
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Exceptions

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Runtime Error

• Unexpected error that terminates a program.

– Undesirable…

• Not detectable by compiler.

• Caused by:

– Errors in the program logic.

– Unexpected failure of services
• E.g., file server goes down.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Exception example

 int x = 1 ;

int y = 0 ;

int z = x / y ;
java.lang.ArithmeticException: / by zero

 at T9.main(T9.java:7)

• This message is displayed when the code is
executed.

• You typically see a call stack trace.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Call Stack Trace

apple.awt.EventQueueExceptionHandler Caught Throwable : java.lang.ArithmeticException: / by zero
java.lang.ArithmeticException: / by zero

at uk.ac.ucl.cs.editor.MemoListEditor.backward(MemoListEditor.java:60)
at uk.ac.ucl.cs.view.SwingMemoListView$4.actionPerformed(SwingMemoListView.java:173)
at javax.swing.AbstractButton.fireActionPerformed(AbstractButton.java:1819)
at javax.swing.AbstractButton$ForwardActionEvents.actionPerformed(AbstractButton.java:1872)
at javax.swing.DefaultButtonModel.fireActionPerformed(DefaultButtonModel.java:420)
at javax.swing.DefaultButtonModel.setPressed(DefaultButtonModel.java:258)
at javax.swing.plaf.basic.BasicButtonListener.mouseReleased(BasicButtonListener.java:247)
at java.awt.Component.processMouseEvent(Component.java:5166)
at java.awt.Component.processEvent(Component.java:4963)
at java.awt.Container.processEvent(Container.java:1613)
at java.awt.Component.dispatchEventImpl(Component.java:3681)
at java.awt.Container.dispatchEventImpl(Container.java:1671)
at java.awt.Component.dispatchEvent(Component.java:3543)
at java.awt.EventDispatchThread.run(EventDispatchThread.java:100)
etc.

4

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Null pointer exception

• Should be familiar...

java.lang.NullPointerException

 at T10.main(T10.java:7)

(So references are really pointers according to the JVM!)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Stack

• A stack is a last-in first-out queue:

• Items are pushed on,

• and popped off the pile.

• Can use an ArrayList to

 store stack contents.

Top of stack

PushPop

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Class Stack

class Stack<T>

{

 private ArrayList<T> contents;

 public Stack()

{ contents = new ArrayList<T>();}

// Methods push, pop, top

...

}

7

This is a generic
Stack class. T is a

type variable that is
instantiated with a real
type in a declaration.

Stack<Integer> = new Stack<Integer>();

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Programmers make mistakes!
Stack<Double> s = new Stack<Double>() ; // Empty stack

Double d = s.pop() ; // Whoops!!

System.out.println(s.top()) ; // What is printed?

How can you force someone to take notice when
these kinds of errors are made?

Best answer: Use test-first programming.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

(Non) Solution 1

Ignore the problem and hope it never happens!

Relies on object always being used correctly...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Solution 2

Print out an error message.
public Object pop()

{

 if (contents.size() == 0) // empty

 {

 System.out.println(“Stack empty”);

 return null;

 }

 else

 return contents.remove(0);

}

Message may be
noticed – but which
call of pop caused

the problem?

What value is returned?
Caller must deal with
null being returned.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Solution 3

Stop the program!
public T pop()

{

 if (contents.size() == 0) // empty

 {

 System.out.println(“Stack is empty”) ;

 System.exit(1) ; // Force program to stop

 return null; // Needed to compile but not used

 }

 else

 return contents.remove(0);

}

• Can’t avoid noticing this!

• But still little information about where and why.

Bad design to put
output into data

structure class like this.
Don't do it!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Solution 4

public T pop()

{

 if (contents.size() == 0) // empty

 {

 return null; // “silent” default action if empty

 }

 else

 {

 return contents.remove(0);

 }

}

• Take some default action and rely on client code doing
right thing with result.

• But moves problem somewhere else, without compiler
checking correctness.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Solution 5

Throw an exception!
public T pop() throws EmptyStackException

{

 if (contents.size() == 0) // empty

 { throw new EmptyStackException(); } // Note no return needed here

 else

 { return contents.remove(0); }

}

• Force the program to deal with the error or
terminate.

• Force the compiler to check code.
• Force the programmer to write the code properly.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Java Exception Mechanism

• To allow program execution to continue after an error.

• Or, at least, terminate gracefully.

• Uses five keywords in the language:

try, catch, throw, throws, finally

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Try and catch

try

{

 a.doSomething() ;

}

catch (Exception e)

{

 // Handle the exception

}

A try block tries to
execute statements.

A catch block catches
exceptions

thrown from the try
block.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Throw

throw

new MyException (“Method doSomething failed”) ;

• The throw statement throws an exception.

• It takes an exception object reference as an argument.

• Somewhere a catch block must catch the exception.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Catch

catch (Exception e) { ... }

• This catches an object of library class Exception
or any of its subclasses.

