
Continuous After-the-fact Leakage-Resilient eCK-Secure
Key Exchange

Janaka Alawatugoda1, Colin Boyd2, Douglas Stebila1

1Queensland University of Technology, Brisbane, Australia
2Norwegian University of Science and Technology, Trondheim, Norway

Alawatugoda, Boyd, Stebila 1 / 21



Presentation Outline

1 Key Exchange Security Models

2 Leakage Resilience

3 Continuous After-the-fact Leakage-eCK Model

4 Constructing an CAFL-eCK-secure Protocol

5 Summary

Alawatugoda, Boyd, Stebila 2 / 21



Key Exchange Security Models

Diffie–Hellman-based one-round protocol

long-term key: xA long-term key: xB
A B

a← R
A = ga

A−−−−−−→
b ← R
B = g rB

B←−−−−−−
K = F (xA, rA,B, public info) K = F̂ (xB , rB ,A, public info)

a and b are the ephemeral keys

K is the session key

Prominent concrete protocols include MQV, HMQV and UM

Alawatugoda, Boyd, Stebila 3 / 21



Key Exchange Security Models

Key Exchange Security Models

Designed to capture informal security goals.

Typical elements in a security model:

Adversary Capabilities - set of adversary operations. Always allows
adversary to view protocol runs and alter/inject messages.
Security Game - the order in which the adversary operations are
performed.
Security Definition - the requirement to win the security game.
Usually require the adversary to reliably distinguish session key from a
random string.

Alawatugoda, Boyd, Stebila 4 / 21



Key Exchange Security Models

Adversarial Capabilities (eCK model)

Adversary runs the protocol:

Send: Adversary can send a message to a protocol session which
answers according to the specification.

Adversary compromise certain secret keys:
1 SessionKeyReveal: Adversary is given the session key of a session.
2 EphemeralKeyReveal: Adversary is given the ephemeral key of a

session.
3 Corrupt: Adversary is given the long-term secrets of a principal.

Adversary asks for the challenge:

Test: Adversary is given either the session key or a random string.

Alawatugoda, Boyd, Stebila 5 / 21



Key Exchange Security Models

Security Game

Stage 1: The adversary performs Send, SessionKeyReveal,
EphemeralKeyReveal and Corrupt operations.

Stage 2: Test operation to any uncompromised test-session.

Stage 3: Send, SessionKeyReveal, EphemeralKeyReveal and
Corrupt keeping the test-session uncompromised.

Stage 4: Adversary outputs a bit as its guess whether the Test

operation output was random (0) or the real session key (1).

The adversary wins the game if it guesses correctly.

Alawatugoda, Boyd, Stebila 6 / 21



Leakage Resilience

1 Key Exchange Security Models

2 Leakage Resilience

3 Continuous After-the-fact Leakage-eCK Model

4 Constructing an CAFL-eCK-secure Protocol

5 Summary

Alawatugoda, Boyd, Stebila 7 / 21



Leakage Resilience

Side-Channel Attacks

Leaking information from cryptographic implementations can be used
as side-channels to reveal secrets.

Side-channels: Timing information, Power consumption information,
Cache-access pattern, EM-radiation etc.

Alawatugoda, Boyd, Stebila 8 / 21



Leakage Resilience

Leakage-Resilient Cryptography

Provable security against side-channel attacks.

Constructing cryptographic schemes in leakage-resilient manner.

Model leakage.
Prove that even in the presence of certain amount of leakage to an
attacker, a cryptographic scheme is secure.

Adversary gets the leakage of the secret x using adversary-chosen,
adaptive, efficiently computable leakage functions f .

Alawatugoda, Boyd, Stebila 9 / 21



Leakage Resilience

Modelling Leakage

Different options have been used.

Leakage function f restricted class of functions (eg hard
to invert functions) or
arbitrary polynomial time functions

Output amount of the f bounded or
continuous leakage

When to apply f? only before the security challenge or
before + after the security challenge
(after-the-fact)

Ideally want the leakage function be arbitrary and allow continuous, after
the fact leakage.

Alawatugoda, Boyd, Stebila 10 / 21



Continuous After-the-fact Leakage-eCK Model

1 Key Exchange Security Models

2 Leakage Resilience

3 Continuous After-the-fact Leakage-eCK Model

4 Constructing an CAFL-eCK-secure Protocol

5 Summary

Alawatugoda, Boyd, Stebila 11 / 21



Continuous After-the-fact Leakage-eCK Model

Modelling Leakage in the CAFL-eCK Model

Follow model of Dziembowski and Faust (2011)

An arbitrary polynomial time leakage function f is used to model the
leakage s.t. f(sk) = leakage.

