signing key sk. She takes the public
key to a certification authority that signs vk and possibly some auxiliary information such as name, e-mail
address, etc. We call this the certificate. Whenever the user wants to sign a message, she sends both the
certificate and the signature to the verifier. The verifier checks that the certification authority has certified
that the user has the public key vk and also checks the user’s signature on the message.

In the standard way of certifying verification keys described above, the process of issuing certificates and
verifying certificates is separate from the process of signing messages and verifying signatures. Boldyreva,
Fischlin, Palacio and Warinschi [BFPWO07] show that combining the two processes into one can improve
efficiency. As they observe, we do not need to worry about forgeries of the certificate itself, we only need to
prevent the joint forgery of both the certificate and the signature.

A certified signature scheme [BFPWO07], is a combined scheme for signing messages and producing cer-
tificates for the verification keys. We will give a formal definition that is tailored to our purposes and slightly
simpler than the more general definition given by Boldyreva, Fischlin, Palacio and Warinschi. Formally, a
certified signature scheme consists of the following probabilistic polynomial time algorithms.

Setup: G takes a security parameter as input and outputs a description gk of our setup.

Certification key: CertKey on input gk outputs a pair (ak, ck), respectively a public authority key and a
secret certification key.

Key registration: This is an interactive protocol (User, Issuer) that generates keys for the user together with
a certificate. User takes gk, ak as input, whereas Issuer takes gk, ck as input. If successful User out-
puts a triple (vk, sk, cert), whereas Issuer outputs (vk, cert). We write ((vk, sk, cert), (vk, cert)) <
(User(gk, ak),Issuer(gk, ck)) for this process. We call vk the verification key, sk the signing key and
cert the certificate. Either party outputs _L if the other party deviates from the key registration protocol.

Signature: Sign gets a signing key and a message m as input. It outputs a signature o.

Verification: Ver takes as input gk, ak, vk, cert,m, o and outputs 1 if accepting the certificate and the sig-
nature on m. Otherwise it outputs 0.

The certified signature scheme must be correct, unfakeable and unforgeable as defined below.
Perfect correctness: For all messages m we have
Pr |gk «+ G(1%) ; (ak, ck) « CertKey(gk) ;

((vk, sk, cert), (vk, cert)) < (User(gk, ak), Issuer(gk, ck)) ;
o < Signg,(m) : Ver(gk, ak, vk, cert,m,o) = 1} =1

Unfakeability: We want it to be hard to create a signature with a faked certificate. Only if the verification
key has been generated correctly and been certified by the certification authority should it be possible
to make a certified signature on a message. For all non-uniform polynomial time adversaries A we
require:

Pr |gk < G(1¥) ; (ak,ck) < CertKey(gk) ; (vk,cert,m,o) < AXYRS(gk ak) :
vk ¢ @Q and Ver(gk, ak, vk, cert,m,o) = 1| = 0,

where KeyReg is an oracle that allows A to sequentially start up new key registration sessions and lets
A act as the user. That is in session 7 we run (*, (vk;, cert;)) < (A, Issuer(gk, ck)) ; Q := QU {vk;}
forwarding all messages to and from .4 through the oracle.

Existential M -unforgeability: Let M be a stateful non-uniform polynomial time algorithm. We say the
certified signature scheme is existentially M -unforgeable if for all non-uniform polynomial time ad-
versaries .A we have:

Pr |gk < G(1¥) ; (Sty,ak) < A(gk) ; ((vk, sk,cert),Sty) < (User(gk, ak), A(Sty1)) ;
(cert',m, o) « AMessageSien() (G, .

m ¢ Q and Ver(gk, ak, vk, cert’,m,o) = 1| =~ 0,

where MessageSign(-) is an oracle that on input a; runs (mg, h;) <~ M(gk,a;) ; o7 <«
Signg,(m;) ; @ :== QU {m;} and returns (m;, h;, 0;).

Adaptive chosen message attack corresponds to letting M be an algorithm that on input m; outputs
(m;,€). On the other hand, letting M be an algorithm that ignores .A’s inputs corresponds to a weak
chosen message attack, where messages to be signed by the oracle are chosen without knowledge of vk.
In a weak chosen message attack, the h;’s may contain a history of how the messages were selected.
In this paper, we only need security against weak chosen message attack.

4 A Certified Signature Scheme

We will construct a certified signature scheme from bilinear groups that is existentially unforgeable under
weak chosen message attack. There are two parts of the scheme: certification and signing. For signing,
we will use the Boneh-Boyen signature scheme that is secure under weak chosen message attack. In their
scheme the public key is v := ¢” and the secret signing key is x. A signature on message m € Zj, \ {z} is

o= gw%m. It can be verified by checking e(o,vg™) = e(g, g). Boneh and Boyen [BB08] proved that this
signature scheme is secure against weak chosen message attack under the g-SDH assumption. The existential
unforgeability of our certified signature scheme under weak chosen message attack will follow directly from
the security of the Boneh-Boyen signature scheme under weak chosen message attack.

What remains is to specify how to generate the verification key v and how to certify it. This is a 2-step
process, where we first generate a random v = g* such that the issuer learns v but only the user learns x. In
Section 4.1 we describe in detail the properties we need this key generation protocol to have. In the second
step, we use a variation of the signature scheme of Zhou and Lin [ZL06] to certify v.!

To set up the certified signature scheme, the certification authority picks random group elements f, h, z €
G. The authority key is (f, h,T) and the secret certification key is z such that 7' = e(f, z). To certify a

!The signature scheme of Zhou and Lin [ZL06] can be used to sign exponents. As they observe, however, it is sufficient to know
v = g® to sign z. In our notation, their scheme computes a signature on x by setting v = ¢® and computing the signature (a, b) as
a:= f",b:= (hv)"z, where z = h'°8 9 such that T' = e(g, h).

(User(gk, ak), Issuer(gk, ck))

Setup(1%)
Return gk := (p,G, Gr,e,g) < G(1¥) (z,v) « (User(gk), Issuer(gk))
T 4 Ly
a:=f7"
CertKey(gk) b:= (vh)"z
FhzeG vk:=v; sk:=ux; cert := (a,b)
T7 ; e(f,2) User output: (vk, sk, cert)

Return (ak, ck) = ((gk, f, b, T), (ak, 2)) Issuer output: (vk, cert)

Ver(gk, ak, vk, cert,m, o)
Return 1 if
e(a,vh)e(f,b) =T
e(o,vg™) = e(g,9)
Else return 0

Signsk’ (m)
If x = —m return L

1
Else return g := g=+m

Figure 1: The certified signature scheme.

