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Abstract. In voting based on homomorphic threshold encryption, the voter en-
crypts his vote and sends it in to the authorities that tally the votes. If voters can
send in arbitrary plaintexts then they can cheat. It is therefore important that they
attach an argument of knowledge of the plaintext being a correctly formed vote.
Typically, these arguments are honest verifier zero-knowledge arguments that are
made non-interactive using the Fiat-Shamir heuristic. Security is argued in the
random oracle model.
The simplest case is where each voter has a single vote to cast. Practical solutions
have already been suggested for the single vote case. However, as we shall see
homomorphic threshold encryption can be used for a variety of elections, in par-
ticular there are many cases where voters can cast multiple votes at once. In these
cases, it remains important to bring down the cost of the NIZK argument.
We improve on state of the art in the case of limited votes, where each voter
can vote a small number of times. We also improve on the state of the art in
shareholder elections, where each voter may have a large number of votes to
spend. Moreover, we improve on the state of the art in Borda voting. Finally, we
suggest a NIZK argument for correctness of an approval vote. To the best of our
knowledge, approval voting has not been considered before in the cryptographic
literature.

1 Introduction

Voting based on homomorphic encryption.A popular paradigm for constructing e-
voting protocols is based on homomorphic threshold encryption. The homomorphic
property isE(m1 + m2; r1 + r2) = E(m1; r1)E(m2; r2). The authorities publish a
public key and voters send in encrypted votes. Digital signatures or other means of
authentication ensure that only eligible voters vote.

As an example consider an election where voters encode yes-votes as 1 and no-votes
as 0. Holding encrypted votesE(v1), . . . , E(vm) the authorities can use the homomor-
phic property of the cryptosystem to computeE(

∑m
i=1 vi). They jointly decrypt this

ciphertext to get out the number of yes-votes,
∑m

i=1 vi. It is important that they have
to cooperate to decrypt, if any single authority held the decryption key then the voters’
privacy might be at risk.

More advanced encoding methods allow elections where voters have a wide range
of options. In the paper, we treat the following possibilities:
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– Limited vote:N out ofL candidates.
– Approval vote: Any number out ofL candidates.
– Divisible vote: A huge number of votes distributed among the candidates.
– Borda vote: A preference vote where the best candidate receivesL votes, the second

bestL− 1 votes, etc.

The advantage of voting based on homomorphic encryption is that it combines effi-
ciency with a reasonable amount of flexibility. In particular, in comparison with other
voting paradigms such as mix-nets, it seems like a superior choice for divisible votes
that occur quite frequently in shareholder elections.

Zero-knowledge arguments.We have to ensure that voters do not cheat. Consider for
instance in the previous example a voter that sends inE(−100). Effectively this voter
is taking 100 yes-votes out of the ballot box. To avoid such attacks we let each voter
submit a zero-knowledge argument of correctness of his vote.

In practice, we want to minimize interaction between voters and authorities when
casting votes. The common approach is therefore to find an efficient honest verifier
zero-knowledge argument for correctness of the vote and make it non-interactive using
the Fiat-Shamir heuristic. This yields efficient non-interactive zero-knowledge (NIZK)
arguments. Security is proved in the random oracle model.1

Related work.The idea of using homomorphic encryption to construct voting protocols
was suggested by Cohen and Fischer [CF85] and further developed in [BY86,Ben87].
Cramer, Gennaro and Schoenmakers [CGS97] suggested a reasonable efficient yes/no-
voting scheme based on ElGamal encryption. Unfortunately, these schemes cannot han-
dle large elections with many candidates.

Concurrently Baudron et al. [BFP+01] and Damg̊ard and Jurik [DJ01]2 suggest
voting schemes based on Paillier encryption [Pai99]. Their zero-knowledge arguments
involve many encryptions and are therefore close to practical but still a little expensive.

Lipmaa, Asokan and Niemi [LAN02] propose the first practical zero-knowledge
argument based on homomorphic integer commitments. Using integer commitments
means that they can take advantage of integer properties such as unique prime factor-
ization and get a practical zero-knowledge argument. Damgård, Groth and Salomonsen
[DGS03] improve on this scheme and also propose a zero-knowledge argument for a
limited vote.

Ishida, Matsuo and Ogata [IMO03] consider the case of shareholder elections and
suggest a zero-knowledge argument for correctness of a divisible vote.

Wang and Leung [WfL04] investigate the case of Borda voting. They wish to con-
struct a protocol that only reveals the winner, but not how many votes each candidate
got. At a considerable efficiency cost, they proceed to construct such a multi-party com-
putation protocol. Unlike them, we do not try to hide the number of votes candidates
receive. Because of this difference, they are satisfied with letting each voter send a ci-
phertext for each candidate containing the number of votes on that candidate. Nonethe-
less, while not the focus of their paper they do need a NIZK argument for correctness

1 See Section 2 for more details.
2 Damg̊ard, Jurik and Nielsen [DJN03] correct some flaws in this voting scheme.



of a Borda vote. They give a sketch of a NIZK argument for correctness of a Borda
vote, however, it turns out the NIZK argument is not sound as it stands [Wan05]. The
NIZK argument for correctness of a Borda vote we suggest in the paper can be adapted
to their setting and solve their problem in a simple way.

We do not know of any work addressing approval voting in connection with homo-
morphic threshold encryption based voting schemes.

Our contributions. We observe that approval voting and Borda voting can be imple-
mented efficiently using homomorphic threshold voting and offer corresponding NIZK
arguments. We improve the NIZK argument for a limited vote of [DGS03] by simplify-
ing the protocol. We suggest a NIZK argument for a divisible vote that is a factorlog N
more efficient, whereN is the number of votes the shareholder can cast.

Vote ArgumentVerification Prior art Argument Verification
Limited 1 1 [DGS03] 1 1

6N + 4 3N + 3 8N + 2 7N + 2

Approval 1 1 No prior work
2L + 4 L + 3

Divisible 1 1 [IMO03] (5/2)L log N 2L log N
10L + 4 5L + 2

Borda 1 1 [WfL04] Not sound
known shuffle [Gro03] 4L + 2 2L + 3

For all arguments, the top line contains the number of encryptions, the bottom line the number
of exponentiations to make commitments. For all verifications, the top line contains the number
of encryptions and the number of exponentiations of ciphertexts (always identical numbers), the
bottom line the number of exponentiations to verify the commitments.