Leakage is modelled in a place where computation takes place using
long-term secret keys.

Total leakage amount is unbounded (continuous leakage).

Allows after-the-fact leakage.

Alawatugoda, Boyd, Stebila 12 / 21



Continuous After-the-fact Leakage-eCK Model

Adversarial Capabilities of the CAFL-eCK Model

Adversary run the protocol:

Send(m, f): Models the capabilities of the adversary who can initiate,
delay, modify or insert protocol messages m. The adversary observes
the leakage of the secret key f(sk), whenever a computation takes
place in a party.

Adversary compromise certain secret keys:
1 SessionKeyReveal: Adversary is given the session key of a session.
2 EphemeralKeyReveal: Adversary is given the ephemeral keys

(per-session randomness) of a session.
3 Corrupt: Adversary is given the long-term secrets of a principal.

Adversary asks for the challenge:

Test: Adversary is given either the real or a random session key.

Alawatugoda, Boyd, Stebila 13 / 21



Continuous After-the-fact Leakage-eCK Model

Comparison with Earlier Models

Security model Ephemeral Long-term Combinations Leakage resilience
Key Key

eCK (2007) Yes Yes 4/4 None
MO (2011) Yes Yes 4/4 Bounded, before-the-fact
BAFL-eCK (2014) Yes Yes 4/4 Bounded, after-the-fact
CAFL (2014) Yes Yes 2/4 Continuous, after-the-fact
CAFL-eCK (now) Yes Yes 4/4 Continuous, after-the-fact

1 Corrupt(U) and Corrupt(V ).

2 Corrupt(U) and EphemeralKeyReveal(V ,U, s).

3 Corrupt(V ) and EphemeralKeyReveal(U,V , s ′).

4 EphemeralKeyReveal(V ,U, s) and EphemeralKeyReveal(U,V , s ′).

Alawatugoda, Boyd, Stebila 14 / 21



Constructing (·)AFL-eCK-secure Key Exchange Protocols

Dziembowski–Faust leakage-resilient storage scheme

For any n ∈ N, the storage scheme (Encode,Decode) efficiently stores an
element s ∈ Z∗q where:

Encode(s) : sL
$←− (Z∗q)n\{(0n)}, then sR ← (Z∗q)n such that

sL · sR = s and outputs (sL, sR).

Decode(sL, sR) : outputs sL · sR .

The values (sL, sR) can then be refreshed using the following algorithm

Refreshing sR :
1 Choose A,B ∈ (Z∗

q)n such that A · B = 0m.
2 Choose M ∈ (Z∗

q)n×n such that sL ·M = A.
3 sR′ = R + M · B.

Refreshing sL:
1 Choose Ã, B̃ ∈ (Z∗

q)n such that Ã · B̃ = 0m.

2 Choose M̃ ∈ (Z∗
q)n×n such that M̃ · sR′ = B̃.

3 sL′ = L + Ã · M̃.

Alawatugoda, Boyd, Stebila 15 / 21



Constructing (·)AFL-eCK-secure Key Exchange Protocols

Dziembowski–Faust leakage-resilient storage scheme

For any n ∈ N, the storage scheme (Encode,Decode) efficiently stores an
element s ∈ Z∗q where:

Encode(s) : sL
$←− (Z∗q)n\{(0n)}, then sR ← (Z∗q)n such that

sL · sR = s and outputs (sL, sR).

Decode(sL, sR) : outputs sL · sR .

The values (sL, sR) can then be refreshed using the following algorithm

Refreshing sR :
1 Choose A,B ∈ (Z∗

q)n such that A · B = 0m.
2 Choose M ∈ (Z∗

q)n×n such that sL ·M = A.
3 sR′ = R + M · B.

Refreshing sL:
1 Choose Ã, B̃ ∈ (Z∗

q)n such that Ã · B̃ = 0m.

2 Choose M̃ ∈ (Z∗
q)n×n such that M̃ · sR′ = B̃.

3 sL′ = L + Ã · M̃.

Alawatugoda, Boyd, Stebila 15 / 21



Constructing an CAFL-eCK-secure Protocol

Constructing an CAFL-eCK-secure Protocol

Construct a simple eCK-secure protocol

Use leakage-resilient storage scheme and its refreshing protocol to
convert to a CAFL-eCK-secure protocol.

