
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
An overview of

Polymorphism, Types,
Interfaces and Generics

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Being Object-Oriented

• Exploiting the combination of:
– objects
– classes
– encapsulation
– inheritance
– dynamic binding
– polymorphism
– pluggability

2

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Polymorphism

• Where something has multiple forms.
– A single function that can be applied to multiple types.
– Generic methods/classes.
– Ability of objects of different types to respond to same

messages (method calls).

• Allows one section of code to work with multiple
values and objects.
– Share rather than duplicate.

• Wikipedia has some good articles on polymorphism.

3

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Forms of Polymorphism

• Parametric Polymorphism - generic classes and
methods.

• Subtyping Polymorphism - inheritance
• Ad-hoc polymorphism

– Overloading
– Coercion

4

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Polymorphism and Inheritance
• A superclass can define a common interface.
• Subclasses inherit the common interface and

specialise the corresponding methods.
• A subclass object can be used where a superclass

object has been specified.
• Remember shapes:

Shape myShape = new Square(4,4,10);

5

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Pluggability

6

User of common
methods

Objects with a
common
interface.

All have a
common

superclass.

User only assumes
interface provided

by abstract
superclass

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Old Code can Call New Code

• New pluggable components can be added without
changing the users of the components.

• Code designed to use the common interfaces remains
unchanged.

• For example,
– BankAccount.
– And specific kinds of bank account.

7

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Objects and Types

• An Object has a state.
– The values of its instance variables.

• The overall value of an object is determined by its
state.

• An object also has a type.
– An object's class determines its type.
– A class is a user defined type.

• An object reference has a reference type.
– Determines what kind of objects it can refer to.

8

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Type Conformance

• But all classes are subclasses of Object (except
Object),

• and a class can have other superclasses (the
inheritance chain),

• so an object can have multiple types.
– Or to be precise an object can conform to multiple types.
– Type conformance means that any method declared by a

type can be called on an object that conforms to the type.
– Object <- Shape <- Square

• Square conforms to both type Shape and type Object. Any public
methods declared in Shape and Object can be called on a Square
object (and may be overridden).

9

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

All types conform to type Object

• Hence, a reference of type reference to Object can refer to
any object that conforms to type Object.
– i.e., all objects

• And all objects inherit (and may override) the methods
declared in class Object.

• For example, toString overridden in class Square:
public String toString() {
 return “This is a square of size” + size;
}
...
System.out.println(square); // toString called here

10

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Type Hierarchies

• Types also have supertype and subtype relationships
(like superclass/subclass).

• The class hierarchy defines part of the type hierarchy.
• But it gets more interesting...

11

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Enter the Interface

• Types can also be declared using an interface:
public interface ShapeIF
{
 void draw(Graphics g);
 void move(int x, int y);
}

12

Specifies the methods a
type declares. No method

bodies, no instance
variables.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Implements

• A class can implement an interface.
class MyShape implements ShapeIF
{
 // Class must override draw and move methods
 // or be abstract.
}

13

Dashed line with open
triangle denotes

implements.

Circle denotes interface.
Can also use
«interface»

below name.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Combining Interface and Abstract Class

14

Interface
(common methods)

Abstract class
(shared code)

Concrete class
(complete code)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Using an interface

• Can now use the interface type with Shape objects:
public void drawPicture
 (ArrayList<ShapeIF> shapes, Graphics g)
{
 for (ShapeIF shape : shapes)
 {
 shape.draw(g);
 }
}

15

Majority of code written
using interface type(s).
Can use any object of a
class that implements

the interface.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Interfaces and Class hierarchy

• Interfaces allow types to be declared independently of
classes and the class hierarchy.

16

Object

Class

Interface

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Example (from class libraries)

interface Comparable {
 int compareTo(Object o);
}

• Remember String compareTo?
– Return value <0, 0 or >0, for less than, equals, greater than.

• Any class that implements the Comparable interface
must provide a compareTo method (unless abstract).
– Objects of the class can be compared.
– Specifying ability to be compared is independent of class

inheritance.

17

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Example (2)

• Classes that implement Comparable:
• Authenticator.RequestorType, BigDecimal, BigInteger, Boolean, Byte,

ByteBuffer, Calendar, Character, CharBuffer, Charset, CollationKey,
CompositeName, CompoundName, Date, Date, Double, DoubleBuffer,
ElementType, Enum, File, Float, FloatBuffer,
FormSubmitEvent.MethodType, GregorianCalendar, IntBuffer, Integer,
JTable.PrintMode, KeyRep.Type, LdapName, Long, LongBuffer,
MappedByteBuffer, MemoryType, ObjectStreamField, Proxy.Type,
Rdn, RetentionPolicy, RoundingMode, Short, ShortBuffer,
SSLEngineResult.HandshakeStatus, SSLEngineResult.Status, String,
Thread.State, Time, Timestamp, TimeUnit, URI, UUID

• + any that you write.

