
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Inheritance

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Outline

• Introduction to inheritance.

• How Java supports inheritance.

Inheritance is a key feature of object-oriented

programming.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Inheritance

• Models the “kind-of” or “specialisation-of” or

“extension-of” relationship between classes.

• Specifies that one class extends another class.

• For example:

– A Square is a kind-of Shape.

– A class Square can extend a class Shape.

– A bus is a kind-of vehicle.

– Integer is a specialisation of Number.

– An EmailAddressString is an extension of String.

• Email addresses have a specific format.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Subclass and Superclass

• A subclass inherits from a superclass.

• The subclass gains all the properties of the

superclass, can specialise them and can add

more.

Superclass

Subclass

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Multiple Subclasses

• Several subclasses can inherit from same superclass.

• Java supports single inheritance, one superclass only.

– Some languages support multiple inheritance (MI), 2 or
more superclasses, e.g., C++.

– MI is complex and often seen as a bad idea.

5

Vehicle

Car Bus Lorry

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Inheritance Hierarchy

6

Person

Staff Student

Undergraduate

UCLPerson

PostgraduateAcademic Admin

Technical

Registry

Abstract

Concrete

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Generalisation & Specialisation

• A superclass is a generalisation.

– Shape defines the abstract properties of shapes in general.

– Number defines the abstract behaviour of numbers.

– Person defines common attributes (name, date of birth, etc.)

• A subclass is a specialisation.

– Square represents a specific kind of concrete shape.

– Integer, Double define specific kinds of number

representation.

– Undergraduate defines specific attributes (year, unit courses)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Abstract v. Concrete

• Abstract classes provide a partial or abstract

description.

– Not enough to create instance objects.

– Define a common set of public methods that all subclass

objects must have - common interface.

– Variables/methods can be shared via inheritance.

• Do not need to be duplicated in subclasses.

• Concrete classes provide a complete description.

– Inherited + new attributes/methods.

– Inherit shared interface.

– Can create instance objects.

8

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Shapes and Squares

• Assume all shapes:

– have an x,y coordinate.

– can be drawn.

– can be moved to a new position.

– Defined by class Shape.

• Class Square extends or specialises this basic

behaviour for squares.

– Allows squares to be drawn, moved, etc.

• Class Triangle and class Circle can do same for

triangles and circles.

9 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Shape v.1

public class Shape

{

 private int x, y ;

 public Shape(int px, py)

 { ??? }

 public void draw(Graphics g)
{ ??? }

 public void move(int px, int py)

 { ??? }

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Square v.1

public class Square extends Shape

{

 private int size ; // Need a size

 public Square(int px, int py, int sz)

 { ??? }

 public void draw(Graphics g)

 { ??? }

 public void move(int px, int py)

 { ??? }

}

New Keyword

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Square objects

int x

int y

int size

Shape(int px, int py)

void draw(Graphics g)

void move(int x, int y)

Square(int px, int py, int sz)

A Square object has these
instance variables.

And these methods.

Note that Square
has specialised
these methods.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

OK...

• Seen the basic idea but we have to fill in the details.

• And learn how to use inheritance correctly.

Health warning – inheritance is a powerful mechanism

but easily misused.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Square Constructor

• Let’s try:

public Square(int px, int py, int sz)

{

 x = px ; // Uh Oh ...

 y = py ;

 size = sz ;

}

• x and y are inherited but are private to Shape.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Private and inheritance

• Private variables are inherited and are part of

subclass objects.

• BUT they can be accessed by superclass methods

only.

– Encapsulation is respected.

• Subclass methods have no access.

• Problem?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

protected

• Change Shape:

public class Shape

{

 protected int x, y;

 ...

}

• A protected variable can also be accessed from
subclasses.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

protected (2)

• Allows the selective weakening of strict
encapsulation.

• But increases the coupling between super
and sub classes.
– Some believe this to be unacceptable.

– Could use getter and setter methods instead (also
called accessor methods).

– int getX(), void setX(int), int getY(int), void setY(int)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

Square Constructor (2)

• Can now write:

public Square(int px, int py, int sz)

{

 x = px ; // OK

 y = py ;

 size = sz ;

}

• But we don’t actually want to do this!!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Shape constructor

 private int x, y ;

 public Shape(int px, py)

 {

 x = px ;

 y = py ;

 }

• We actually want the Shape constructor to
assign initial values to x and y.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Localise

• Shape declares x and y.

• Shape should initialise them.

• Don’t want to scatter copies of the initialisation code

around all the subclasses.

[Some would argue that x and y should only ever be

accessed by Shape methods and, hence, must be

private.]

