Disproving Inductive Entailments in
Separation Logic via Base Pair Approximation

James Brotherston! Nikos Gorogiannis?

lucL

2Middlesex University

TABLEAUX’15, Wroclaw, 23 Sept 2015

1/ 16

Disproof, in general

e Disproof is the problem of showing that an entailment
AF B (in some undecidable logic) is not valid.

2/ 16

Disproof, in general

e Disproof is the problem of showing that an entailment
AF B (in some undecidable logic) is not valid.

e Application in proof search: backtrack from invalid
subgoals.

2/ 16

Disproof, in general

e Disproof is the problem of showing that an entailment
AF B (in some undecidable logic) is not valid.

e Application in proof search: backtrack from invalid
subgoals.

e Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

2/ 16

Disproof, in general

Disproof is the problem of showing that an entailment
AF B (in some undecidable logic) is not valid.

Application in proof search: backtrack from invalid
subgoals.

Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

Precision usually costs.

2/ 16

Disproof, in general

Disproof is the problem of showing that an entailment
AF B (in some undecidable logic) is not valid.

Application in proof search: backtrack from invalid
subgoals.

Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

Precision usually costs.

Our setting: symbolic-heap separation logic with inductive
definitions, widely used in program verification.

2/ 16

Symbolic-heap separation logic

e Terms t are either variables z,y, z ... or the constant nil.

3/ 16

Symbolic-heap separation logic

Terms ¢ are either variables x, ¥, z ... or the constant nil.

Spatial formulas F' and pure formulas 7 given by:
F:i=emp|laxz—t|Pt|FxF Tu=t=1t|t#t

(where P a predicate symbol, t a tuple of terms).

— (“points-to”) denotes an individual pointer to a record
in the heap.

* (“separating conjunction”) demarks domain-disjoint
heaps.

3/ 16

Symbolic-heap separation logic

Terms ¢ are either variables x, ¥, z ... or the constant nil.

Spatial formulas F' and pure formulas 7 given by:
F:i=emp|laxz—t|Pt|FxF Tu=t=1t|t#t

(where P a predicate symbol, t a tuple of terms).

— (“points-to”) denotes an individual pointer to a record
in the heap.

* (“separating conjunction”) demarks domain-disjoint
heaps.

Symbolic heaps A given by Ix. Il : F, for II a set of pure
formulas.

3/ 16

Inductive definitions in separation logic

e Inductive predicates defined by a set of rules of form:
A= Pt

(We typically suppress the existential quantifiers in A.)

4/ 16

Inductive definitions in separation logic

e Inductive predicates defined by a set of rules of form:
A= Pt

(We typically suppress the existential quantifiers in A.)

e E.g., linked list segments with root x and tail element y
given by:
emp = lIszx
r#nl:x—zxlszy = lIszy

4/ 16

Inductive definitions in separation logic

e Inductive predicates defined by a set of rules of form:
A= Pt

(We typically suppress the existential quantifiers in A.)

e E.g., linked list segments with root x and tail element y
given by:
emp = lIszx
r#nl:x—zxlszy = lIszy

e E.g., binary trees with root x given by:

x=nil:emp = btz
x#£nil:x— (y,z)xbtyxbtz = btz

4/ 16

Semantics

e Models are stacks s : Var — Val paired with heaps
h : Loc —g, Val. o is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

5/ 16

Semantics

Models are stacks s : Var — Val paired with heaps
h : Loc —g, Val. o is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

Forcing relation s, h = A given by

s,hlEe ti1 = (F)t2 &
s,h Eo emp &
s,hEs z—t =
s,h Ea Pit =
s, h e Fiox Fy &

¢

s,hlEe Jz. I1: F

s(tr) = (#)s(t2)

h=e

dom(h) = {s(x)} and h(s(x)) = s(t)
(s(),h) € [P]®

3h1,he. h=hiohy and s, h1 o Fi
and s, he FEo Fo

Iv e Val'”l. s[z — v], h Ee 7 for all
m €Il and s[z — v],h EFs F

5/ 16

Disproof in our logic

e Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

6/ 16

Disproof in our logic

e Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

e To disprove A+ B, we need a countermodel (s, h) s.t.
s,h =9 A but s,h [~e B.

6/ 16

Disproof in our logic

e Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

e To disprove A+ B, we need a countermodel (s, h) s.t.
s,h =9 A but s,h [~e B.

e Model checking has only very recently been shown
decidable, in fact EXPTIME-complete [Brotherston et al.,
submitted, 2015].

6/ 16

Disproof in our logic

Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

To disprove A F B, we need a countermodel (s, h) s.t.
s,h =9 A but s,h [~e B.

Model checking has only very recently been shown
decidable, in fact EXPTIME-complete [Brotherston et al.,
submitted, 2015].

Enumerating and checking all possible counter-models is
complete, but complicated and, I suspect, ridiculously
expensive.

6/ 16

Base pairs [Brotherston et al., CSL-LICS’1/]

e For any symbolic heap A, we can compute an
overapproximation, base®(A).