18

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Example (3)

• Using Comparable:
public void sort(Comparable[] a)
{
 // Sorting algorithm
 if (a[i].compareTo(a[i+1]) < 0) { ... }
 // ...
}

• Method can sort any array of objects that conform to
Comparable (where all objects in the array are
instances of the same class).

19

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Programming to an Interface

• Use interfaces to declare types needed.
• Write code using interface types.
• Use objects of any class that implements interface.
• Implementing classes can be added, edited, removed

independently of code using the interface types.
• Commonly used and important design/implementation

strategy.
• Decouples concrete representations from abstract

specifications.

20

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Remember ArrayList...

21

Object

AbstractCollection
Collection

AbstractList

ArrayList

Iterable

List

Serializable

Cloneable

RandomAccess

ArrayList conforms to many types.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

ArrayList declaration

class ArrayList extends AbstractList
 implements Serializable, Cloneable, List, RandomAccess
{ ... }

• A class can both extend and implement.
– One superclass only (extend).
– But multiple implements.

• ArrayList is a concrete class so must override all
inherited abstract methods and all methods declared
in the interfaces.

22

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

List and ArrayList

• Often see this:
List<String> myList = new ArrayList<String>();

• Create an ArrayList object but access it via the List type.
• Code using list does not depend on ArrayList directly.
• Can substitute different concrete class:

List<String> myList = new LinkedList<String>();
– Discover linked list is a better data structure for current

application.
– Create different object but code using List type remains

same.

23

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Generic Interface

• Actually many of the classes/interfaces associated with
ArrayList are generic.

• public interface List<E> // A generic interface
{

boolean add(E obj);
E get(int index);
boolean isEmpty();
// etc...

}

24

E is a type variable,
instantiated during

type checking.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Generic ArrayList
class ArrayList<E> extends etc...
{
 private E[] elementData;
 private int size;
 public E get(int index) {
 RangeCheck(index);
 return elementData[index];
 }
 public boolean add(E o) {
 ensureCapacity(size + 1);
 elementData[size++] = o;
 return true;
 }
 // And so on...

25

Uses array to
store data.

Methods like get
and add do

checking and
manipulate array.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Compiling a generic class

• Compiling and type checking generic classes is more subtle
than it might seem at first sight...
– When a generic class is compiled the compiler does not

know which real types the type variables will be
instantiated to.

– So cannot type check things like most method calls and
new expressions depending on type variables:

• E aVar; ... e.f(); // compiler doesn’t know if E has
method f.

• E[] e = new E[size]; // compiler doesn’t know what type
of array might be created at runtime.

– Hence, significant restrictions on what can be written.

26

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Compiling code using generic classes

• When ArrayList<String> is declared:
– Compiler instantiates type variable E to String.
– Then type checks code, to ensure that only Strings are

added/removed.
– But does not re-compile ArrayList<E> or create an

ArrayList<String>.class.
• When compiling ArrayList<E> the compiler actually generates

one .class file where Object is substituted for E.
– Called Type Erasure.

– For using ArrayList<String> compiler does the type checking
but inserts cast expressions when generating code.

27

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Generic Methods

• Another form of polymorphism (parametric
polymorphism).

• A generic method can use/return values of different
types.

• An alternative to overloading.
• A way of avoiding duplication of code.

28

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

An example

 public <T extends Comparable> T max(T t1, T t2) {
 if (t1.compareTo(t2) > 0)
 { return t1; }
 else
 { return t2; }
 }

29

Extends means
that T must be a

subtype of
Comparable.

Comparable is an interface
that defines one method:

int compareTo(T).max(”hello”,”world”);
max(20,10);
max(’a’,’z’);

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

More complex example
 static <T, V extends T> boolean isIn(T x, V[] y) {
 for(int i=0; i < y.length; i++)
 { if(x.equals(y[i])) return true; }
 return false;
 }
 public static void main(String args[]) {
 Integer nums[] = { 1, 2, 3, 4, 5 };
 if(isIn(2, nums)) { System.out.println("2 is in nums"); }
 if(!isIn(7, nums)) { System.out.println("7 is not in nums"); }
 System.out.println();
 String strs[] = { "one", "two", "three", "four", "five" };
 if(isIn("two", strs)) { System.out.println("two is in strs"); }
 if(!isIn("seven", strs)) { System.out.println("seven is not in strs"); }
 }

30

Equals method is declared
in class Object, so all
objects must have it.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

What do you need to know about generics for
now?

• Not any more than already covered and that the
generic library classes are available to be used.

• Whole subject is a lot more complicated than seen so
far.
– More syntax.
– More mechanisms.
– All about type safety.

31