Table 1.Comparison of voting arguments

In Table 1, we list computational complexities for each NIZK argument. Since a ci-
phertext containing a vote must remain secure also some time into the future, we often
need a long security parameter for the cryptosystem. On the other hand, the NIZK ar-
guments are usually verified by interested parties right after the election, and since they
can be made statistical zero-knowledge we can use a much shorter security parameter
for the commitment scheme. For the purpose of creating this table, we have assumed
that to commit ton elements, one usesn + 1 exponentiations. In general, the expensive
operations are those that involve ciphertexts.

One should be careful when using this table. For instance, the approval vote argu-
ment uses short exponents, while the limited vote argument may use longer exponents.
The commitment exponentiations may therefore be cheaper for the approval vote argu-
ment in a setting with a similar number of voters and candidates. In the case of limited
voting one should note that our NIZK argument unlike the [DGS03] NIZK argument
is well suited for the use of multi-exponentiation techniques, so our gain is larger than
what is indicated by Table 1. Finally, the verification process for most protocols may



be sped up using batch verification techniques when verifying many votes at the same
time.

Groth [Gro04] considers security of voting in the universal composability frame-
work [Can01]. He shows that the above-mentioned schemes based on homomorphic
threshold encryption are secure against static adversaries. By twisting the cryptosystem
a little, one can also obtain security against adaptive adversaries without changing the
protocol on the voter’s side.

Efficient range proof.Proving that a committed numberx lies in some interval[a, b] is
useful in many protocols. Typically, we do that by proving that bothx − a andb − x
are non-negative. We can use either Boudot’s method [Bou02] or prove that the number
can be written as the sum of four squares [Lip03]. The two methods have comparable
efficiency. In Section 5 we suggest a little trick to speed up the latter argument. Namely,
to prove thaty is non-negative we prove that4y + 1 is the sum of three squares. We
highlight the trick here, since it may have independent interest.

2 Preliminaries

2.1 Voting Based on Homomorphic Encryption

Election parametersM,L,N . Throughout the paper, we assume that we have a group
of voters that can choose betweenL candidates, which may include choices such as a
blank vote or an invalid vote. A drawback of this type of election scheme is that the
number of candidates is fixed; we do not allow write-in votes. We denote byM a strict
upper bound on the number of votes any candidate can receive. In particular, if each
voter has one vote thenM is a strict upper bound on the number of voters. As will
become apparent later, there is much to gain by selectingM = p2, wherep is a prime.
A third parameter characterizing the elections is the number of votes the voter can cast,
denoted byN .

Encoding votes.In the introduction, we sketched how to base voting protocols on ho-
momorphic encryption. Let us offer some more details. The basic ingredient is a ho-
momorphic threshold public-key cryptosystem. We will generate a public key for this
cryptosystem, and the secret key is threshold secret shared amongst the authorities.

We assume that the message space is on the formZn. We require thatn does not
have prime factors smaller than2`e , where`e is the length of the output of a suitable
hash-function, and thatML ≤ n. We represent candidates with numbers0, . . . , L − 1
and encode a vote on candidatei asM i.3 Summing many such encodings gives us an
M -addic representation of the result,

∑L−1
i=0 viM

i, wherevi is the number of votes on
candidatei.

Representing votes this way, it is straightforward to encrypt a vote on candidatei
asE(M i). Having received many such encrypted votes we may by the homomorphic
property of the cryptosystem multiply all the ciphertexts and get a new ciphertextC =

3 As an alternative Lipmaa [Lip03] has suggested to encode votes as Lucas numbers.



E(
∑L−1

i=0 viM
i). We threshold decrypt this ciphertext and now it is straightforward to

extract the result from the plaintext.
We shall see in the following sections that in a somewhat similar way it is possible

to encode limited votes, approval votes, divisible votes and Borda votes, and therefore
such types of elections can also be handled using this approach.

As mentioned in the introduction we need NIZK arguments for correctness of votes
to avoid cheating and tampering with the result. In these NIZK arguments, we make use
of homomorphic integer commitments. In the security proof of these NIZK arguments,
we make use of a property of the integer commitment scheme and of the homomorphic
cryptosystem known as root extraction. We also make use of the random oracle model.
We will explain these concepts in the following.

2.2 Setup and parameters.

Throughout the paper, we make use of a semantically secure homomorphic threshold
cryptosystem. We assume that the message space isZn for a suitablen > ML and the
randomizer space isZ. The latter assumption is purely out of notational convenience,
there would be no problem in using a cryptosystem where the randomness is some finite
group, for instance to use threshold Paillier encryption.

We also make use of a homomorphic integer commitment scheme. We always use
randomizers fromZ. Again, there would be no problem to use other randomizer spaces
but we do not yet know any such commitment scheme. The keys for both the cryptosys-
tem and the commitment scheme are public and known to all parties.

We define the following parameters:`V = 2dL(log M)/2e is the maximal bit-
length of a vote. We assume that the distribution of the randomizer space of the cryp-
tosystem is to pick a random̀R-bit randomizer. Similarly for integer commitments we
pick a random̀ r-bit number as randomizer. Public keys are chosen with suitable secu-
rity parameters. In large elections with many candidates, we may be forced to choose a
large security parameter to accommodate this size of votes.

We need a couple of extra security parameters. We use a cryptographic hash-
function that outputs aǹe-bit number e. For instance, using SHA-256 we have
`e = 256. Furthermore, we need a security parameter`s, such that for any valuea
we have thata + ra andra are indistinguishable, wherera is a random|a| + `s-bit
number. We suggest̀s = 80, this being large enough to ignore the off chance that
|a + r| > |a|+ `s.

2.3 Homomorphic Integer Commitment and Homomorphic Cryptosystem

Integer commitment.We know only few homomorphic integer commitment schemes
[FO97,DF02,Gro05], and they are all very similar in structure. As an example, we of-
fer the following variant. We choose a modulusn as a product of two safe primes and
random generatorsg1, . . . , gk, h of QRn. To commit to integersm1, . . . ,mk using ran-
domnessr = (r1, r2) ∈ {−1, 1} × Z we computec = com(m1, . . . ,mk; (r1, r2)) =
r1g

m1
1 · · · gmk

k hr2 mod n. To open the commitment we reveal(m1, . . . ,mk, r). A typi-
cal choice isr1 = 1, r2 ← {0, 1}`r , wherè r = |n|+`s, which makes the commitment
statistically hiding.



