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Craig interpolation

Definition
A (propositional) logic satisfies Craig interpolation iff for any
provable F ` G there exists an interpolant I s.t.:

F ` I provable and I ` G provable and V(I ) ⊆ V(F ) ∩ V(G )

(V(X ) is the set of propositional variables occurring in X )

Applications in:

I logic: consistency; compactness; definability

I computer science: invariant generation; type inference; model
checking; ontology decomposition
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Interpolation via sequent calculi

Sequent Calculus:

Γ ` A,∆ Γ ` B,∆
(` ∧)

Γ ` A ∧ B,∆

Γ,A,B ` ∆
(∧ `)

Γ,A ∧ B ` ∆

Cut Rule: usually eliminable

Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

Interpolation: constructive, by induction on cut-free proofs

Γ `FA A,∆ Γ `FB B,∆
(` ∧)

Γ `FA∧FB A ∧ B,∆

Γ,A,B `FA∧B ∆
(∧ `)

Γ,A ∧ B `FA∧B ∆
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Display calculi: a modular sequent calculus framework

Structures: extra structural connectives beyond Gentzen’s comma

X :== A | ∅ | ]X | X ;X

Display Postulates: extra rules to dis-/re- assemble structures e.g.

X ;Y ` Z �D X ` ]Y ;Z �D Y ;X ` Z

Display Property: for any structure occurrence Z in X ` Y , one
has either X ` Y ≡D Z `W or X ` Y ≡D W ` Z for some W

Belnap: If rules meet 8 conditions then cut-elimination holds!

Question: can we obtain modular interpolation from such calculi?
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Some proof rules

Identity rules:

P ` P
X ′ ` Y ′ X ` Y ≡D X ′ ` Y ′

X ` Y

Logical rules, e.g.:

F ; G ` X
F&G ` X

X ` F Y ` G
X ; Y ` F&G

Structural rules, e.g.:

W ; (X ; Y ) ` Z

(W ; X ) ; Y ` Z

∅ ; X ` Y
X ` Y

X ` Z
X ; Y ` Z

X ; X ` Y
X ` Y

5/ 14



Some proof rules

Identity rules:

P ` P
X ′ ` Y ′ X ` Y ≡D X ′ ` Y ′

X ` Y

Logical rules, e.g.:

F ; G ` X
F&G ` X

X ` F Y ` G
X ; Y ` F&G

Structural rules, e.g.:

W ; (X ; Y ) ` Z

(W ; X ) ; Y ` Z

∅ ; X ` Y
X ` Y

X ` Z
X ; Y ` Z

X ; X ` Y
X ` Y

5/ 14



Interpolation: our approach

I Proof-theoretic strategy: by induction on cut-free proofs; from
interpolants for the premises of a rule, construct an
interpolant for its conclusion.

I But not enough info to do this for display steps, e.g.:

X ; Y ` Z
X ` ]Y ; Z
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Local AD-interpolation (LADI) property

Let ≡AD be the least equivalence closed under ≡D and
applications of associativity (α) (if present).

Definition
A proof rule with conclusion C has the LADI property if, given that
for each premise of the rule Ci we have interpolants for all
C′i ≡AD Ci , we can construct interpolants for all C′ ≡AD C.

Proposition

If the proof rules of a display calculus D all have the LADI
property then D enjoys Craig interpolation.

Highly technical pen-and-paper proofs: so are they correct?
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Interactive Proof Assistants (Isabelle)

Examples: Mizar, HOL4, Coq, LEGO, NuPrl, NqThm,

Isabelle, λ-Prolog, HOL-Light, LF, ELF, Twelf · · ·

Meta-Logic: LCF or Kripke-Platek Set Theory or LF Type Theory
or Calculus of Constructions or . . .

Implementation: small core of trusted ML code

User
Object Logics

Proof Assistant
Meta-Logic (LCF)

Int Proof Develop Env

HOL | IFOL | FOL | Sequents | . . .