Boneh-Boyen key v the authority picks r <— Z, and sets (a,b) := (f~", (hv)"z). The certificate is verified
by checking e(a, hv)e(f,b) = T. We remark that this is not a good signature scheme, since given v, a, b
it is easy to create a certificate for v’ := v2h as (a’, V) = (a%,b). For certified signatures it works fine
though since we cannot use the faked verification keys to actually sign any messages. The nice part about the
certified signature scheme we have suggested here is that a certificate consists of only two group elements
and is created through the use of generic group operations. These two properties of the certified signature
scheme are what enable us to construct a practical group signature scheme on top of it.

Theorem 2 The scheme in Figure 1 is a certified signature scheme with perfect correctness for messages
in Zy \ {x}. It is unfakeable under the q-U assumption and is existentially unforgeable under weak chosen
message attack under the q-SDH assumption.

Proof. Perfect correctness follows from the perfect correctness of the key generation protocol.

We will now show that the certified signature scheme is unfakeable. Assume for contradiction that there
exists a > 0 such that for an infinite number of £ € N the adversary .4 has probability at least 1725 of making
a valid signature for a public key that has not been certified. In other words,

Pr |gk < G(1%) ; (ak,ck) < CertKey(gk) ; (vk,cert,m,o) « AXYRE(gk ak) :
vk ¢ @Q and Ver(gk, ak, vk, cert,m,o) = 1] > 279,

Let ¢(k) be a polynomial upper bound of the number of KeyReg queries that A makes. Part of the key
registration protocol is the interactive key generation protocol. We can black-box simulate the view of the
adversarial user in each of these key generation protocols, up to an error of W. We can therefore pick

T1,...,Ty) in advance and simulate the key generation such that the adversarial user ¢ gets the signing key

x; or alternatively deviates from the protocol in which case the issuer outputs L. Call the modified oracle
that simulates the key generation queries SimKeyReg and we have:

Pr |gk < G(1%) ; (ak,ck) < CertKey(gk) ; x1,.. S Tgk) & Ly ;

(vk, cert,m, o) « ASTKYReEXLXa00) (g, ak) :

vk ¢ @ and Ver(gk, ak, vk, cert,m,o) = 1] > k9.

7

With this modified key registration oracle, A only sees certificates on vy := g™, ..., vy := g"¢®. These
certificates are of the form a; := f~" and b; := h"g%"iz. It therefore follows directly from the ¢-U
assumption that the probability is negligible, which gives us a contradiction. We conclude that the certified
signature scheme is unfakeable.

We will now show that the certified signature scheme is existentially unforgeable under weak chosen
message attack. Assume for contradiction that there exists a § > 0 such that for an infinite number of k € N

we have:
Pr [gk — G(1%); (Sty,ak) « A(gk) ; ((v,z,a,b),Sty) « (User(gk, ak), A(St1)) ;
(a0, m, o) « AMessaseSimn() () .
m ¢ Q and Ver(gk, ak,v,d’,t/,m,o) = 1| > 2k,

under a weak chosen message attack. Part of the key registration protocol is a key generation protocol. By our
construction, this key generation protocol has the property that it is possible to choose v := ¢* in advance
and black-box simulate the malicious issuer’s view. After the key generation protocol, only the adversary
acts, so we can consider the certification part of the protocol to be simulated. The error in the simulation can
be chosen such that it does not exceed k~°. We therefore have:

Pr [gk: — G(1%); (St1,ak) « A(gk) ; = « Lp; v:i=g";
(9%, St2) ¢ S7 W (gh,v) 5 (', 1, m, 0) 4 AMessaeeSinl) (g, .
m ¢ Q and Ver(gk, ak, g*,a’,b',m,0) = 1] > k79,

where v € {L,z}. However, now we are in a situation, where v is an honestly chosen Boneh-Boyen
verification key and .A only has access to a weak chosen message attack. For the certified signature output by
A to be valid we must have g* # L so v = g*, and also we must have a valid Boneh-Boyen signature on the
message as part of the certified signature. The g-SDH assumption implies that the Boneh-Boyen signature
is secure against weak chosen message attack [BBO8] and the probability given above must therefore be
negligible. This gives us our contradiction and we must therefore conclude that the certified signature scheme
is existentially unforgeable under weak chosen message attack. U

4.1 Key Generation

In the certified signature scheme, we require that the user generates her signing key honestly. We will use an
interactive protocol between the user and the issuer that gives the user a uniformly random secretkey = € Z,
while the issuer learns v := ¢*. In case either party does not follow the protocol or halts prematurely, the
other party will output L. We will now give a more precise definition of the properties the protocol should
have. For notational convenience, define g = L.

Write (x,v) « (User(gk), Issuer(gk)) for running the key generation protocol between two probabilis-
tic polynomial time interactive Turing machines User, Issuer on common input gk giving User output and
Issuer output v. We require that the protocol is correct in the following sense:

Pr [gk — G(1%); (x,v) « (User(gk), Issuer(gk)) : v = gz} =1.

We require that the view of the issuer, even if malicious, can be simulated. More precisely, for any
d > 0 and polynomial time Issuer™ there exists a polynomial time (in k£ and the size of the input to Issuer™)
black-box simulator S7, such that for all non-uniform polynomial time adversaries A we have:

Pr [gk —GR) sy Agh) s 4+ Zp s vi= g% (g% 0) < S W gk, v) : A(u, i) = 1}

— Pr [gk — G(Y) sy A(gk) ; (1) « (User(gk), Issuer*(y)) : A(u,i) = 1| < k=9,

8

where St outputs g% sou € {L,x}.

We also require that the view of the user, even if malicious, can be simulated. For any § > 0 and any
polynomial time User™ there exists a polynomial time (in k and the size of the input to User™) black-box
simulator Sy, such that for all non-uniform polynomial time adversaries .A we have:

Pr [gk — g(lk) sy Algk) s o Zp; v:i=g"; (u,i) Sgser*(y)(gk:,x) s A(u,i) = 1}
- Pr [gk; — G5 y «— A(gk) ; (u,i) < (User*(y), Issuer(gk)) : A(u,i) = 1} < k79,

where Sy outputs ¢ € {L,v}.

There are many ways in which one can construct a key generation protocol with the abovementioned
properties. We will offer an example of a 5-move key generation protocol where the parties have gk as
common input. The protocol lets the user pick g®. The user and issuer use a coin-flipping protocol to
generate a random modifier b + ¢ and output v := g®+tb+¢_ At the same time b + ¢ is used as a challenge to
the user in a proof of knowledge of a.

User — Issuer : Pick a,r < Zp,n < Z, and send A := g%, R := g", h := g" to issuer.
User < Issuer : Pick b,s < Z, and send B := g°h* to user.

User — Issuer : Send ¢ < Z,, to issuer.

User < Issuer : Send b, s to user.

User — Issuer : Check B = g®h®. If check passes, send z := (b+c)a+r mod p and 7 to issuer and output
x:=a-+ b+ cmod p.