Root extraction property.When proving soundness and knowledge in our protocols
we need the following root extraction property. If an adversary comes up with a com-
mitmentc, an openingm1, . . . ,mk, r ande 6= 0, soce = com(m1, . . . ,mk; r), then
we must havee|m1, . . . , e|mk and be able to compute an openingµ1, . . . , µk, ρ so
c = com(µ1, . . . , µk; ρ), whereµi = mi/e.

Root extraction property of homomorphic cryptosystem.In the voting protocol, we
use a semantically secure homomorphic threshold cryptosystem. Like the integer com-
mitment scheme, it must have a root extraction property. If we create a ciphertextC
ande 6= 0 so |e| < `e andCe = E(M ;R), then it must be possible to findµ, ρ so
M = eµ, R = eρ andC = E(µ; ρ).

ElGamal encryption [ElG84], Paillier encryption [Pai99] and several other homo-
morphic cryptosystems are semantically secure, have the root extraction property and
admit threshold decryption.

2.4 NIZK Arguments and The Random Oracle Model

Consider a typical 3-move honest verifier zero-knowledge argument. The prover has
some statementx that he wants to prove, and he knows a witnessw. He sends an ini-
tial messagea, receives a random challengee and responds with an answerz. Given
(x, a, e, z) the verifier can now choose whether to accept the argument or not.

Using Fiat-Shamir heuristic we let the prover compute the challengee as a hash-
function ofx, a. I.e., the prover computes an argument(a, e, z), wheree = hash(x, a).4

This way we can make the argument non-interactive. Of course, the same methodology
can be applied to arguments that use more than 3 moves.

As a heuristic argument of security of such protocols Bellare and Rogaway [BR93]
suggest the random oracle model. The hash-function is modeled as a random function
that pairs inputs(x, a) with a random outpute. Furthermore, to argue zero-knowledge
they allow the random oracle to be programmed. The simulator can choose inputs(x, a)
and corresponding outputse and the random oracle will on such an input return the
corresponding output.

As a simple example, consider proving knowledge of the plaintext of a ciphertext
C. We will present a well-known argument for this statement. Using the notation of
[CS97] we write

SPK[(µ, ρ) : C = E(µ; ρ)].

We use Greek letters for the unknown variables we are proving something about and
provide the statement that we are proving. This way we can quickly describe the goal
of a NIZK argument without specifying the actual protocol. The following argument of
plaintext knowledge is used as a subprotocol in most of our protocols.

Theorem 1. In the random oracle model, the protocol in Figure 1 is a NIZK argument
of plaintext knowledge.

4 Sometimes some auxiliary information will be included in the hash-function. For instance, we
might include the identity of the prover to avoid duplication of the proof. So we would write
e = hash(x, a, aux).



NIZK Argument for Plaintext Knowledge

Common input: CiphertextC and public keys.
Prover’s input: Messagem and randomizerR soC = E(m; R).

Argument: ChooseRm ← {0, 1}|m|+`e+`s andRR ← {0, 1}`R+`e+`s . Set
CR = E(Rm; RR).
Compute the challengee = hash(C, CR).

Set m = em + Rm, R = eR + RR.

The argument is(CR, m , R ).

Verification: Computee as above. VerifyCeCR = E( m ; R ).

Fig. 1.Plaintext Knowledge Argument

Proof. In the above argument, it is easy to see that we have completeness.
To argue zero-knowledge we picke at random. We choosem ←

{0, 1}|m|+`e+`s , R ← {0, 1}`R+`e+`s . We setCR = E( m ; R )C−e. Finally, we
program the random oracle to outpute on input(C,CR). We leave it to the reader to
see that this is indeed a good simulation of an argument.

To argue knowledge we consider an adversary that has made a query(C,CR) to
the random oracle. If it is in a state where it has noticeable probability of using it in
a valid argument, then we can upon seeing such an argument rewind it and feed it
with different random answers to the query. In expected polynomial time, we will get
another acceptable argument. We now have two acceptable argumentsCR, e, m , R

andCR, e′, m
′
, R

′
. With overwhelming probability, we havee 6= e′. From the ver-

ifying equations we haveCeCR = E( m ; R and Ce′CR = E( m
′; R

′
). This

meansCe−e′ = E( m − m
′; R − R

′
). From the root extraction property we can

extractµ = ( m − m
′)/(e− e′) andρ soC = E(µ; ρ). ut

Remark 1.We routinely use the notationa = ea + ra throughout the paper. As a
reminder one can think of it as puttinga in a box that hidesa. As we shall see, the ran-
dom factore allows us to make computations with the hidden variablea. For instance,
if an equation a b = e c holds with non-negligible probability overe, then the se-
cret variablesa, b, c satisfyc = ab with overwhelming probability. The box-notation is
intended to show on one hand that the variable is hidden, one the other hand indicate
that we can perform standard algebraic operations on the hidden variables and under
the hood the expected results come out. We hope this notation can serve as a helping
guide in complex zero-knowledge arguments using many hidden variables.

3 Limited Vote

In some elections, voters can vote multiple times, say,N times. It may be a require-
ment that they use all their votes on different candidates, or alternatively they may be
permitted to spend several votes on the same candidates. We will present a protocol for



the former case; it is easy to modify the protocol into one that admits multiple votes on
the same candidate.

The voter encodes his vote asV =
∑N

j=1 M ij , where0 ≤ i1 < · · · < iN < L.
He then encrypts the vote and has to form a NIZK argument that the plaintext is on the
right form. In other words, we wish to make the following argument of knowledge

SPK[(υ, ρ, ι1, · · · , ιN ) : C = E(υ; ρ) andυ =
N∑

j=1

M ιj and0 ≤ ι1 < · · · < ιN < L].

To make this argument of knowledge we actually use

SPK[(υ, ρ, α1, . . . , αN , β1, . . . , βN ) :

C = E(υ; ρ) andυ =
N∑

j=1

α2
j and

N∧
j=1

αj+1 = pαjβj ],

wherep is a prime soM = p2 andαN+1 = pL.
To see that the two arguments of knowledge are equivalent notice that

∧N
j=1 αj+1 =

pαjβj impliespαN |pL, . . . , pα1|α2. I.e., we can writeαN = ±pιN , · · · , α1 = ±pι1 ,
for some0 ≤ ι1 < · · · < ιN < L. The second equation gives us

υ =
N∑

j=1

α2
j =

N∑
j=1

(±pιj )2 =
N∑

j=1

M ιj .