• Typically, your exceptions are subclasses of class
Exception.

catch (MyException e) { ... }

A subclass extends another class.
Exception represents exceptions
in general, a subclass represents
a specific kind of exception like

EmptyStackException.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

Multiple catch expressions

• Several catch expressions can be given to catch a range
of exception objects of different classes:

catch (MyException e1) { … }

catch (NumberFormatException n) { … }

catch (InvalidDataException i) { … }

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Finally finally

try

{

 f() ;

}

catch (MyException e) // optional

{

 // Do something

}

finally

{

 // Guaranteed to execute

 // this whatever happens.

}

A finally block will be
always be executed

regardless of
what else happens.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Standard Exception Classes

• Throwable

• Superclass of all exception classes.

• Error (extends Throwable)

• Serious error that is not usually recoverable.

• Exception (extends Throwable)

• Error that must be caught and recovered from.

• RuntimeException (extends Exception)

• Error that may be caught if desired.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

class Throwable

• Throwable provides:

• A String to store a message about an exception.

• A method String getMessage() to return the message string.

• A method printStackTrace.

• And a few other methods.

• Subclasses extend Throwable and can add further
variables and methods.

• Most, but not all, Exception classes represent exceptions
that must be caught.

• The compiler will check.

• A small number of Exception classes represent exceptions
that do not need to be caught.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Writing an exception class

class MyException extends Exception

{

 public MyException ()

 { super(“Default message”) ; }

 public MyException (String s)

 { super (s) ; }

}

The extends keyword
specifies that

MyException is a
subclass of Exception.

We will be looking at
subclasses in detail
later in the course.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

An Example

public void f(String s) // s should represent an integer.

{

 int tmp ;

 try

 {

 tmp = Integer.parseInt(s) ; // This can fail

 }

 catch (NumberFormatException e)

 {

 tmp = -1 ; // Set tmp to some default value

 }

 // Carry on and use tmp

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Integer.parseInt

public static int parseInt (String s)

 throws NumberFormatException

{

 return parseInt(s,10) ;

}

• parseInt is overloaded and calls another
version of parseInt that can throw an exception.

• This version does not catch the exception but
declares that it can occur.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Throws keyword

• A method can directly or indirectly throw an
exception without catching it.
– the exception must be declared by a throws declaration,

– for class Exception and subclasses (excluding
RuntimeException).

• If not, the compiler will fail the code.
– Guarantees that exception will be used correctly.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Integer.parseInt (2)

public static int parseInt(String s, int radix)

 throws NumberFormatException

{

 if (s == null)

 {

 throw new NumberFormatException("null");

 }

 if (radix < Character.MIN_RADIX)

 {

 throw new NumberFormatException

 ("radix " + radix + " less than

 Character.MIN_RADIX");

 }

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Integer.parseInt (3)

• For every invalid state detected in the method
body an exception is thrown.

• The method does not attempt to catch its own
exceptions.

• Catching is left to the caller of the method.

– Or caller of the caller of the method

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Integer.parseInt (4)

• When an exception is thrown the method
terminates immediately.

– without returning a value in the normal way.

• The exception is thrown back to the calling
method.

• The caller method either:
– catches the exception.

– or it terminates immediately and throws the
exception back to its caller.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Integer.parseInt (5)

parseInt(String s, int radix)

parseInt(String s)

f()

Error –
Throw

Throw on without catching

Catch and handle

Call

Call

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Propagating exceptions

• Passing an exception up through a chain of active
method calls is called propagation.

• The active methods calls are those still in
progress, leading to the point where the exception
occurred.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Uncaught Exceptions

• If an exception is passed back to the main method
without being caught the program will terminate with an
error.

– However, program won’t compile if exception must be
caught.

• I.e., subclass of Exception (excl. RuntimeException).

• Good design and testing practice will avoid this
happening...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Stack class revisited…

• Define a StackException class.

• Any Stack method that can fail should throw an exception
(e.g., empty/full stack).

• Stack does not catch its own exceptions.

• Clients of Stack must be prepared to catch the exceptions.

– The calling method, or a method that calls it, must have a
catch block for the exception.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Stack client

public void aMethod(Stack<String>
aStack)

{

 String s;

 try

 {

 s = aStack.pop();

 }

 catch (StackException e)

 {

 // Do something to recover

 // from problem

 }

 // ... rest of method

}

34

public void aMethod(Stack<String>
aStack) throws StackException

{

 String s = aStack.pop();

 // ... rest of method

}

or

The method or a
method that calls it

must contain the catch
block.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

When to use Exceptions

• The normal sequence of events fails.

– I/O and user action.

– Method cannot proceed and there is no practical return value
(e.g., parseInt).

– Need to return control to a method at top of call stack.

• Not a substitute for using return.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Issues…

• Too many exceptions require too many try/catch
blocks.

– Complicates code.

– Can reduce readability.

– Many methods need throws declaration.

• But can simplify.

– Some code is written assuming no errors, so
simpler.

• A balance is needed.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

Local v. Global

• Some local operation (parseInt, open file) may fail.

– Deal with problem locally and proceed.

• Top level method(s) catch exceptions from
anywhere in program.

– Terminate current operation but leave program
running.

– Top level strategy for handling errors (e.g., save
data).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

More Information

• Read the text book.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

Summary

• Exceptions allow errors to be represented and handled in
a safe way.

• Java uses the try, catch & throw mechanism.

• Throwing an exception forces client code to do something.

• Don’t forget finally.