Untrusted (ML) Code

Trusted (ML) Code

(ML) Compiler

Machine Code

Trust: rests on strong typing and small core of (ML) code which is
open to public scrutiny by experts

Proof Transcripts: can be cross-checked using other assistants
8/ 14



Deeply embed formulae, structures, sequents and rules

HOL Formula Type: datatype formula =

Btimes formula formula | Bplus formula formula

| Bneg formula | Btrue ("T") | Bfalse("F")

| FV string (* formula variable *)

| PP string (* prop variable *)

HOL Structure Type: datatype structr =

Comma structr structr | Star structr | I

| Structform formula (* cast formula into structure *)

| SV string (* structure variable *)

HOL Sequent Type: seq = structr ` structr

HOL Rule Type: inf = (seq list , seq) (* ps/c *)

Pretty Printing: term Sequent (SV ’’X’’) (Structform (FV

’’A’’)) is printed and entered as ($’’X’’ |- ’’A’’).

Inductively Define Set of Basic Rule Instances: rli :: inf set

( [ X ` {A} , X ` {B}], X ` {A&B}) ∈ rli

Intuitions: horizontal line encoded by , and rules by set rli9/ 14



LADI: (&R)

X ` F Y ` G
X ; Y ` F&G

Need interpolant for arbitrary W ` Z ≡AD X ;Y ` F&G .

Case: F&G occurs in Z .

Subcase: W built entirely from parts of X (W � X ).

By a LEMMA ∃U. X ` F ≡AD W ` U.

Claim: interpolant I for W ` U is an interpolant for W ` Z .

Main issue: show I ` Z provable given I ` U provable.
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LADI: (&R)

By display property we have I ` U ≡D V ` F .

Next, we have:

W ` Z ≡AD X ` ]Y ;F&G
= X ` F [(]Y ;F&G )/F ]
≡AD W ` U[(]Y ;F&G )/F ] by an easy LEMMA

Thus by a substitutivity LEMMA we obtain:

I ` Z ≡AD I ` U[(]Y ;F&G )/F ]
≡AD V ` F [(]Y ;F&G )/F ]
≡AD V ;Y ` F&G
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Need to reason about congruent parameters
(U,V ) ∈ seqrep b X Y : if b is true/false then V is obtained by

replacing some (or all or none) of the succedent/antecedent
part occurrences of X in U by Y (U X;Y V )

Lemma (SF some sub)

For formula F , structure Z , and rule set rules, if

1. the conclusions of rules do not contain formulae; and

2. the conclusion of a rule in rules does not contain more than
one occurrence of any structure variable; and

3. the rules obeys Belnap’s C4 condition and

4. concl is derivable from prems using rules; and

5. concl F;Z sconcl

then there is a list sprems (of the same length as prems) such that

1. sconcl is derivable from sprems using rules; and

2. premn
F;Z spremn holds for corresponding members premn

of prems and spremn of sprems.
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Deletion Lemma

Definition (seqdel)

Define (C ,C ′) ∈ seqdel Fs to mean that C ′ is obtained from C
by deleting one occurrence in C of a structure in the set Fs.

Then we proved the following result about deletion of a formula:

Lemma (deletion)

Let F be a formula or F = ∅. If sequent Cd is obtained from C by
deleting an occurrence of some #iF , and if C →∗AD C ′, then either

1. there exists Cd ′, such that Cd →∗AD Cd ′, and Cd ′ is obtained
from C ′ by deleting an occurrence of some #jF , or

2. C ′ is of the form #nF ` #m(Z1;Z2) or #m(Z1;Z2) ` #nF ,
where Cd →∗AD (Z1 ` #Z2), or Cd →∗AD (#Z1 ` Z2)

Thus the premise is that Cd is got from C by deleting instance(s)
of the substructure formula F , possibly with some # symbols.
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Caveats and Lessons learned

Note: our formalisation only includes “classical” substructural
logics since implication is defined in terms of disjunction

Commutativity: of conjunction and disjunction is assumed

Programmable interface: ability to interact with Isabelle 2005
using plain ML was extremely useful to program the multiple
case analyses
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