The argument of knowledge is presented in Figure 2. In the protocol we argue
knowledge ofαj , ρaj

, βj , ρbj
,∆j , ρ∆j

so aj = eαj + ρaj , bj = eβj + ρbj , ∆j =

e∆j + ρ∆j
. We check that∆j = p aj bj − e aj+1 , i.e.,

e∆j + ρ∆j
= e2(pαjβj − αj+1) + e(pαjρbj

+ pβjρaj
− ρaj+1) + pρaj

ρbj
.

The idea is that with overwhelming probability overe this equation can only hold if
pαjβj − αj+1 = 0. Combine all these equalities to get

∧N
j=1 αj+1 = pαjβj .

Included in the argument is an argument of plaintext knowledge ofυ, ρV so V =
eυ+ρV , as well as∆, ρ∆ so ∆ = e∆+ρ∆. We check that∆ =

∑N
j=1 aj

2−e V ,

giving use∆ + ρ∆ = e2(
∑N

j=1 α2
j − υ) + e(2

∑N
j=1 αjρaj

− ρV ) +
∑N

j=1 ρ2
aj

. With

overwhelming probability overe this tells us thatυ =
∑N

j=1 α2
j . Finally, in the process

we also argue knowledge ofρ so C = E(υ; ρ) in a similar way to the argument of
plaintext knowledge in Section 2.4.

Theorem 2. In the random oracle model, the protocol in Figure 2 is a NIZK argu-
ment of knowledge forC encrypting a correctly formed limited vote. If the commitment
scheme is statistically hiding then the argument is statistical zero-knowledge.

Proof. It is straightforward to verify that the protocol is complete. It remains to argue
zero-knowledge and soundness and knowledge.



Zero-Knowledge Argument for Correctness of a Limited Vote

Common input: CiphertextC and public keys.
Prover’s input:0 ≤ i1 < · · · < iN < L andR ∈ {0, 1}`R such thatC = E(

∑N
j=1 M ij ; R).

Let αN+1 = pL. We prove correctness of the vote by producing

SPK[(υ, ρ, α1, . . . , αN , β1, . . . , βN ) :

C = E(υ; ρ) andυ =

N∑
j=1

α2
j and

N∧
j=1

αj+1 = pαjβj ].

Argument: Let V =
∑N

j=1 M ij , chooseRV ← {0, 1}`V +`e+`s , RR ← {0, 1}`R+`e+`s

and setCR = E(RV ; RR).
Let aj = pij , bj = pij+1−ij−1, whereiN+1 = L. Let raN+1 = 0 and choose
ra1 , . . . , raN , rb1 , . . . , rbN ← {0, 1}`V /2+`e+`s . Let ∆j = pajrbj + pbjraj − raj+1

and∆ = 2
∑N

j=1 ajraj −RV . Setc = com(a1, b1, ∆1, . . . , aN , bN , ∆N , ∆; r). Set

cr = com(ra1 , rb1 , pra1rb1 , . . . , raN , rbN , praN rbN ,
∑N

j=1 r2
aj

; rr).

Compute the challenge ase← hash(C, CR, c, cr).

Set V = eV + RV = e
∑N

j=1 M ij + RV and R = eR + RR.

Set aj = eaj + raj = epij + raj , bj = ebj + rbj = epij+1−ij−1 + rbj and

r = er + rr,

The argument is(CR, c, cr, V , R , a1 , b1 ,. . ., aN , bN , r ).

Verification: Computee as above. LetaN+1 = epL and set ∆j = p aj bj − e aj+1

and ∆ =
∑N

j=1 aj
2 − e V .

Verify thatCeCR = E( V ; R ) and

cecr = com( a1 , b1 , ∆1 , . . . , aN , bN , ∆N , ∆ ; r ).

Fig. 2.Limited Vote Argument.

Zero-knowledge.To simulate an argument we pick a challengee← {0, 1}`e at random.
Given the challengee, we make a simulation like this. We pickV ← {0, 1}`V +`e+`s

and R ← {0, 1}`R+`e+`s . We pick a1 , b1 , . . . , aN , bN ← {0, 1}`V /2+`e+`s

and r ← {0, 1}`r+`e+`s . We set ∆j = p aj bj − e aj+1 , using aN+1 = epL.

We set ∆ =
∑N

j=1 aj
2 − e V . We setCR = E( V ; R )C−e. We setc ←

com(0, . . . , 0) andcr = com( a1 , b1 , ∆1 , . . . , aN , bN , ∆N , ∆ ; r )c−e. Fi-
nally, we program the random oracle to returne when queried on(C,CR, c, cr).

To argue that the simulated argument is indistinguishable from a real argument,
consider the following hybrid argument. Leti1, . . . , iN be the chosen candidates and
defineiN+1 = L, aj = pij , bj = pij+1−ij−1. We proceed as in the simulation ex-



cept when computingc. We setRV = V − e
∑N

j=1 M ij , raj
= aj − eaj , rbj =

bj − ebj . We let aN+1 = pL and ∆j = pajrbj + pbjraj − aj+1. Compute

c ← com(a1, b1,∆1, . . . , aN , bN ,∆N , 2
∑N

j=1 ajraj
− RV ). The rest of the hybrid

argument is carried out as in the simulation.
The hybrid argument is statistically indistinguishable from a real argument, all that

is changed is the order in which we choose the elements. On the other hand, the only
difference from a simulated argument is in the computation of the commitmentc. The
commitment scheme’s hiding property shows that the hybrid argument is indistinguish-
able from a simulated argument of knowledge. Moreover, if the commitment scheme is
statistically hiding then the hybrid argument is statistically indistinguishable from the
simulated argument of knowledge.

Soundness and knowledge.Suppose an adversary produces a valid argument
for ciphertext C containing a valid limited vote. We wish to extract a witness
(υ, ρ, ι1, . . . , ιN ). To do so we rewind the adversary to the point where it queries
the random oracle withC,CR, c, cr. We then give it random challenges until we
get a new acceptable argument. This takes expected polynomial time. Let us call
the two acceptable arguments(CR, c, cr, e, V , R , a1 , b1 , . . . , aN , bN , r )

and (CR, c, cr, e
′, V

′
, R

′
, a1

′
, b1

′
, . . . , aN

′
, bN

′
, r

′). We compute the cor-

responding∆1 , . . . , ∆N , ∆ and ∆1

′
, . . . , ∆N

′
, ∆

′
as in the verification.