Issuer : Check 7 € Zjy, h = g" and AYCR = ¢% and output v := Ag’T¢ if checks pass.

Theorem 3 The Join/Issue protocol has perfect correctness and assuming the discrete logarithm problem is
hard it is possible to black-box simulate both the user and the issuer.

Proof. Perfect correctness follows by direct verification.

We will now prove that for any > 0 there exists a black-box simulator for a malicious issuer. We start
Issuer*(y)

by describing the simulator. .S; (gk,v) picks e, z,m < Z, and sets A := vg~°¢ and R := g*A~° and
h := g". It runs the Issuer*(y) on input A, R, h to get a commitment B. It then runs the malicious issuer up to
k%% times on randomly chosen ¢ < Zy, until Issuer™ opens B to b, s. There are now two possibilities: either
Issuer™ provides a satisfactory opening of B or it never opens the commitment. In case no such opening
is given, the simulator runs Issuer® once again with random c. If Issuer® does not open B in this run, the
simulator outputs (L,), where i is the output of Issuer®. If Issuer* opens B, we abort the simulation. The
other possibility is that we did extract an opening b, s of B. In this case, we send d := e —b mod p to Issuer*.
If Issuer™ stops the protocol, we output (L,), where ¢ is Issuer*’s output. If Issuer* opens the commitment
to b’ # b we abort the simulation. Finally, if Issuer® opens the commitment to b, we send 7, z to Issuer® and
output (v,), where i is Issuer*’s output.

We will now prove that the simulator satisfies the definition. It is clear that S7 runs in polynomial time,
since Issuer® is a polynomial time algorithm with polynomial size outputs and we only run it £ times.
Let us modify the real protocol between an honest user and an adversarial issuer. After the user’s first
message A, R, h and the adversary’s first message B we store the state of Issuer*. We run Issuer* up to k0!
times with randomly chosen ¢ to get an opening b, s of B. After this, we make a real run of Issuer* and
produce the output of the protocol, with two exceptions. If we extracted an opening b, s of B but in the real
run Issuer® opens the commitment to &’ # b we abort. This only gives a negligible change in probability,

since otherwise we could break the binding property of the commitment scheme and thus break the discrete
logarithm assumption. The other change is that if Issuer* did not open B in the k! runs, but does so in the
real run, we abort. Observe the following, if at the stored state Issuer™ has at least ﬁ probability of opening
B after seeing randomly chosen c, then there is (1 — ﬁ)kéﬂ <e s probability that no opening of B will
be extracted in the k%! runs. On the other hand, adding up all cases with probability less than ﬁ of Issuer™
finishing the protocol on random c add up to less than 2—1165 probability of aborting.

What remains is to see that the simulation and the modified version of the real protocol described above
yield the same probabilities. In both the simulation and the modified real protocol, we have uniform random
A, R, h and get a response B from Issuer®. For Issuer® having probability less than 2—]16 of opening B on
random ¢, the two experiments are the same. For Issuer® having at least 2—]; chance of opening B on random
c observe first that the experiment is perfectly indistinguishable from one, where we pick z, e at random
and set A := ¢” ¢ in the beginning of the protocol and use ¢ := e — b, since in both cases everything is
still chosen uniformly at random. Now we have a proof of knowledge with a fixed challenge e and we can
simulate it by picking z first and setting R := g* A~¢, which again does not change the distribution at all.

We will now show that for any § > 0 there is a black-box simulator for an adversarial user. We first
describe the simulator. The simulator gets (gk,x) as input and runs User*(y) on gk to get A, R, h. It
now makes up to k%*! runs of User* with randomly chosen b, s to get two successful transcripts c, 7, z
and ¢/, n, 2’. If it is unsuccessful in getting two transcripts it makes yet another run with randomly chosen
b, s and if User™ produces satisfactory c, 7, z, then it aborts the simulation. If it is successful, it aborts if
b+ c =V + ¢. Otherwise, we have g = A" R and ¢* = AY V' R giving A = ¢(#=%)/(a+b=a'=t') 5 ye
canseta := (z — 2')/(a+b—a' — V') mod p. We also have 1) € Zy so h = g". We now make a real run,
with B := g', where t is chosen at random. If getting an incorrect or lacking response in either step of the
real run, we output (u, L), where u is the output of User®. Else, we receive ¢ and open the commitment as
B = gr—e—eplt=etatd)/mand send b := x — a — ¢, s := (t — x4+ a + ¢)/n mod p to User*. On a successful
response from User*, we output (u, g*).

We will now argue that this is a good simulation. It is clear that the simulator runs in polynomial time.
Consider modifying a real protocol between the adversary and an honest issuer. We modify the behavior of
the issuer such that it rewinds the protocol k°*! times after the initial message and makes a complete run
with randomly chosen b, s to get two successful answers ¢, 7, z and ¢, 7, 2’. If it does not succeed, it makes
yet another run with random b, s and aborts if User® produces a satisfactory answer ¢, 7, z. If User™ has
probability ﬁ of succeeding on random b, s, then there is overwhelming probability that we do extract two
answers ¢, 7, z and ¢/, n, 2’. So the only case where we would get an abort for the reason mentioned above
is when User™ has less than ﬁ chance of succeeding. So this abort only changes the success probability
with less than ﬁ The commitment is perfectly hiding, so there is negligible probability of b + ¢ = b’ + ¢
in the simulation, so we can from now on ignore that possibility. Suppose User* has probability at least 2—}@
of completing the protocol successfully after sending A, R, h, then we will successfully extract @ so A = g®
with overwhelming probability and we also learn 7 so h = ¢". Modifying the protocol further to pick x at
random and opening B to x — a — c therefore does not change the probability distribution further. This latter
modification brings us to an experiment that is equivalent to the simulation running on a randomly chosen x.
O

5 Defining Group Signatures

In a group signature scheme there is a group manager that decides who can join the group. Once in the
group, members can sign messages on behalf of the group. Members’ signatures are anonymous, except to
the group manager who can open a signature and see who signed the message. In some scenarios it is of
interest to separate the group manager into two entities, an issuer who enrolls members and an opener who

10

traces signers.

We imagine that enrolled member’s when joining have some identifying information added to a registry
reg. This registry may or may not be publicly accessible. The specifics of how the registry works are not
important, we just require that reg|i] only contains content both the issuer and user i agrees on. One option
could be that the issuer maintains the registry, but the user has to sign the content of reg[i] for it to be
considered a valid entry. User 7 stores her corresponding secret key in gsk[i]. The number i we associate
with the user is simply a way to distinguish the users. Without loss of generality, we will assume users are
numbered 1, ..., n according to the time they joined or attempted to join.

Key generation: GKg generates (gpk, ik, ok). Here gpk is a group public key, while ik and ok are respec-
tively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. If successful, the user and issuer
register a public key vk; in reg[i] and the user stores some corresponding secret signing key informa-
tion in gskl[i].