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Square Constructor (3)

public Square(int px, int py, int sz)

{

 // What about x and y?

 size = sz ;

}

• Now need a mechanism to call the Shape
constructor.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Square Constructor (4)

public Square(int px, int py, int sz)

{

 super(px,py) ; // Another new keyword

 size = sz ;

}

• super is a reference to the superclass.

• When used in a constructor like this, it
results in a call to the superclass
constructor with the matching parameter
list.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Super goes first

public Square(int px, int py, int sz)

{

 size = sz ; // Error

 super(x,y) ;

}

• Super must be first statement in the constructor
body.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Creating Square Objects

Square sq = new Square(1,1,10) ;

• Turns out to be a multi-stage process:

– Allocate memory for object.

– Call Square constructor.

– Call Shape constructor before anything else is
done by the Square constructor.

– Execute rest of Square constructor.

– Return reference to newly created and initialised
object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Subclass object initialisation - the
general case

• A constructor must be
called for each
inherited part of a C
object.

• And the constructor
bodies executed in
the order A, B, C.

A

B

C

A part

B part

C part

C Object

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Guaranteed

• Superclass constructors must called and in the correct

order.

• The language guarantees this will happen.

• Initialisation must be done!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

It will happen...

public C()

{ // Look, no super.

 v = 10 ; // some instance variable

}

• The compiler adds a call to super (no
parameters)

public C()

{

 super() ; // added during compilation

 v = 10 ; // some instance variable

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

What if?

• Try:

public Square(int px, int py, int sz)

{

 size = sz ;

}

• Compiler does its bit to give:

public Square(int px, int py, int sz)

{

 super() ;

 size = sz ;

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

But...

public Square(int px, int py, int sz)

{

 super() ; // no way...

 size = sz ;

}

• This would call the Shape constructor that takes
no arguments.

• Except there isn’t one, so it can’t be called, so
you get a compilation error.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Super may have to be used

public Square(int px, int py, int sz)

{

 super(px,py) ;

 size = sz ;

}

• An explicit super must be used here, with the correct

arguments.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Back to class Shape

• This method was suggested:

 public void draw(Graphics g)

{ ??? }

• What goes in the method body?

• Well, nothing useful. A Shape is an
abstract rather than concrete kind of thing.

• A Shape doesn’t have a shape that can be
drawn!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Option 1

• Simply leave the method body empty.

 public void draw(Graphics g)

{

 // do nothing

 }

• Default drawing is to draw nothing.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

Option 2

• Delete the draw method altogether.

• But this would be a bad move.

– The method must be present to be specialised by

subclasses.

– Want the method to be part of the public method interface of

Shape, so it can be used with all types of shape.

– Guarantee that all shapes have a draw method.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Option 3

• Declare the method abstract.

public abstract void draw(Graphics g) ;

• No method body is given.

– Note where semi-colon is.

– No braces.

• Put down a marker that the method must exist in

subclasses.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Consequences

• A class containing an abstract method cannot have

instance objects.

• It does not provide a complete description of instance

objects.

• But that is OK - we don’t want instances of class

Shape.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

Abstract class

• Declaring an abstract method actuallly forces the

class to be declared abstract as well.

 public abstract class Shape

 {

 ...

 }

• An abstract class can have no instances.

• It is a partial description that can be inherited.

• Declares shared instance variables/methods.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Move method

• Shape can provide a default or shared
implementation:

public void move(int px, int py)

 {

 x = px ;

 y = py ;

 }

• Square may specialise this method, but it doesn’t
actually have to.
– Just inherit unchanged.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

Class Shape v.2

public abstract class Shape

{

 protected int x, y ;

 public Shape(int px, int py)

 { x = px ; y = py ; }

 public abstract void draw(Graphics g) ;

 public void move(int px, int py)

 { x = px ; y = py ; }

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Square class ?

• Need to declare a draw method body to draw a

square.

• Don’t need to declare a move method at all.

– The inherited version is good enough.

• This will create a complete class.

• Instance objects can be created.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

41

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

Using Shapes

• Create a Square object and use it:

Square sq = new Square(5,5,50) ;

sq.draw(g) ; // g references a

 // Graphics object

sq.move(25,25) ;

sq.draw(g) ;

// Shape shape = new Shape(5,5) ; NO!!

Shape is abstract.
No instances.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

43

move

• If the move method was inherited and not specialised

by Square.

sq.move(25,25) ;

• A call to move executes the move method declared in

class Shape.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

44

draw

• The requirement to provide a draw method was

inherited by Square.

• Square specialised the method by re-declaring it with

a complete method body.

• This is called overriding.

• Square overrides the draw method.

– Don’t confuse with overloading.