Since the arguments are acceptable we haveCeCR = E( V ; R ) andCe′CR =

E( V
′
; R

′
). This gives usCe−e′ = E( V − V

′
; R − R

′
). With overwhelming

probability we havee 6= e′ and using the root extraction property of the cryptosystem
we can extract(υ, ρ) soC = E(υ; ρ).

It remains to argue thatυ is a message on the form
∑N

j=1 M ιj for

0 ≤ ι1 < · · · < ιN < L. From ce−e′ = com( a1 − a1
′
, b1 −

b1

′
, ∆1 − ∆1

′
, . . . , aN − aN

′
, bN − bN

′
, ∆N − ∆N

′
, ∆ − ∆

′
; r −

r
′) we get an opening(α1, β1,∆1, . . . , αN , βN ,∆N ,∆, ρc) of c. From cr =

com( a1 , b1 , ∆1 , . . . , aN , bN , ∆N ∆ ; r )c−e we then get an opening

(ρa1 , ρb1 , ρ∆1 , . . . , ρaN
, ρbN

, ρ∆N
, ρ∆, ρr) of cr. Moreover, defineρV = V −

eυ, ρR = R − eρ and we haveCR = E(ρV ; ρR).
Consider now an adversary having noticeable probability of making an acceptable

argument of knowledge usingC,CR, c, cr. It must useaj = eαj + ρaj
, bj = eβj +

ρbj
, ∆j = e∆j + ρ∆j

. We have equations∆j = p aj bj − e aj+1 , where by

definition aN+1 = eαN+1 = epL. This meanse2(pαjβj − αj+1) + e(pαjρbj +
βjρaj

− ρaj+1 −∆j) + pρaj
ρbj
− ρ∆j

= 0. With overwhelming probability over the

choice ofe we then have
∧N

j=1 αj+1 = pαjβj . This meanspα1|α2, . . . , pαN |pL, so
there exists0 ≤ ι1 < · · · < ιN < L soαj = ±pιj .

Likewise, if the adversary has noticeable probability of making an acceptable argu-
ment of knowledge withC,CR, c, cr it must use∆ = e∆ + ρ∆ and V = eυ + ρV .



We verify that ∆ =
∑N

j=1 aj
2−e V , i.e.,e2(

∑N
j=1 α2

j−υ)+e(
∑N

j=1 αjρaj
−ρV −

∆) +
∑N

j=1 ρ2
aj
− ρ∆ = 0. With overwhelming probability overe we must therefore

have

υ =
N∑

j=1

α2
j =

N∑
j=1

(±pιj )2 =
N∑

j=1

M ιj .

ut

4 Approval Vote

In approval voting the voter can vote for as many different candidates as he likes. The
advantage of this kind of voting system is that the voter does not risk wasting votes by
selecting his preferred candidate. Compare this to other voting systems where it may be
foolish to cast a vote for a candidate who has little chance of winning. In this kind of
election the number of votes cast by the voter may be anywhere between0 andL.

Defineai = 1 if the voter wishes to vote for candidatei andai = 0 if he does
not. The plaintext vote isV =

∑L−1
i=0 aiM

i. The voter encrypts this to get a ciphertext
C = E(

∑L−1
i=0 aiM

i;R). He now needs to prove that indeed the plaintext is on the
right form.

We commit toa0, . . . , aL−1. In order to prove that the hiddenai ∈ {0, 1} we use
the fact thatx2 ≥ x for any integer, obtaining only equality ifx = 0 or x = 1. This
means that if we can prove

∑L−1
i=0 (a2

i − ai) = 0, then allai’s belong to{0, 1}.
Using standard techniques, we get out hidden variablesai = eai + rai

as well as

∆ = e∆ + r∆, where∆ is a committed value. In the verification, we end up with an

equation ∆ =
∑L−1

i=0 ( ai
2 − e ai ). The left hand side is a degree 1 polynomial in

e and the right hand side is a degree 2 polynomial ine. With overwhelming probability
overe, the equation implies

∑L−1
i=0 (a2

i − ai) = 0 as we wanted.
The other parts of the NIZK argument are a proof of knowledge of the plaintextV ,

as well as an argument that this plaintext is constructed as described above using the
ai’s that we committed to.

Theorem 3. In the random oracle model, the protocol in Figure 3 is a NIZK argument
of knowledge forC containing a correctly formed approval vote. If the commitment
scheme is statistically hiding then the argument is statistical zero-knowledge.

Proof. It is straightforward to verify completeness. Left is to argue zero-knowledge as
well as soundness and knowledge.

Zero-knowledge.The simulator picks a challengee ← {0, 1}`e at random. Given
challengee, we simulate an argument of knowledge as follows. We pickR ←
{0, 1}`R+`e+`s , a0 , . . . , aL−1 ← {0, 1}1+`e+`s and r ← {0, 1}`r+`e+`s at ran-

dom and compute∆ =
∑L−1

i=0 ( ai
2 − e ai ) and V =

∑L−1
i=0 ai M i. We

set CR = E( V ; R )C−e. We form c ← com(0, . . . , 0) and computecr =



Zero-Knowledge Argument for Correctness of an Approval Vote

Common input: CiphertextC and public keys.
Private input:a0, . . . , aL−1 ∈ {0, 1} andR ∈ {0, 1}`R such thatC = E(

∑L−1
i=0 aiM

i; R).

We prove correctness of the vote by producing

SPK[(υ, ρ, α0, . . . , αL−1) : C = E(υ; ρ) andυ =

L−1∑
i=0

αiM
i and

L−1∑
i=0

(α2
i − αi) = 0].

Argument: Choosera0 , . . . , raL−1 ← {0, 1}1+`e+`s and let∆ =
∑L−1

i=0 (2ai − 1)rai .
Chooser ← {0, 1}`r and setc = com(a0, . . . , aL−1, ∆; r). Choose
rr ← {0, 1}`r+`e+`s and setcr = com(ra0 , . . . , raL−1 ,

∑L−1
i=0 r2

ai
; rr). Let

RV =
∑L−1

i=0 raiM
i, chooseRR ← {0, 1}`R+`e+`s and setCR = E(RV ; RR).

Compute a challengee← hash(C, CR, c, cr).

Set R = eR + RR. Set ai = eai + rai and r = er + rr.

The argument is(CR, c, cr, R , a0 , . . . , aL−1 , r ).

Verification: Computee as above. DefineV =
∑L−1

i=0 ai M i and

∆ =
∑L−1

i=0 ( ai
2 − e ai ).

Verify CeCR = E( V ; R ) andcecr = com( a0 , . . . , aL−1 , ∆ ; r ).