[BSZ05] specify that communication between the user and the issuer in this protocol should be secret.
The Join/Issue protocol in our scheme works when all messages are sent in clear though. In our scheme,
we will assume the issuer joins users in a sequential manner, but depending on the setup assumptions
one is willing to make, it is easy to substitute the Join/Issue protocol for a concurrent protocol.

Sign: Group member 7 can sign a message m as ¥ < GSig(gpk, gsk[i], m).

Verify: To verify a signature 3 on message m we run GV{(gpk, m,Y). The signature is valid if and only if
the verification algorithm outputs 1.

Open: The opener has read-access to the registration table reg. We have (i, 7) <— Open(gpk, ok, reg, m,X)
gives an opening of a valid signature > on message m pointing to user 7. In case the signature points
to no member, the opener will assume the issuer forged the signature and set ¢ := 0. The role of 7 is to
accompany ¢ # 0 with a proof that user ¢ did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct. We say the opening is correct if
Judge(gpk, i, regli],m, X, 7) = 1.

[BSZ05] define four properties that the group signature must satisfy: correctness, anonymity, traceability
and non-frameability. We refer to [BSZ05] for a discussion of how these security definition covers and
strengthens other security issues that have appeared in the literature. Informally, non-frameability protects
the user against being falsely accused of making a group signature, even if both the issuer and the opener are
corrupt. When the issuer is honest and the opening algorithm is applied correctly, albeit the opener’s key may
be exposed, traceability guarantees that a group signature always can be traced back to a member who made it.
An opener knows who made a particular group signature, but provided the opener is honest and the opener’s
key is kept secret, nobody else should be able to identify the member. Anonymity guarantees that even in
an environment where all users’ keys are exposed and the issuer is corrupt. In the definition, the adversary
is also permitted to ask the opener to open group signatures, except the group signature where it is trying to
guess who signed it. A weaker variant of anonymity called CPA-anonymity does not permit the adversary
to see openings of other group signatures. The difference between full anonymity and CPA-anonymity is
analogous to the difference between security under chosen ciphertext attack and chosen plaintext attack for
public-key encryption.

PERFECT CORRECTNESS. On any adversarially chosen message, the verification should accept a group
signature created with a correctly generated group signing key gsk[i] for member 7. Running the opening

11

algorithm on this should identify ¢ and make the Judge algorithm accept the opening. For all (unbounded)
adversaries A we have:

Pr |F :=0; (gpk,ik,ok) + CGKg(1%); (i,m) < AJo/15v(gpk ik, ok) ; ¥ « GSig(gpk, gsk[i], m) ;
(4, 7) < Open(gpk,ok,reg,m,¥) : F =0 A i =j A Judge(gpk,i,reg[i],m,X,7) = 1] =1,

where A outputs ¢ € Members and the oracle works as follows:

Join/Issue: On the i’th query to Join/Issue add i to the list Members. Run the Join/Issue protocol for an
honest user and issuer. If the user or issuer does not accept, set F' := 1 and return 1. Else update and
return reg|i], gsk[i].

ANONYMITY. It should be infeasible for an adversary to identify the signer of a message if she does not
know the opener’s key ok. We require a strong version of anonymity, which holds even when the adversary
controls the issuer and all the members’ secret signing keys are exposed. We require for all non-uniform
polynomial time A that:

Pr [(gpk ik 0]{7) — GKg(1k> . ACho,Open,JoinCorrupt,JoinExposedHonest(gpk ’Lk) _ 1}

~ Pr [(gpk: ik Oki) i GKg(lk) . AChl,Open,JoinCorrupt,JoinExposedHonest(gpk Zk‘) — 1}

where the oracles work as follows:

JoinExposedHonest: On input (i, start) start up an honest user 4 that tries to join the group. This user acts
honestly, however, the entire internal state is exposed to the adversary. On input (¢, msg) send message
msg to the user on behalf of the issuer and return the new internal state of the user. On successful
completion of the Join/Issue protocol update reg[i] and add ¢ to HonestUserKeys. Since the internal
state is exposed, the adversary knows the corresponding secret key gsk|i] and will be able to make
group signatures on behalf of the user.

JoinCorrupt: On input (¢, vk;) set reg[i] := vk;. This allows the adversary to enroll a corrupt member and
register any public key of its own choosing.

Chy: On input (ig, i1, m) where ig, i1 € HonestUserKeys return X <— GSig(gpk, gskl[ip], m).

Open: On input a valid message and group signature pair (m, 32) that has not been produced by Chy, return
Open(gpk, ok, reg, m,).

Some papers have considered a weaker variant of anonymity, called CPA-anonymity. In CPA-anonymity, the
adversary does not have access to the Open oracle.

TRACEABILITY. We want to avoid forged group signatures. The issuer can always make a dummy registra-
tion and create group signatures, so we cannot rule out the creation of group signatures. What we want to
capture here is that if the issuer is honest, then it is infeasible to create a signature that does not belong to
some member with a registered key in reg[i]. For all non-uniform polynomial time adversaries .4 we have:

Pr ((gpk,ik,ok) « GKg(1¥) ; (m, %) « A’ (gpk, ok) ; (i,7) + Open(gpk, ok,reg,m,%) :
GVi(gpk,m,%X) =1 A (Judge(gpk,i,regli],m,X,7) =0V i = 0)] ~0,

where the oracle is:

12

Join: On input (7, start) accept only (7, msg) queries until this Join/Issue protocol finishes successfully or
not. Run the issuer’s protocol using gpk, ik with the adversary being able to submit (i, msg) as the
possibly malicious user’s messages to the issuer. If the join protocol is successful update the registry
regli] correspondingly.

NON-FRAMEABILITY. We want to avoid that an honest member is falsely attributed a signature that it did not
sign, even if both the issuer and opener are controlled by the adversary. We require that for all non-uniform
polynomial time adversaries .4 we have:

Pr [(gpk‘,ik:,ok) i GKg(lk) : (m7 E,i,T) V. AIssueToHonest,ReadGsk,GSig(gpk’ ik, Ok) .

GVi(gpk,m,%¥) =1 A Judge(gpk,i,regli],m,%,7) =1
A i € HonestUsers A i ¢ ExposedKeys A (m,Y) ¢ UserSignatures| ~ 0,

where the oracles are:

IssueToHonest: On input (4, start) start up a new honest user 4 joining the group using gpk as the group
public key and add i to HonestUsers. On input (i, msg) send this message to the user on behalf of the
corrupt issuer. If the protocol is successful update reg[i] and gsk[i] correspondingly.

ReadGsk: On input i return gsk[i]. Add i to ExposedKeys.

GSig: On input (7, m) check whether gsk[i] is non-empty. In that case return ¥ < GSig(gpk, gskli],m)
and add (m, ¥) to UserSignatures.

