
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Advice for the mini-project

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Think Object-Oriented

• Identify classes and objects.

– Objects encapsulate state or a representation.

– And provide services or methods.

– Classes describe how objects are implemented.

– Classes are related by associations and inheritance.

– Objects are linked by references, based on the
associations.

• Tasks are performed by objects calling each others
methods.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

An example

• The London Underground Problem

– Write a program that will find a route between any two
stations on the London Underground network.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Getting Started

• Brainstorm!!!

• We need:

– Data structure to store a representation of the
underground.

– An algorithm to find a route using the data structure.

• AND we want to take an object-oriented point of
view.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Algorithm Ideas

• Try finding a route on an underground map:

– Locate start station.

– Follow line in one direction.

– Do we go past end station?

– If yes, then done, otherwise back-track to start and go in
the other direction.

– Can’t find station on a line? Then change to a different
line.

• People searching for a route will take short cuts –
the program will need to do things step-by-step.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Algorithm Ideas (2)

• What if the station is on a different line?

– Do a recursive search onto the new line.

• At each station, if it is not the destination,

– Pick each line in turn, search that line in both directions.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Algorithm Ideas (3)

• Wait, can’t this be done using graphs or adjacency
matrices or something?

• Yes, and would be more efficient than recursive
(depth-first) search.

• Then research the alternatives!

– We will carry on with recursive search for now.

– Because I want to talk about classes and objects.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Classes - Role Play (CRC method)

• Identify some initial classes/objects to work with:

– Station, Line, Network

• Pick a task:

– Find a route? – Too complicated to start with!

– Try something simpler: What Line is a Station on.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Role Play (2)

• Walk through a scenario:

– Get a station object. How?

– Ask it what line it is on.
Call a getLine method?

• Need Line objects.

• Implications:

– A station knows what line it is on. An instance variable is
needed.

– We need a collection of all stations to get a station from.

Line

Station

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Role Play (3)

• Review

– Realise a station can be on more that one line.

• Needs a variable to store a collection of lines.

– If we have a collection of stations, how is a given station
identified?

• By its name!

• A station needs to store its name in a variable.

• (Note, the need for a name may be obvious but we
should only add it once the need has been
established.)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Station Class – 1st go

class Station

{

 private String name;

 private ArrayList<Line> lines;

 public ArrayList<Line> getLines()

 { return lines; }

 public String getName()

 { return name; }

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Next Scenario

• What is the next station on the line?

– In fact, what is a line?

• A sequence of stations,

• and a line has a name.

– Could provide a getNextStation method?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Line

class Line

{

 private ArrayList stations;

 private String name;

 public Station getNextStation(String currentStation,

 boolean forward)

 { … }

}

Returns null if no station?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

The Data Structure

• Starting to look like:

– A collection of lines,

– where each line is a sequence of stations,

– and each station has a collection of lines it is on.

– Also want a collection of stations to make it easy to find
a station to start with.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Data Structure

15

Network Line

Station

1

1..*

1..*

1..*

1..*

1

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Searching

• Could Line implement searching?

– find (Station destination) ;

• Yes – the recursive algorithm could be implemented
quite easily.

• Searching would then take place by the Line and
Station objects calling each others methods.

• But would a separate RouteFinder class work
better?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

RouteFinder?

• An alternative is to encapsulate the algorithm in an
object.

• Advantages:

– We can change algorithm by using different route finder
objects.

– The algorithm can be implemented independently of
how lines and stations are implemented.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

RouteFinder (2)

• Disadvantages:

– The encapsulation of Line and Station may need to be
reduced to allow the RouteFinder access.

• However, there are more advanced ways of structuring the
program to avoid the problem.

• And it may not be a dig deal anyway.

• On balance a RouteFinder is a better solution but
requires more sophistication.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Data Structure

19

Network Line

Station

1

1..*

1..*

1..*

1..*

1

RouteFinder

Subclasses

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Progressing

• Now have enough to start coding a working
prototype.

• New issues will be encountered:

– How are all the lines and stations created and
initialised?

– Input/Output

• But a feasible solution is emerging.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Progressing (2)

• Prototyping involves experimenting.

• Some things won’t work – throw them out!

• You’ll get new ideas and perhaps find better
solutions – use them!

• Don’t let things get messy – spend time cleaning up
and throwing out.

• Test your code!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Class Checklist

• What instance variables, what types?

– Are they all private?

• Constructors and initialisation

– How is an object initialised?

• What public methods?

– What services do objects provide?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Review Classes

• What can be eliminated to keep the class as simple
as possible but no simpler?

• What have we discovered that may matter in the
future?

• Are the public methods reducing encapsulation
unnecessarily?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Other Advice

• Use nouns for class names

– Verb indicates that your class has no instance variables
or is just a collection of methods.

– InterestCalculator not CalculatingInterest

• Don’t use plural class names

– BookCollection not Books

• Keep a class cohesive

– Focus on doing/representing closely related things.

– Otherwise split into 2 classes.

24

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Other Advice (2)

• If several classes have just one method

– You are probably writing a procedural program.

– Just wrapping methods in a classes.

– Rethink design.

• Keep methods short and cohesive.

• Instance variables always private (unless static
final).

25 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Summary

• Think Object-Oriented!

• Had a taste of the thinking and designing process.

• All the time you are searching for viable solutions
and balancing the conflicting issues.

• Simplify, Simplify, Simplify.

• BUT Simple != Trivial