Fig. 3.Approval Vote Argument.

com( a0 , . . . , aL−1 , ∆ ; r )c−e. The simulator now programs the random oracle

to returne when queried on(C,CR, c, cr).
To argue that the simulated argument is indistinguishable from a real argument,

consider the following hybrid argument. We proceed as in the simulation except
when generatingc. Here we use the realai’s and setrai = ai − eai. We set

c ← com(a0, . . . , aL−1,
∑L−1

i=0 (2ai − 1)rai
). We generate the rest of the hybrid ar-

gument as in the simulation.
The hybrid argument is statistically indistinguishable from a real argument. On the

other hand, the only difference from a simulated argument is in the generation of the
commitmentc. By the hiding property of the commitment scheme, we get indistin-
guishability between the hybrid argument and the simulated argument. Moreover, if
the commitment scheme is statistically hiding then the hybrid argument is statistically
indistinguishable from a simulated argument.

Soundness and knowledge.Consider an adversary that produces an acceptable
argument for a ciphertextC containing an approval vote. We wish to extract
a witness (υ, ρ, α0, . . . , αL−1). We rewind the adversary to the point where it
queries the random oracle withC,CR, c, cr, and feed it with different challenges
e′ until we get another acceptable argument. This takes expected polynomial



time. Call the two acceptable arguments(CR, c, cr, e, R , a0 , . . . , aL−1 , r ) and

(CR, c, cr, e
′, R

′
, a0

′
, . . . , aL−1

′
, r

′). We compute∆ , V and ∆
′
, V

′
as in

the verification. We haveCe−e′ = E( V − V
′
; R − R

′
). With overwhelming

probabilitye 6= e′ and we can use the root extraction property of the cryptosystem to
find (υ, ρ) soC = E(υ; ρ).

The remaining question is whetherυ =
∑L−1

i=0 αiM
i, whereα0, . . . , αL−1 ∈

{0, 1}. From ce−e′ = com( a0 − a0
′
, . . . , aL−1 − aL−1

′
, ∆ − ∆

′
; r −

r
′) we can extract an opening(α0, . . . , αL−1,∆, ρc) of c. Then ρa0 = a0 −

eα0, . . . , ρaL−1 = aL−1 −eαL−1, ρ∆ = ∆ −e∆, ρr = r −eρc constitute an open-

ing of cr. We also haveρV = V − eυ, ρR = R − eρ satisfyingCR = E(ρV ; ρR).
If the adversary has noticeable chance of producing an acceptable argument from

query C,CR, c, cr it must therefore on a random challengee use ai = eαi +

ρai
, ∆ = e∆ + ρ∆, V = eV + ρV . We verify ∆ =

∑L−1
i=0 ( ai

2 − e ai ). It
can be rewritten as

e∆ + ρ∆ = e2
L−1∑
i=0

(α2
i − αi) + e

L−1∑
i=0

(2αiρai
− ρai

) +
L−1∑
i=0

ρ2
ai

.

Only if the two polynomials ine are identical can the adversary have noticeable chance
of success, so in particular

∑L−1
i=0 (α2

i − αi) = 0. This impliesαi ∈ {0, 1}. The sec-

ond equation saysV =
∑L−1

i=0 ai M i, which meanseυ + ρV = e
∑L−1

i=0 αiM
i +∑L−1

i=0 ρai
M i. We concludeυ =

∑L−1
i=0 αiM

i. ut

Limited vote with largeN . It is possible to modify the protocol into an NIZK argument
of correctness of an approval vote with the additional condition that

∑L−1
i=0 αi = N for

some knownN . The addition can be made at low computational cost. This variation
can be used as an alternative to the limited vote argument from the previous section.

The ai ’s are of small size, while the limited vote argument may use very large
exponents in large elections with many candidates. The limited vote argument is thus
suitable whenN is small in comparison withL, while for largeN it is better to use the
variation of the approval vote argument.

5 Divisible Vote

Consider a shareholder election where each share gives the right to cast one vote. It
may be impractical for large shareholders to cast multiple single votes, or even to use
the limited vote technique, since it forces them to make a huge number of encryptions.
We prefer proving in a direct manner that the ciphertext contains a vote on the form∑L−1

i=0 viM
i, wherevi is the number of votes on candidatei.

In [IMO03] they call this divisible voting and offer zero-knowledge arguments for
correctness of a divisible vote. We suggest an alternative NIZK argument that takes full
advantage of integer commitments. In comparison with [IMO03] we save a factorlog N



in complexity, whereN is the number of votes the voter has, and we benefit from using
integer commitments instead of encryptions.

The idea is the following. We commit tov0, . . . , vL−1. We prove that indeed the
ciphertext contains

∑L−1
i=0 viM

i. We also prove that all these elementsv0, . . . , vL−1

are non-negative. Finally, we prove that their sum isN .
To prove that an element is positive we could use Boudot’s argument [Bou02] or we

could use [LAN02]’s argument wherevi is proven to be a sum of four squares. We offer
a variation over the latter idea. It is a well-known fact from number theory that the only
numbers that cannot be written as the sum of three squares are on the form4n(8k + 7).
This means4vi +1 can be written as a sum of three squares. Obviously, writing4vi +1
as the sum of three squares implies thatvi is non-negative.

Rabin and Shallit [RS86] offer an efficient and simple algorithm for finding three
such squares, for sufficiently large numbers. In our case, the numbers are relatively
small though; in few elections do voters have more than a million votes. It is not hard to
change their algorithm into something that is suitable for small numbers though, since
for small numbers factorization is easy. Wishing to write4vi + 1 = a2

i + b2
i + d2

i the
strategy is to guess an evenai at random, so4vi + 1 − a2

i is a product of primes on
the form1 mod 4. We then write each such prime as the sum of two squares, using
Cornacchia’s algorithm, see Section 1.5.2 of [Coh95]. Finally, we use the fact that if
X = a2 + b2 andY = c2 + d2, thenXY = (ac + bd)2 + (ad− bc)2 to build upbi, di

so4vi + 1− a2
i = b2

i + d2
i .

Theorem 4. In the random oracle model, the protocol in Figure 4 is a NIZK argument
of knowledge for a ciphertext containing a specified numberN votes. If the commitment
scheme is statistically hiding then the argument is statistical zero-knowledge.

Proof. It is straightforward to verify completeness. Left is to argue zero-knowledge and
soundness and knowledge.