The definition above addresses a partially dynamic setting where members can be enrolled along the
way. It also separates the roles of granting membership from opening signatures. In [BMWO03] a simpler
situation is considered. Only a single group manager that acts as opener is considered. All members’ keys
are set up from the start, there is no enrollment. This relaxation permits the definitions of traceability and
non-frameability to be combined into one requirement called full-traceability. In this paper we concentrate
on the stronger and more flexible [BSZ05] model.

6 Tools

To construct our group signature scheme, we will use the certified signature scheme from Section 4. We
will also use several other tools in our construction, namely collision resistant hash functions, non-interactive
proofs for bilinear groups, strong one-time signatures and selective-tag weak CCA-secure cryptosystems.

6.1 Collision Resistant Hash-Functions

H is a generator of collision resistant hash-functions Hash : {0,1}* — {0, 1}**) if for all non-uniform
polynomial time adversaries .A we have:

Pr [Hash — H(1*); z,y « A(Hash) : = #y and Hash(z) = Hash(y)} ~ 0.
We will use a collision resistant hash-function to compress messages before signing them. For this purpose
we will require that we can hash down to Z,, so we want to have 2®) < p. We remark that collision

resistant hash-functions can be constructed assuming the discrete logarithm problem is hard, so the existence
of collision resistant hash-functions follows from our assumptions on the bilinear group.

13

6.2 Strong One-Time Signatures

We will use a one-time signature scheme that is secure against an adversary that has access to a single chosen
message attack. We say the one-time signature scheme is strong, if the adversary can neither forge a signature
on a different message nor create a different signature on the chosen message she already got signed.

6.3 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS08] suggest non-interactive proofs that capture relations for bilinear groups. They look
at sets of equations in our bilinear group (p, G, G, e, g) over variables in G and Z,, such as pairing product
equations, e.g. e(x1,x2)e(xs, x4) = 1, or multi-exponentiation equations, e.g. x‘lsl;rg? = 1. They suggest
non-interactive proofs for demonstrating that a set of equations of the form described above has a solution
z1,...,x7 € G,01,...,05 € Zy so all equations are simultaneously satisfied. Their proofs are in the
common reference string model. There are two types of common reference strings that yield respectively
perfect soundness and perfect witness indistinguishability/perfect zero-knowledge. The two types of common
reference strings are computationally indistinguishable and they both give perfect completeness. We now give
some further details.

[GS08] show that there exists four probabilistic polynomial time algorithms (K, P, V, X), which we
call respectively the key generator, the prover, the verifier and the extractor. The key generator takes
(p,G,Gr,e,g) as input and outputs a common reference string crs = (F,H,U,V,W, U V' W') €
G® as well as an extraction key xk. Given a set of equations, the prover takes crs and a witness

r1,...,21,01,...,07 as input and outputs a proof 7w. The verifier given crs, a set of equations and 7
outputs 1 if the proof is valid and else it outputs 0. Finally, the extractor on a valid proof 7w will extract
x1,...,x7 € G, in other words it will extract part of the witness.

The proofs of [GS08] have perfect completeness: on a correctly generated CRS and a correct witness,
the prover always outputs a valid proof. They have perfect soundness: on a correctly generated CRS it is
impossible to create a valid proof unless the equations are simultaneously satisfiable. Further, they have
perfect partial knowledge: given xk the algorithm X can extract x1, ...,z from the proof, such that there
exists a solution for the equations that use these x1, ..., x;.

There exists a simulator S; that outputs a simulated common reference string crs and a simulation trap-
door key tk. These simulated common reference strings are computationally indistinguishable from the
common reference strings produced by K assuming the DLIN problem is hard. On a simulated common
reference string, the proofs created by the prover are perfectly witness-indistinguishable: if there are many
possible witnesses for the equations being satisfiable, the proof m does not reveal anything about which wit-
ness was used by the prover when creating the proof. Further, let us call a set of equations tractable, if it is
possible to find a solution, where x1, .. ., s are the same in all equations, but 41, ..., J s are allowed to vary
from equation to equation. Tractable equations have perfect zero-knowledge proofs on simulated reference
strings: there exists a simulator So that on a simulated reference string c¢rs and a simulation trapdoor key
tk produces a simulated proof 7 for the tractable equations being satisfiable. If the equations are satisfiable,
then simulated proofs are perfectly indistinguishable from the proofs a real prover with a witness would form
on a simulated reference string.

It will be useful later in the paper to know some technical details of the construction. The values
F,H,U,V,W will be used to commit to the variables = as (ci,co,c3) := (F'U', HV? g"T*W'z) for
randomly chosen r,s,t € Z,. On a real common reference string, they are set up so U = FRYV =
HS W = g"*5 50 the commitment can be rewritten as (F" 1t gs+5t gr+s+(R+8)ty) The extraction key
is ok := (¢,n) so F = g®, H = g¢". This permits decryption of the commitment as = = 0301_1/¢c2_1/n. On
the other hand, on a simulation reference string, we use U = F® V = HS W = ¢ with T # R + S,
which makes the commitment perfectly hiding.

14

To commit to a variable 6 € Z, using randomness r,s we use the commitment (di,ds,ds) :=
(Fr(U"), H*(V")?, g"+5(W")%). On a normal common reference string, we pick U’ = F® V' = HS W' =
g" for T # R + S. This makes the commitment perfectly binding. On a simulated common ref-
erence string, on the other hand, we pick U’ = FE V' = H% W' = ¢f*+S The simulation trap-
door key is tk := (R,S), which permits us to trapdoor open a commitment to 0 to any value ¢ since
(FT, Hs’gr+s) — (Fr—Ré(U/)é7 Hs—S&(V/)zF’gr+s—(R+S)6(W/)6)‘

6.4 Selective-tag Weakly CCA-secure Encryption

We will use a tag-based cryptosystem [MRY04] due to Kiltz [Kil06]. The public key consists of ran-
dom non-trivial elements pk = (F,H,K,L) € G* and the secret key is sk = (¢,7) scuh that F =
g, H = g". We encrypt m € G using tag t € Zy and randomness 7,5 € Zy, as (yi,...,y5) =
(F", H%, g" *m, (¢ K)", (¢g*L)®). The validity of the ciphertext is publicly verifiable, since valid cipher-
texts have e(F,y4) = e(y1,¢'K) and e(H,ys) = e(y2,g'L). Decryption can be done by computing
m = ysy; 1/¢?/; /7 In the group signature scheme, we will set up the cryptosystem with the same F, i as
in the common reference string of the non-interactive proofs.