7/ 16

Base pairs [Brotherston et al., CSL-LICS’1/]

e For any symbolic heap A, we can compute an
overapproximation, base®(A). Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in F'V(A) that must be allocated, and
2. the (dis)equalities over FV(A) U {nil} that must hold.

7/ 16

Base pairs [Brotherston et al., CSL-LICS’1/]

e For any symbolic heap A, we can compute an
overapproximation, base®(A). Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in F'V(A) that must be allocated, and
2. the (dis)equalities over FV(A) U {nil} that must hold.

e E.g., recall linked list segment predicate 1s:

emp = lIszx
r#nl:xz—zxlszy = lIszy

7/ 16

Base pairs [Brotherston et al., CSL-LICS’1/]

e For any symbolic heap A, we can compute an
overapproximation, baseq’(A). Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in F'V(A) that must be allocated, and
2. the (dis)equalities over FV(A) U {nil} that must hold.

e E.g., recall linked list segment predicate 1s:

emp = lIszx
r#nl:xz—zxlszy = lIszy

We obtain two base pairs:

base®(Iszy) = {(@,}{m: }),

7/ 16

Connecting base pairs and models

e Base pairs are formally related to models as follows.

8/ 16

Connecting base pairs and models

e Base pairs are formally related to models as follows.

Lemma (1)

Given (V,1I) € base®(A), a stack s s.t. s =11, and finite set
W C Loc\ s(V), then 3h. s,h |Eo A and W Ndom(h) = (.

8/ 16

Connecting base pairs and models

e Base pairs are formally related to models as follows.

Lemma (1)

Given (V,1I) € base®(A), a stack s s.t. s =11, and finite set
W C Loc\ s(V), then 3h. s,h |Eo A and W Ndom(h) = (.

Lemma (2)
If s,h =¢ B, there is a base pair (V,1) € base®(B) such that
s(V) C dom(h) and s = 1I1.

8/ 16

Connecting base pairs and models

e Base pairs are formally related to models as follows.

Lemma (1)

Given (V,1I) € base®(A), a stack s s.t. s =11, and finite set
W C Loc\ s(V), then 3h. s,h |Eo A and W Ndom(h) = (.

Lemma (2)
If s,h =¢ B, there is a base pair (V,1) € base®(B) such that
s(V) C dom(h) and s = 1I1.

e Consequently, we can use Lemma 1 to construct a model of
A and then Lemma 2 to show it cannot be a model of B.

8/ 16

Disproof “game”

Game (1)

o Given A+ B. a move by Player 1 is a choice of:
o a base pair (X,T1) € base®(A);
e a stack s such that s =1I; and
e q finite set W C Loc\ s(X).

9/ 16

Disproof “game”

Game (1)

o Given A+ B. a move by Player 1 is a choice of:
o a base pair (X,T1) € base®(A);
e a stack s such that s =1I; and
e q finite set W C Loc\ s(X).
o A response by Player 2 is a base pair (Y, 0) € base®(B)
such that s = © and W Ns(Y) = 0.

9/ 16

Disproof “game”

Game (1)

o Given A+ B. a move by Player 1 is a choice of:
o a base pair (X,T1) € base®(A);
e a stack s such that s =1I; and
e q finite set W C Loc\ s(X).

o A response by Player 2 is a base pair (Y, 0) € base®(B)
such that s = © and W Ns(Y) = 0.

o A mowve is winning if there is no possible response.

9/ 16

Disproof “game”

Game (1)

o Given A+ B. a move by Player 1 is a choice of:
o a base pair (X,T1) € base®(A);
e a stack s such that s =1I; and
e q finite set W C Loc\ s(X).

o A response by Player 2 is a base pair (Y, 0) € base®(B)
such that s = © and W Ns(Y) = 0.

o A mowve is winning if there is no possible response.

Proposition
If Player 1 has a winning move for At B then it is invalid.

9/ 16

Refined disproof “game”

Game (2)

e Given A+ B, a move by Player 1 is a choice of:
e a base pair (X,11) € base®(A), and
e q partition o of FV(A)U FV(B) U {nil} s.t. o =11

10/ 16

Refined disproof “game”

Game (2)

e Given A+ B, a move by Player 1 is a choice of:
e a base pair (X,11) € base®(A), and
e a partition o of FV(A) U FV(B)U{nil} s.t. o ETI.
o A response by Player 2 is a base pair (Y,0) € base®(B)
such that c EO© andVy e Y\ X. Jz € X. y =, z.

10/ 16

Refined disproof “game”

Game (2)

e Given A+ B, a move by Player 1 is a choice of:
e a base pair (X,11) € base®(A), and
e q partition o of FV(A)U FV(B) U {nil} s.t. o =11

o A response by Player 2 is a base pair (Y,0) € base®(B)
such that c EO© andVy e Y\ X. Jz € X. y =, z.

e A winning move is (still) a move with no response.

10/ 16

Refined disproof “game”

Game (2)

e Given A+ B, a move by Player 1 is a choice of:
e a base pair (X,11) € base®(A), and
e q partition o of FV(A)U FV(B) U {nil} s.t. o =11

o A response by Player 2 is a base pair (Y,0) € base®(B)
such that c EO© andVy e Y\ X. Jz € X. y =, z.

e A winning move is (still) a move with no response.