Zero-knowledge.The simulator pickse ← {0, 1}`e at random. Given challengee,
we simulate as follows. We pickvi , ai , bi , di ← {0, 1}log N+`e+`s and compute

∆i = e(4 vi + e) − ai
2 − bi

2
− di

2
. Set V =

∑L−1
i=0 vi M i. Set c ←

com(0, . . . , 0). Let r∑ =
∑L−1

i=0 vi − eN . Pick r ← {0, 1}`r+`e+`s and R ←
{0, 1}`R+`e+`s . Setcr = com( v0 , . . . , ∆L−1 ; r )c−e andCR = E( V ; R )C−e.

To argue that the simulated argument is indistinguishable from a real argument, we
consider the following hybrid argument. We compute everything as in the simulation
except when forming the commitmentc. Here we findai, bi, di so4vi+1 = a2

i +b2
i +d2

i

in the same manner as we do in a real argument. We computervi
= vi − evi, rai

=

ai −eai, rbi
= bi −ebi, rdi

= di −edi. Let∆i = 4rvi
−2airai

−2birbi
−2dirdi

.
We setc ← com(v0, a0, b0, d0,∆0, . . . , vL−1, aL−1, bL−1, dL−1,∆L−1). We proceed
as when creating a simulated argument. Finally, we program the random oracle to return
e on query(C,CR, c, cr, r∑).

The hybrid argument is statistically indistinguishable from a real argument, since
the only difference is in the order in which we pick the elements. On the other hand,



Zero-Knowledge Argument for Correctness of a Divisible Vote

Common input: CiphertextC, a number of votesN and public keys.
Private input:0 ≤ v0, . . . , vL−1 andR ∈ {0, 1}`R such thatN =

∑L−1
i=0 vi and

C = E(
∑L−1

i=0 viM
i; R).

We prove correctness of the vote by producing

SPK[(υ, ρ, υ0, α0, β0, δ0, . . . , υL−1, αL−1, βL−1, δL−1) : C = E(υ; ρ) and

υ =

L−1∑
i=0

υiM
i and

L−1∧
i=0

4υi + 1 = α2
i + β2

i + δ2
i andN =

L−1∑
i=0

υi].

Argument: Findai, bi, di such that4vi + 1 = a2
i + b2

i + d2
i . Choose

rvi , rai , rbi , rdi ← {0, 1}log N+`e+`s . Let ∆i = 4rvi − 2airai − 2birbi − 2dirdi .
Chooser ← {0, 1}`r and setc = com(v0, a0, b0, d0, ∆0, . . .,
vL−1, aL−1, bL−1, dL−1, ∆L−1; r). Chooserr ← {0, 1}`r+`e+`s and set
cr = com(rv0 , ra0 , rb0 , rd0 ,−r2

a0 − r2
b0 −

r2
d0 , . . . , rvL−1 , raL−1 , rbL−1 , rdL−1 ,−r2

aL−1 − r2
bL−1

− r2
dL−1

; rr).

Let RV =
∑L−1

i=0 rviM
i and chooseRR ← {0, 1}`R+`e+`s . SetCR = E(RV ; RR).

Setr∑ =
∑L−1

i=0 rvi .

Compute the challenge ase← hash(C, CR, c, cr, r∑).

Let R = eR + RR. Let

vi = evi + rvi , ai = eai + rai , bi = ebi + rbi , di = edi + rdi and

r = er + rr.

The argument is

(CR, c, cr, r∑, R , v0 , a0 , b0 , d0 , . . . , vL−1 , aL−1 , bL−1 , dL−1 , r ).
Verification: Compute the challengee as in the argument. Define

∆i = e(4 vi + e)− ai
2 − bi

2
− di

2
. Set V =

∑L−1
i=0 vi M i.

Verify CeCR = E( V ; R ), cecr = com( v0 , . . . , ∆L−1 ; r ) and∑L−1
i=0 vi = eN + r∑.

Fig. 4.Divisible Vote Argument.

the only difference between the hybrid argument and the simulated argument is in the
formation ofc. By the hiding property of the commitment scheme, we therefore get that
the hybrid argument is indistinguishable from a simulated argument. If the commitment
scheme is statistically hiding then the hybrid argument and the simulated argument are
statistically indistinguishable.

Soundness and knowledge.Suppose the adversary outputs an acceptable ar-
gument for C containing a divisible vote. We want to extract a witness
(υ, ρ, υ0, . . . , δL−1). We start by rewinding the adversary to the point where it queries
(C,CR, c, cr, r∑). We then repeatedly feed it with random challenges and run it



until we get another acceptable argument. This takes expected polynomial time.
We call the two accepting arguments(CR, c, cr, r∑, e, R , v0 , . . . , dL−1 , r ) and

(CR, c, cr, r∑, e′, R
′
, v0

′
, . . . , dL−1

′
, r

′). Compute ∆i , V , ∆i

′
, V

′
as in

the verification. Since the arguments are acceptable we haveCe−e′ = E( V −
V

′
; R − R

′
). With overwhelming probability we havee 6= e′ and we can use

the root extraction property of the cryptosystem to extract(υ, ρ) soC = E(υ; ρ).
From ce−e′ = com( v0 − v0

′
, . . . , ∆L−1 − ∆L−1

′
; r −

r
′) we can use the root extraction property to get an opening

(υ0, α0, β0, δ0,∆0, . . . , υL−1, αL−1, βL−1, δL−1,∆L−1, ρc) of c. Defining
ρvi

= vi − eυi, . . . , ρ∆L−1 = ∆L−1 − e∆L−1, ρr = r − eρc, we get an

opening ofcr. SettingρV = V − eυ, ρR = R − eρ we getCR = E(ρV ; ρR).
For any randomly chosen challengee on which the adversary has noticeable chance

of creating a successful argument we therefore havev0 = eυ0 + ρv0 , . . . , ∆L−1 =

e∆L−1 + ρ∆L−1 and V = eυ + ρV . Consider first the equalityeN + r∑ =∑L−1
i=0 vi = e

∑L−1
i=0 υi +

∑L−1
i=0 ρvi

. With overwhelming probability overe this does

not hold unlessN =
∑L−1

i=0 υi as we wanted.

Next, consider the equalities∆i = e(4 vi + e)− ai
2− bi

2
− di

2
, which can

be rewritten as

e2(4υi+1)+e4ρvi
= e2(α2

i +β2
i +δ2

i )+e(2αiρai
+2βiρbi

+2δiρdi
+∆i)+ρ2

ai
+ρ2

bi
+ρ2

di
+ρ∆i

.