[Kil06] shows that under the DLIN assumption this cryptosystem is selective-tag weakly CCA-secure.
By this we mean that it is indistinguishable which message we encrypted under a tag ¢, even when we have
access to a decryption oracle that decrypts ciphertexts under any other tag. Formally, for all non-uniform
polynomial time adversaries .4 we have:

Pr {gkz — g(lk) ; t < A(gk) ; (pk,sk) < K(gk); (mg,mq) < ADSk("')(pk:) sy Epr(t,mp) :
ADsk() () = 1]

~ Pr [gk: — g(lk) ; t < A(gk) ; (pk,sk) < K(gk); (mg,m1) < ADSk("')(pk) sy Epp(t,my)
)=1

]

where the oracle returns Dy (t;, ;) if t; # t.

ADsk('v') (y

7 The Group Signature Scheme

The core of our group signature scheme is the certified signature scheme from Section 4. The issuer acts as a
certification authority and whenever a new member ¢ wants to enroll, she needs to create a verification key v;
for the Boneh-Boyen signature scheme and get a certificate from the issuer. In the group signature scheme,
the verification key and the corresponding secret key is generated with an interactive key generation protocol
as defined in Section 4.1. This way both user and issuer know that v; is selected with the correct distribution
and that the user holds the corresponding secret key ;.

When making a group signature, the member will generate a key pair (vksots, Sksots) for a strong one-
time signature scheme. She will sign the message using sksots and use x; to sign vkgots. The combination of
certified signatures and strong one-time signatures is what makes it hard to forge group signatures.

Group signatures have to be anonymous and therefore we cannot reveal the certified signature. Instead,
a group signature will include a non-interactive witness-indistinguishable (NIWI) proof of knowledge of
a certified signature on vkgots. Witness-indistinguishability implies that a group signature does not reveal
which group member has signed the message. The opener will hold the extraction key for the NIWI proof of
knowledge and will be able to extract the certified signature. Whenever an opening is called for, she extracts
the signature on vkgqts, Which points to the member who signed the message. In case no member has certified
signed vksots, the opener points to the issuer since the certified signature has a valid certificate.

15

The ideas above suffice to construct a CPA-anonymous group signature scheme. To get anonymity even
when the adversary has access to the Open oracle, we will encrypt the signature on vkgots With Kiltz” cryp-
tosystem using vksots as a tag. We will also give an NIZK proof that the encrypted signature is the same as
the one used in the NIWI proof of knowledge.

We present the full group signature scheme in Figure 2. Let us explain the non-interactive proofs further.
The NIWI proof of knowledge, will demonstrate that there exists a certified signature (a, b, v, o) on vkgsots SO

e(a,hv)e(f,b) =T A e(o,vgm (o)) = ¢(g, g).

In the terminology of [GS08], these are two pairing product equations over three variables b, v, 0. The last
element a will be public, since we can rerandomize the certificate such that a does not identify the member.
[GSO08] gives us an NIWI proof of knowledge for these two equations being simultaneously satisfiable that
consists of 21 group elements. This proof consists of three commitments to respectively b, v, o, which consist
of 3 group elements each, and two proofs for the committed values satisfying the two equations, the first being
a linear equation in v and b, consisting of 3 and 9 group elements respectively.

In the NIZK proof we have a ciphertext y under tag Hash(vkgots) and a commitment ¢ to o from the NIWI
proof of knowledge. We wish to prove that the plaintext of y and the committed value in c are the same. The
ciphertext is of the form (y1,...,y5) = (F"v, H%, g"vsvg, (gHash(Whsows) [()ry | (gHash(vksots) 1)5v) and the
commitment is of the form (c1, c2,c3) = (F™U*, H5V?, gt Wig). Setting r := 1. — 7y, 8 := S — Sy
we have (c1y; ', cayy 'y cayst) = (FTUY HVY g"HW?). On the other hand, if the plaintext and the
committed value are different, then no such r, s, ¢ exist. Proving that the plaintext and the committed value
are the same, therefore corresponds to proving the simultaneous satisfiability of the following equations over
O,1,8,t € Lp:

¢) =1 A (Cflyl)d)FrUt =1 A (051y2)¢HSVt =1 A (c§1y3)¢gr+swt.

This set is tractable, i.e., if we allow ¢ to take different values in the equations, then there is a trivial solution
¢ = 1 in the first equation and ¢ = r = s = t = 0 in the other three equations. Since the set of equations
is tractable, there is an NIZK proof for the 4 equations being simultaneously satisfiable. The proof consists
of commitments to ¢, r, s, t, but since the first equation is straightforward we can simply use (U, V', W') as
the commitment to ¢, which makes it easy to verify that the first equation holds. The three commitments to
r, 8,t each consist of 3 group elements. The three last equations are multi-exponentiations of constants and
using the proof of [GS08] each equation costs 2 group elements to prove. The NIZK proof therefore costs a
total of 15 group elements.

Theorem 4 The scheme in Figure 2 is a group signature scheme with perfect correctness. Under the DLIN, q-
SDH and q-U assumption and strong existential unforgeability of the one-time signature scheme and collision
resistance of the hash-function, the group signature has anonymity, traceability and non-frameability.

Proof. Perfect correctness follows from the perfect correctness of the join/issue secure function evaluation,
the certified signature, the NIWI proof of knowledge, the tag-based cryptosystem, the NIZK proof and the
strong one-time signature. Anonymity, traceability and non-frameability follows from Lemmas 5, 7 and 6. [

Lemma 5§ The group signature scheme is anonymous if the DLIN assumption holds, the one-time signature
scheme is strongly existentially unforgeable and the hash-function is collision resistant.

Proof. Consider the probability

Pr (gpk ik Ok) — GKg(lk) . AChb,Open,JoinCorruptJoinExposedHonest(gpk Zk) -1

16

GKg(1")

gk < G(1%) ; Hash < H(1¥)
((f,h,T), z) = CertKey(gk)
(crs,zk) < Kni(gk) ; K, L <+ G GVf(gpl.f,m, ¥) . ‘
(F, H, the rest) < Parse(crs) ; pk := (F, H, K, L) Return 1 if the following holds:
(

, 7 1 = Very,... (Vksots, m, a, T, 9, %), Osots)
]{?,Z]C,Ok‘ — k:,Hash, ,h,T, crs, k ,Z,I’k‘ VKksots tsy 110, Uy 70, Y, ’
gp)= ((y f pk)) 1 = Varwi(ers, (gpk, a, Hash(vkgots)),)

1 = Wiz (ers, (gpk, m,y),)
1 = ValidCiphertext(pk, Hash(vksots), y)

Else return O

Join/Issue(User i : gpk , Issuer : gpk,ik)
((viy x4, a4, bi), (v, a4, b;)) < (User, Issuer)
User: If e(a;, hv;)e(f,b;) = T set

regli] == v; ; gsk[i] :== (x4, a4, b;) Open(gpk, ok, m, ¥)

(b,v,0) + Xyk(crs, (gpk, a, Hash(vksots)),)