Theorem
Games 1 and 2 are equivalent, and decidable.

10/ 16

An example

e Consider btz - Iszy (invalid).

11/ 16

An example

e Consider btz F Iszy (invalid).

e We have base pair approximations:

{(0, {z = nil}), ({z}, {z # nil})}
{0, {z = y}), {z}, {= #nil})}

base® (bt z)
base® (Isz y)

11/ 16

An example

e Consider btz F Iszy (invalid).

e We have base pair approximations:

base® (btz) = {(0,{z = nil}), ({a}, {x # nil})}
baseq>(lsxy) = {0, {z =y}), {x},{z #nil})}

e Winning move: choose base pair ((}, { = nil}) and any
partition o s.t. z =, nil and = %, y.

11/ 16

An example

Consider btz F Iszy (invalid).

We have base pair approximations:

base® (btz) = {(0,{z = nil}), ({a}, {x # nil})}
baseq>(lsxy) = {0, {z =y}), {x},{z #nil})}

Winning move: choose base pair (), {x = nil}) and any
partition o s.t. z =, nil and = %, y.

Now consider Iszy F btz (also invalid).

11/ 16

An example

Consider btz F Iszy (invalid).

We have base pair approximations:

base® (btz) = {(0,{z = nil}), ({a}, {x # nil})}
baseq>(lsxy) = {0, {z =y}), {x},{z #nil})}

Winning move: choose base pair (), {x = nil}) and any
partition o s.t. z =, nil and = %, y.

Now consider Iszy F btz (also invalid).

Winning move: choose base pair (0, {x = y}) and any
partition o s.t. x =, y and x Z, nil.

11/ 16

Limitations

e Our method is terminating and therefore incomplete.

12/ 16

Limitations

e Our method is terminating and therefore incomplete.

e Most importantly, our base pair overapproximations are
essentially projections onto the free variables of
entailments.

12/ 16

Limatations

e Our method is terminating and therefore incomplete.

e Most importantly, our base pair overapproximations are
essentially projections onto the free variables of
entailments.

e E.g., the entailment x — nil - emp is invalid, while
x +— nil - Jy. y — nil is valid but, since neither RHS has
any free variables,

base® (emp) = base® (Jy. y — nil) = {(0,0)}

so we can’t distinguish the two entailments.

12/ 16

Ezperimental evaluation (1)

e We generated entailments of the form Px - Qy, where
e P and @ are inductive predicates taken from pre-existing
benchmarks in SL-COMP competition (63 predicates total);
e x is a tuple of distinct variables;
e all variables in y appear in x.

13/ 16

Ezperimental evaluation (1)

e We generated entailments of the form Px - Qy, where

e P and @ are inductive predicates taken from pre-existing
benchmarks in SL-COMP competition (63 predicates total);

e x is a tuple of distinct variables;

e all variables in y appear in x.

e This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

13/ 16

Ezperimental evaluation (1)

e We generated entailments of the form Px - Qy, where

e P and @ are inductive predicates taken from pre-existing
benchmarks in SL-COMP competition (63 predicates total);

e x is a tuple of distinct variables;

e all variables in y appear in x.

e This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

e Our technique disproves > 97% of the entailments in the
test set, taking at most 30ms for each.

13/ 16

Ezperimental evaluation (1)

We generated entailments of the form Px - Qy, where

e P and @ are inductive predicates taken from pre-existing
benchmarks in SL-COMP competition (63 predicates total);

e x is a tuple of distinct variables;

e all variables in y appear in x.

This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

Our technique disproves > 97% of the entailments in the
test set, taking at most 30ms for each.

Of the remainder, we could prove about 250 valid.

13/ 16

Ezperimental evaluation (2)

e SLL test suite (from SL-COMP competition) considers
entailments over acyclic list segments only:

emp = alsxx
r#nlbzxFAy:r—zxalszy = alsxy

14/ 16

Ezperimental evaluation (2)

e SLL test suite (from SL-COMP competition) considers
entailments over acyclic list segments only:

emp = alsxx
r#nlbzxFAy:r—zxalszy = alsxy

e Here, of 120 invalid sequents, we disprove only about 24%.

14/ 16

Ezperimental evaluation (2)

SLL test suite (from SL-COMP competition) considers
entailments over acyclic list segments only:

emp = alsxx
r#nlbzxFAy:r—zxalszy = alsxy

Here, of 120 invalid sequents, we disprove only about 24%.
So we do (much) better in some situations than others.

In fact this sub-fragment is polynomially decidable anyway.

14/ 16

Conclusions / future work

We give a method for entailment disproof in separation
logic with user-defined inductive predicates.

Our method is incomplete, but terminating, and pretty
cheeeap.

Therefore, potentially useful for proof search and
automated theory exploration.

Future work: develop more precise disproving techniques
(e.g., by direct countermodel generation).

15/ 16

Thanks for listening!

Try our techniques within the Cyclist distribution:

github.com/ngorogiannis/cyclist

16/ 16