This has negligible chance of being true unless the two polynomials ine are identical,
in particular4υi + 1 = α2

i + β2
i + δ2

i .
Finally, we have V =

∑L−1
i=0 vi M i, which can be rewritten aseυ + ρV =

e
∑L−1

i=0 υiM
i +

∑L−1
i=0 ρvi

M i. With overwhelming probability overe this can only
happen ifυ =

∑L−1
i=0 υiM

i. ut

6 Borda Vote

In Borda voting, voters cast weighted votes. The worst candidate gets 1 vote, the second
worst 2 votes, and so forth. A valid vote is therefore on the form

∏L
i=1 π(i)M i−1 for

some permutationπ ∈ ΣL. We will suggest an efficient argument for correctness of
such a vote.5

To prove correctness of a Borda vote corresponding to permutationπ we form a
commitmentc ← com(π(1), . . . , π(L)). Using the Fiat-Shamir heuristic on an argu-
ment for correctness of a shuffle [Gro03,Fur04a] we can demonstrate thatc has been
correctly formed. In [Gro03] there is a shuffle argument for known messages. This

5 Interestingly, it turns out that in Borda voting we do not need an integer commitment scheme;
we can use a commitment scheme based on a group of known orderq. We just need to take
care thatq is large enough to avoid overflows, theai ’s in the protocol should come out as
unreduced integers.



means we can take advantage of the fact that we know that the messages are known to
be 1, . . . , L to obtain greater efficiency. Once we have formed the commitment and
demonstrated that the content is indeed a permutation of1, . . . , L, then it is pretty
straightforward to prove knowledge of the plaintext of the encrypted vote as well as
show that the content is on the form described above.

Zero-Knowledge Argument for Correctness of a Borda Vote

Common input: CiphertextC and public keys.
Private input:π ∈ ΣL andR ∈ {0, 1}`R such thatC = E(

∑L
i=1 π(i)M i−1; R).

We argue correctness of the vote by making the following signature of knowledge

SPK[(υ, ρ, π ∈ ΣL, α1, . . . , αL) :

C = E(υ; ρ) andυ =

L∑
i=1

αiM
i−1 and

L∧
i=1

αi = π(i)]

Argument: Defineai = π(i), chooser ← {0, 1}`r and setc = com(a1, . . . , aL; r).
In addition make a signature of knowledge ofc being a commitment to a permutation of
1, . . . , L. I.e., set

p← SPK[(ρc, π ∈ ΣL) : c = com(π(1), . . . , π(L); ρc)].

Choosera1 , . . . , raL ← {0, 1}log L+`e+`s andrr ← {0, 1}`r+`e+`s and set
cr = com(ra1 , . . . , raL ; rr).
DefineRV =

∑L
i=1 raiM

i−1. ChooseRR ← {0, 1}`R+`e+`s and set
CR = E(RV ; RR).

Compute a challenge ase← hash(C, CR, c, cr, p).

Set R = eR + RR. Set ai = eai + rai = eπ(i) + rai and r = er + rr.

The argument is(CR, c, cr, R , a1 , . . . , aL , r , p).
Verification: Verify the shuffle argumentp. Computee as in the argument. Set

V =
∑L

i=1 ai M i−1

Verify CeCR = E( V ; R ) andcecr = com( a1 , . . . , aL ; r ).

Fig. 5.Borda Vote Argument.

Theorem 5. In the random oracle model, the protocol in Figure 5 is a NIZK argument
of knowledge ofC containing a correctly formed Borda vote. If the commitment scheme
is statistically hiding and the shuffle argument is statistical zero-knowledge then the
argument is statistical zero-knowledge.

Proof. It is straightforward to verify that the protocol is complete. Remaining is to
argue zero-knowledge and soundness and knowledge.



Zero-knowledge.We pick a challengee ← {0, 1}`e at random. Given challengee,
we simulate an argument as follows. We picka1 , . . . , aL ← {0, 1}log L+`e+`s ,

r ← {0, 1}`r+`e+`s and R ← {0, 1}`R+`e+`s . We setc ← com(0, . . . , 0). We

computecr = com( a1 , . . . , aL ; r )c−e andCR = E(
∑L

i=1 ai M i−1; R )C−e.
We simulate the shuffle-argumentp for c containing a permutation of1, . . . , L. Finally,
we program the random oracle to returne on query(C,CR, c, cr, p).

To argue that the simulated argument is indistinguishable from a real argument, con-
sider the following hybrid argument. We setc ← com(π(1), . . . , π(L)) and generate
the rest of the hybrid argument as in the simulation.

By the zero-knowledge property of the shuffle argument, the hybrid argument is
indistinguishable from a real argument. If the shuffle argument is statistical zero-
knowledge, then the hybrid argument is statistically indistinguishable from a real ar-
gument. On the other hand, the only difference between a hybrid argument and a simu-
lated argument is in the generation of the commitmentc. By the hiding property of the
commitment scheme, we get indistinguishability between the hybrid argument and the
simulated argument. Moreover, if the commitment scheme is statistically hiding then
the hybrid argument is statistically indistinguishable from a simulated argument.

Soundness and knowledgeSuppose an adversary produces an acceptable ar-
gument. We wish to extract a witness(υ, ρ, π, α1, . . . , αL). We rewind the
adversary to the queryC,CR, c, cr, p and give it random challenges un-
til we get an acceptable argument. This takes expected polynomial time.
Call the two acceptable arguments(CR, c, cr, e, R , a1 , . . . , aL , r , p) and

(CR, c, cr, e
′, R

′
, a1

′
, . . . , aL

′
, r

′
, p).

We computeV , V
′
as in the verification. We haveCe−e′ = E( V − V

′
; R −

R
′
). With overwhelming probabilitye 6= e′ and we can use the root extraction prop-

erty of the cryptosystem to findυ, ρ soC = E(υ; ρ).
From the shuffle-argument we extract a permutationπ and a randomizerρc such

that c = com(π(1), . . . , π(L); ρc). Correspondingly we get an opening ofcr =
com(ρa1 , . . . , ρaL

; ρr). We thus havea1 = eπ(1)+ρa1 , . . . , aL = eπ(L)+ρaL
. We

also haveV = eυ+ρV . This meanseυ+ρV = e
∑L

i=1 π(i)M i−1 +
∑L

i=1 raiM
i−1.

This leads us to conclude thatυ =
∑L

i=1 π(i)M i−1. ut
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