. . Return (¢, o) if there is ¢ so v = v;
GSig(gph, gsklil, m) Else retflrn ()0 o) l

(Vksots, Sksots) < KeyGeng,(1%)
(Repeat until Hash(vkgots) # —x;)

p Ly a:=a;fP;b:=bi(hv)P

nj 0= il Judge(gpk, i, reg[i],m, ¥, o)
o 1= gPitHash(Rsors) Return 1 if
T < PNIWI(CT5> (gpka a, HaSh(kaOtS))’ (b’ i G)) 1 ?é 0A 6((7, vigHaSh(kaOts)) = 6(9, g)

y + Epip(Hash(vksots), 0)

ﬂ) A PNIZK(CTS7 (gpk, Y, 77)7 (Ta S, t))
Osots < Signsksots (Vksots, M, a, T, Y, 1)
Return ¥ := (vksots, @, T, Y, ¥, Osots)

Else return O

Figure 2: The group signature scheme.

from the definition of anonymity. We want to prove that the two probabilities for respectively b = 0 and
b = 1 only have negligible difference.

First, let us modify the underlying game by aborting if the strong one-time signature in the challenge
group signature is ever forged in an opening query. The strong existential unforgeability of the one-time
signature scheme under a single chosen message attack implies that there is negligible probability that we
will abort for this reason. From now on we can therefore assume vkgqts is not used in valid group signature
queries to Open.

We also abort, if any group signature queried to Open collides with Hash(vkgots) from the challenge
group signature. The collision resistance of the hash-function implies that there is negligible probability that
this will ever happen, so from now on we can assume that no such collision will happen.

Let us now modify the way we generate the public key for the tag-based cryptosystem. We set K :=
g%, L = g* and store x, \. Whenever Open receives a valid group signature, we use , A to decrypt the
tag-based cryptosystem. By the validity check of the tag-based ciphertext and the perfect soundness of the
NIZK proof v this gives the same signature ¢ as we get when running the extractor on the NIWI proof of
knowledge. We now go through reg checking whether there exists ¢ so e(o, vigHaSh(”ksotS)) =e(g,9). In
that case, we return (¢, 0). The equation defines v; uniquely so this points to the same v; as when extracting
the NIWI proof of knowledge. If no such v; can be found, we return (0, o). The perfect soundness of the
NIWTI proof of knowledge and the NIZK proof implies that this does not change the probabilities with b = 0
and b = 1 at all.

What we have accomplished in the last step is to modify the Open oracle such that it does not use the
extraction key xk for the NIWI proof. We can therefore now switch to using a simulated common reference

17

string crs that gives us perfect witness-indistinguishability and perfect zero-knowledge. Since real common
reference strings and simulated common reference strings are computationally indistinguishable, this change
only negligibly alters the probability of A outputting 1. Perfect witness indistinguishability implies that the
proof m does not reveal any information about gsk[ig] or gsk[i;] having been used to create the challenge
group signature.

The only information that is left in the challenge about the signer is inside the ciphertext y. We will
now use the selective-tag weak CCA-security of the cryptosystem to show that the two modified probabilities
for respectively b = 0 and b = 1 only differ negligibly. Let us therefore use the group signature adversary
to construct a selective-tag adversary that attacks the cryptosystem. The cryptosystem has a public key
F,H, K, L. It is possible to build a common reference string using the same F', H, g that has perfect witness-
indistinguishability and perfect zero-knowledge, since the zero-knowledge trapdoor consists of the discrete
logarithms of U’, V', W' with respect to F', H, g. We can therefore on top of a public key F', H, K, L generate
a correctly formed public key gpk for the group signature scheme and emulate the oracles JoinCorrupt and
JoinHonestExposed. Whenever we have a valid group signature query to Open it contains a ciphertext y.
This ciphertext never uses the tag Hash(vksots) from the challenge ciphertext, so we can use the decryption
oracle in the selective-tag weak CCA-security game defining the security of the cryptosystem to decrypt the
ciphertext and get out o.

We will now describe how to generate the challenge group signature on top of a challenge tag-based
ciphertext. We start by picking a key for the strong one-time signature scheme (vksots, Sksots). We will use
Hash(vksots) as the target tag, which we observe is chosen independently of the public key for the cryp-
tosystem. We now get the public key F, H, K, L and run the group signature game on top of it as described
above. At some point the adversary produces 7g, 71, m on which it wants a challenge group signature. We
construct signatures o;,, 0;, on Hash(vksets) for respectively user i and ¢;. We then get an encryption y
using Hash(vksots) as the tag of either o;, or o;, and our goal is to distinguish which one is the plaintext
of y. We build a group signature on top of this ciphertext, which can be done since we have perfect NIWI
proofs of knowledge and perfect NIZK proofs on simulated common reference strings. If the group signature
anonymity probabilities for b = 0 and b = 1 are different, we can distinguish whether y encrypts o;, or o;,.
The selective-tag weak CCA-security of the cryptosystem therefore gives us that the modified probabilities
with b = 0 and b = 1 are indistinguishable. O

Lemma 6 The group signature scheme has non-frameability if the g-SDH assumption is hard, the one-time
signature scheme is strongly existentially unforgeable and the hash-function is collision resistant.

Proof. We want to prove that for all non-uniform polynomial time adversaries A we have:

Pr (gpk, Zk, Ok) «— GKg(lk) : (m’ E, 7;’ 0,) — AIssueToHonest,ReadGsk,GSig(gpk’ik,ok) .
GVf(gpk,m,X) =1 A Judge(gpk,i,regli],m,X,0) =1
Ai € HonestUsers A i ¢ ExposedKeys A (m,X) ¢ UserSignatures| ~ 0.

By the strong existential unforgeability of the one-time signature scheme under a chosen message attack,
there is negligible probability that A produces (m,) so vksots from one of the group signatures made
from the GSig oracle is reused. The collision resistance of the hash-function implies that there is negligible
probability that Hash(vksots) collides with one of the vkl ;. used by the GSig oracle. We can therefore
assume that an attempt to frame a user requires a signature o on a value Hash(vksots) that the user has not
made a certified signature on.

Let n(k) be a polynomial upper bound of the number of IssueToHonest queries that A makes. We have
at least ﬁ chance of guessing the user j that .4 will attempt to frame before running the game. However,

the proof of the existential unforgeability of the certified signature scheme against weak chosen message

18

attack tells us that for each honest user there is negligible probability of producing o that is a satisfactory
Boneh-Boyen signature on Hash(vkgots)- O

Lemma 7 The group signature scheme is traceable if the q-U assumption holds.

Proof. We have to prove that valid signatures lead to the provable identification of a signer. In other words,

Pr [(gpk,ik,ok:) — GKg(lk) ; (m,X) .AJOin(gpk, ok); (i,0) < Open(gpk, ok,reg, m, %) :
GVi(gpk,m,¥) =1 A (Judge(gpk,i,regli],m,¥X,0) =0 V i =0)| = 0.