– An overriding method must be declared in a subclass, have

the same name, parameters and return type.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

45

draw (2)

sq.draw(d) ;

• A call to draw executes the draw method declared in

class Square.

• And draws a square.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

46

Overriding move

• Suppose Square also overrides move?

• What does sq.move(20,20) do?

• Calls the move method defined by Square.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

47

Why?

sq.move(25,25) ;

• When a method call is made, the method executed
depends on the class of the object it is called for.

• The class is Square. If it provides move, then execute
it.

• If not, then go to the superclass and see if it provides
move.

• If neither class Square or Shape (or any other
superclass) provides move then an error.
– In fact, the compiler will not compile the code.

– The compiler can check that a move method is defined
somewhere in the inheritance chain.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

48

Superclass references

• What about this?

Shape sh = new Square(10,10,40) ;

• This is legal!

• A superclass reference to a subclass object.

• Reference type is different from object type, but

related by inheritance.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

49

Public interface

Shape sh = new Square(10,10,40) ;

• Shape defined a set of public methods inherited by

Square.

– Either complete or abstract.

• Square must have the same public methods.

– Or can override a method.

• Anything that can be done with a Shape can be done

with a Square.

– Any method that can be called using a Shape reference

must be available on a Square object.

• Square will specialise what happens.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

50

sh.draw

Shape sh = new Square(10,10,40) ;

sh.draw(g) ; //OK

• Class of object referenced by sh is
Square, so find Square.draw and execute it.

• The type of the reference sh is Shape.
– The code will compile as class Shape declares a

draw method.

– But the method called at runtime is determined by
the class of the object referenced not the type of
the reference.

• Static v. Dynamic typing.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

51

sh.move

Shape sh = new Square(10,10,40) ;

sh.move(20,20) ;

• Class of object referenced by sh is Square, so check

for Square.move and execute it if it exists.

• Otherwise use Shape.move.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

52

rotate?

• Suppose a rotate method is added to Square but
not Shape?

Shape sh = new Square(10,10,40) ;

sh.rotate(50) ;

• Error!

• Shape does not define a rotate method.

• So can’t be called via a Shape reference, even
though the object has one.
– Compiler will say that class Shape does not define a

method called rotate.

• Can be called via a reference of type Square.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

53

Dynamic binding

• Binding is the term used for the process of mapping a

method call to a method body that can be executed.

• Dynamic binding means that the method body is

determined at runtime by looking at the class of the

object the method is called for.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

54

Instance methods

• Instance methods are always dynamically bound.

• Look at the class of the object a method is called for.

– If it provides a method body, execute it.

– Otherwise go to superclass(es) and repeat.

– If not found then report an error.

• Note that the error is located and reported by the compiler, not at
runtime.

• Runtime is used to determine which method, but a method must exist.

• In some languages method lookup is entirely dynamic and a program
can fail at runtime when a method is not found.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

55

Static binding

• Static methods are statically bound.

• This means the method body to be executed is always

uniquely determined.

• And can be determined when the program is

compiled.

• (The same can be done for instance methods if no

overriding has taken place.)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

56

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

57

So…

• We have class Shape

• And subclasses like Square, Circle, Triangle

• Method binding.

• What use is this?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

58

Remove duplication

• A superclass holds common variable and method

declarations.

• Code does not have to be duplicated in subclasses.

• Implementation inheritance.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

59

Everything is a Shape

• Can treat all subclass objects as Shapes.

• The ability to be a Shape is inherited and specialised.

• Code can use Shapes without knowing what specific

kind of Shape.

• Interface inheritance.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

60

Storing Shapes

// Array of Shape references

Shape[] shapes = new Shape[50];

// Can reference mixed collection of subclass objects

Shapes[0] = new Square(2,3,4);

Shapes[1] = new Triangle(3,4,5,6);

Shapes[2] = new Circle(5,6,8);

Etc…

Or an ArrayList:

ArrayList<Shape> = new ArrayList<Shape>();

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

61

Drawing Shapes

for (Shape shape : shapes)

{

 shape.draw(g);

}

• All shape subclasses can draw but don’t need to know
which subclass is being used.

• Shape declares draw, inherited and specialised by all
subclasses.

• Program using methods declared by class Shape but
any subclass object can be used when code is run.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

62

Generic Code

• Most application code can be written to use the
superclass type (Shape).
– Subclasses not named.

– Any Shape subclass object will fit.

• Small section(s) of code must name subclasses and
create objects.

• But rest of code independent of subclass details.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

63

Big Advantage

• Most code uses superclass types and methods

declared by superclasses.

• Most code doesn’t have to change if subclasses

change.

• The affects of changes to subclasses localised.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

64

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

65

Object

• What does class Shape inherit from?