If the storage scheme and its refreshing protocol are leakage-resilient,
the protocol is CAFL-eCK-secure. Allows 15% continuous leakage of
the secret key with n = 21.

Alawatugoda, Boyd, Stebila 16 / 21



Constructing an CAFL-eCK-secure Protocol

An eCK-secure Protocol

A B
Initial Setup

a
$←− Z∗q,A← ga b

$←− Z∗q,B ← gb

Message Exchange

x ← Z∗q,X ← g x IDA,X−−−−−−→ y
$←− Z∗q,Y ← g y

IDB ,Y←−−−−−−
Session Key Computation

Z1 ← Ba,Z2 ← Bx Z ′1 ← Ab,Z ′2 ← X b

Z3 ← Y a,Z4 ← Y x Z ′3 ← Ay ,Z ′4 ← X y

sidA = IDA,X , IDB ,Y sidB = IDA,X , IDB ,Y
K ← H(Z1,Z2,Z3,Z4, sidA) K ← H(Z ′1,Z

′
2,Z

′
3,Z

′
4, sidB)

K is session key

Alawatugoda, Boyd, Stebila 17 / 21



Constructing an CAFL-eCK-secure Protocol

An eCK-secure Protocol

A B
Initial Setup

a
$←− Z∗q,A← ga b

$←− Z∗q,B ← gb

Message Exchange

x ← Z∗q,X ← g x IDA,X−−−−−−→ y
$←− Z∗q,Y ← g y

IDB ,Y←−−−−−−
Session Key Computation

Z1 ← Ba , Z2 ← Bx Z ′1 ← Ab,Z ′2 ← X b

Z3 ← Y a , Z4 ← Y x Z ′3 ← Ay ,Z ′4 ← X y

sidA = IDA,X , IDB ,Y sidB = IDA,X , IDB ,Y
K ← H(Z1,Z2,Z3,Z4, sidA) K ← H(Z ′1,Z

′
2,Z

′
3,Z

′
4, sidB)

K is session key

Alawatugoda, Boyd, Stebila 18 / 21



Constructing an CAFL-eCK-secure Protocol

Using LR-stored secrets for exponentiation

Let s ∈ Z∗q be a long-term secret key and E = g e be a received
ephemeral value. Then, the value Z = E s needs to be computed.

The secret key is encoded as sL, sR . So the vectors sL = (sL1, · · · , sLn)
and sR = (sR1, · · · , sRn) are such that s = sL1sR1 + · · ·+ sLnsRn.

The computation of E s can be performed as two component-wise
computations:

compute the intermediate vector T = (E sL1 , · · · ,E sLn)
compute the element
Z = E sL1sR 1E sL2sR 2 · · ·E sL1sR 1 = E sL1sR 1+···+sLnsRn = E s .

Alawatugoda, Boyd, Stebila 19 / 21



Constructing an CAFL-eCK-secure Protocol

An CAFL-eCK-secure Protocol

A B
Initial Setup

a
$←− Z∗q,A← ga b

$←− Z∗q,B ← gb

(a0L, a
0
R)← Encode(a) (b0L, b

0
R)← Encode(b)

Erase a Erase b

Message Exchange

x ← Z∗q,X ← g x IDA,X−−−−−−→ y
$←− Z∗q,Y ← g y

IDB ,Y←−−−−−−
Session Key Computation

T1 ← BajL ,Z1 ← T
ajR
1 T ′1 ← AbjL ,Z ′1 ← (T ′1)b

j
R

T3 ← Y ajL ,Z3 ← T
ajR
2 T ′2 ← X bjL ,Z ′2 ← (T ′2)b

j
R

Z2 ← Bx ,Z4 ← Y x Z ′3 ← Ay ,Z ′4 ← X y

sidA = IDA,X , IDB ,Y sidB = IDA,X , IDB ,Y
K ← H(Z1,Z2,Z3,Z4, sidA) K ← H(Z ′1,Z

′
2,Z

′
3,Z

′
4, sidB)

Alawatugoda, Boyd, Stebila 20 / 21



Summary

Summary

First concrete construction of strongly secure key exchange with
continuous after-the-fact leakage resilience.

Possible improvements:

increase efficiency with regard to randomness and key computation;
different leakage resilience models;
standard model.

Alawatugoda, Boyd, Stebila 21 / 21


	Key Exchange Security Models
	Leakage Resilience
	Continuous After-the-fact Leakage-eCK Model
	Constructing an CAFL-eCK-secure Protocol
	Summary