By the soundness of the NIWI proof a valid signature Y. implies the existence of a valid certified signature on
Hash(vksots). We can use the extraction key xk to extract this certified signature. By the unfakeability of the
certified signature scheme, the certified signature points to one of the v;’s generated in a join/issue session.
The perfect soundness of the NIWI proof of knowledge implies that the extracted o is indeed a signature on
Hash(vkgots) under the verification key v; in the NIWI proof of knowledge. Judge will therefore output 1.
(|

EFFICIENCY. The strong one-time signature can be instantiated in various ways. One possible candidate is
the full Boneh-Boyen signature scheme [BB08] that is secure against adaptive chosen message attack. This
signature scheme is based on the ¢-SDH assumption and a signature under verification key vk = (g, @, 0) is
of the form (r, o) such that e(0u"¢g™, o) = e(g, §). A closer examination of the security proof of the Boneh-
Boyen signature scheme shows that we may use the same group (p, G, G, e) and hash-function for the group
signature scheme and the strong one-time signature scheme, which yields a cost of 4 group elements and 1
field element for the public key together with the one-time signature.

We make the element a public. The NIWI proof of knowledge consists of 21 group elements. The
ciphertext consists of 5 group elements. The NIZK proof consists of 15 group elements. The total size of
a group signature is therefore 46 group elements in G and one field element in Z,. This is of course much
better than the many thousand elements required for a group signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a lighter version of our group signature, where we
omit the ciphertext y and the NIZK proof ¢/. This CPA-anonymous group signature scheme would consist of
26 group elements and 1 field element. We observe that regular anonymity implies that the group signature is
strong, i.e., even when seeing a message m and a group signature X on it, it is not possible to create a different
group signature ' on m such that it still points to the same member. In CPA-anonymity, however, we do
not give the adversary access to an opening oracle and thus mauling signatures is no longer a problem. If
we do not care about the group signature being strong, we do not need the strong one-time signature key and
we can simply sign Hash(m) instead of Hash(vksots). This reduces the size of the group signatures further
to 22 group elements. In comparison, the CPA-anonymous group signature scheme of [BW07] consists of 6
group elements in a composite order group. Since composite order groups rely on the hardness of factoring,
these groups are roughly double the size of the symmetric bilinear groups we use and our CPA-anonymous
group signatures are therefore only twice as big. Unlike their scheme, however, our CPA-anonymous group
signature scheme still supports dynamic enrollment of members and has a group public key gpk consisting
of a constant number of group elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generator it is worth considering how
the key generation should be carried out in practice. The trust in our scheme relies on the bilinear group
(p,G,Gr,e,g) being generated so the cryptographic assumptions hold and it relies on the hash-function
being collision resistant. We remark that an advantage of our scheme is that we work over prime order
bilinear groups, so it may be possible to use a uniform random string to set up (p, G, G, e, g). Also, since

19

the trust is based on a very elementary setup, a bilinear group and a hash-function, it is possible that suitable
public standards can be found. One could for instance use SHA-256 as the hash-function.

The non-frameability of the user relies only on the collision reistance of the hash-function and the crypto-
graphic assumptions in (p, G, G, e, g). The rest of the group public key gpk can be generated jointly by the
issuer and the opener. The issuer generates the authority key for the certified signature scheme. The opener
generates crs and pk, anonymity follows from the opener generating these keys correctly. Since the opener
can break anonymity anyway, it is quite reasonable to trust the opener with protecting anonymity. The opener
will have to make a zero-knowledge proof of knowledge of the corresponding extraction key to the issuer,
since the security proof for traceability relies on the opener being able to actually extract a signature from the
NIWI proof of knowledge.

Acknowledgment

We thank Essam Ghadafi for pointing out the need for a strong one-time signature scheme with security
against an adaptive chosen message attack instead of the security against a weak chosen message attack used
in the conference version of the paper.

References

[ACHAMOS] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/2005/385.

[ACJTO0] Guiseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure group signature scheme. In CRYPTO, volume 1880 of Lecture Notes in Computer
Science, pages 255-270, 2000.

[BBO8] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the sdh assumption
in bilinear groups. Journal of Cryptology, 21(2):149-177, 2008.

[BBPO4] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-oracle-
model scheme for a hybrid encryption problem. In EUROCRYPT, volume 3027 of Lecture
Notes in Computer Science, pages 171-188, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 41-55, 2004.

[BFPWO07] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan Warinschi. A closer look
at PKI: Security and efficiency. In PKC, volume 4450 of Lecture Notes in Computer Science,
pages 458-475, 2007.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, volume 2656 of Lecture Notes in Computer
Science, pages 416-432, 2003.

[BMWO03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 614—629, 2003.

20

[BR93]

[BSZ05]

[BWO6]

[BWO7]

[CGO4]

[CGH98]

[CGHO4]

[CLO4]

[CvHI1]

[FIOS]

[GKO3]

[Gro06]

[GS08]

[Kil06]

[KYO05]

[MRY04]

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS, pages 62-73, 1993.

Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. In CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 136—
153, 2005.

Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 427-444, 2006.

Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signa-
tures. In PKC, volume 4450 of Lecture Notes in Computer Science, pages 1-15, 2007.

Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical aspects.
In SCN, volume 3352 of Lecture Notes in Computer Science, pages 120—133, 2004.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
STOC, pages 209-218, 1998.

Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied
to length-restricted signature schemes. In TCC, volume 2951 of Lecture Notes in Computer
Science, pages 40-57, 2004.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 5672,
2004.

David Chaum and Eugene van Heyst. Group signatures. In EUROCRYPT, volume 547 of
Lecture Notes in Computer Science, pages 257-265, 1991.

Jun Furukawa and Hideki Imai. An efficient group signature scheme from bilinear maps. In
ACISP, volume 3574 of Lecture Notes in Computer Science, pages 455-467, 2005.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In
FOCS, pages 102-113, 2003.

Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In ASIACRYPT, volume 4248 of Lecture Notes in Computer Science, pages 444—
459, 2006.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 415-432, 2008.

Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, volume 3876 of
Lecture Notes in Computer Science, pages 581-600, 2006.

Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In EURO-
CRYPT, volume 3494 of Lecture Notes in Computer Science, pages 198-214, 2005.

Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Def-
initions, constructions, and applications. In TCC, volume 2951 of Lecture Notes in Computer
Science, pages 171-190, 2004.

21

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The

non-committing encryption case. In CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 111-126, 2002.

[ZL06] Sujing Zhou and Dongdai Lin. Shorter verifier-local revocation group signatures from bilinear
maps. In CANS, volume 4301 of Lecture Notes in Computer Science, pages 126—-143, 2006.

22