• Nothing was specified but...

• All classes either directly or indirectly inherit from

class Object.

• Including Shape, even though we didn’t say so.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

66

Java Inheritance Tree

• All Java classes you ever use or write yourself

are in the inheritance tree with class Object at

the top:
Object

Everything else
Shape

Square

String

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

67

Everything is an Object

Object obj = new Square() ;

• OK

• But can only call methods declared by class Object.

• Of course, they may be overridden by subclasses.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

68

Class Object?

• Provides a small set of methods that all classes inherit

and can be called for all objects.

• For example, the toString() method.

• See the text book for more details.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Object array

Object[] elements = new Object[n];

• Array elements can reference any kind of object.

• ArrayList and other data structures depend on this.

– void add(Object obj);

– Object get(int n);

69 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

70

Is that all?

• No!

• There are yet more important details about inheritance

not covered here.

• We’ll briefly look at a few more details but refer to the

course text book for more information.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

71

Summary so far (not the end…)

• Inheritance allows one class to extend another.

• Rules enforce the behaviour of constructors.

• Dynamic binding determines what methods are

executed.

• All objects are Objects!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

72

Calls to self

• As we know, an object can call methods on itself (i.e.,
a method can can call another method of the same
class for the same object).

 public void f() // instance method

 {

 ...

 g() ; // another instance method

 } // of the same class

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

73

Calls to self (2)

g() ;

• equivalent to:

this.g() ;

• In fact, g can be a superclass method, if the current

class has not overridden g.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

74

Calls to self (3)

super.g() ;

• An overridden (and otherwise hidden) superclass

method can be called using super.

• Must be public or protected, though.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

75

Super and variables

• A subclass can hide an inherited instance variable by

declaring its own instance variable of the same name.

• Super can be used to access the hidden variable (if

public or protected):

super.x = 10 ;

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

76

More on super?

See the text book!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

77

Template method

• A superclass method can have the form:

public void doSomething()

{

 doThis() ;

 ... // Whatever

 doThat() ;

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

78

Template method (2)

• A subclass might override doThis and doThat

methods but not doSomething.

• This allows doSomething to define an algorithm

that can be partly specialised by a subclass.

• In other words doSomething acts as a template.

• Example:
while (!endOfGame())

{

 playturn();

 getscore();

}

High level control, specialised by subclass.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

79

Template method (3)

A

doSomething()
doThis()
doThat()

B

doThis()
doThat()

Template method

Default methods
(might be abstract)

Overriding subclass methods

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

80

final (again)

• The final keyword can be used to prevent inheritance.

• Declaring a class final:

public final class X { }

• prevents the class from being subclassed.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

81

final (yet more)

• Declaring a method final stops it being
overridden:

public final void doSomething()

{

 doThis() ;

 ... // Whatever

 doThat() ;

}

• doThis and doThat can be overridden but not
doSomething.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

82

Why use final?

• Gives the class programmer control.

• Not all classes or methods are designed to be

subclassed or overridden.

• Can explicitly enforce design decisions.

• But be wary of making classes/methods final as it can

make testing a lot harder.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

83

Good Practice

• Inheritance should only be used when a subclass is

really an extension of a superclass.

• It should be possible to use a subclass object where

the superclass has been specified.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

84

The Contract

• A subclass extends and specialises but implements

the contract specified by the superclass.

– Object behaviour should be consistent.

– Methods should behave consistently.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

85

If in doubt…

• Don’t use inheritance.

– A class wants to use another class but is not an extension of

the other class.

• Use association instead (i.e., an object reference).

– A class uses another class.

– Often called delegation.

– Delegate to another class to provide a service.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

86

Stacks (again!)

• A stack can be implemented using an ArrayList.

• So might inherit ArrayList and add push, pop, etc.
methods…

ArrayList

Stack

Bad!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

87

But…

• Stack subclasses inherits all the ArrayList public

methods, as well as the ability to store a collection of

objects.

• Don’t want the public methods – not part of the stack

abstraction.

– For example, inserting into middle of stack is not a stack

operation.

• A stack is not an extension of an ArrayList.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

88

Instead

• A Stack class should use an ArrayList by

association.

– Exploit the container properties, ignore the interface.

ArrayListStack

Stack has a private reference to ArrayList.

Users of Stack unaware of implementation.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

89

Reminder - Why have inheritance?

• Allows classification hierarchies.

• Enables the use of common interfaces.

• Enables implementation sharing (by extension,

not copy and edit).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

90

Finally

• Covered a lot of ground.

• Introduced inheritance and its realisation in Java.

• Investigated some of the details.

• Considered good v. bad inheritance.

