COMP1008
Associations , Static,
and Overloading

© 2006, Graham Roberts

Outline

* Quick review of relationship between class
associations and references.

¢ The dreaded static.
* Overloading.

© 2006, Graham Roberts

Classes and Program Structure

» A program consists of a collection of classes.

* Those classes define the abstract structure of the
program in terms of the relationships or associations
between the classes.

* When the program is run, the associations are
realised by object references.

© 2006, Graham Roberts




Representing Associations
* An association between two classes means that an

object of one class has a reference to an object of
another class.

Has-Capital
Country City
class Country In UML an association is bi-
{ directional by default.
. X . In the implementation, we usually
private City capital, want a uni-directional reference

only. This can be made explicit in
UML by adding an arrow head to
} one end of the association.

© 2006, Graham Roberts

Representing Associations (2)

* The type used to represent the association needs to
be determined correctly.

1 6
Board /” Square
{
private Square[] squares = new Square[64];
/I or

/I ArrayList<Square> squares = new ArrayList<Square>();

}

© 2006, Graham Roberts

Representing Associations (3)

» Aggregation/Compositions are treated in the same

way but we may need to be careful about sharing
objects.

Manages p

Message List K> 0= Message

class MessagelList

{

private List< messages = new ArrayList();

© 2006, Graham Roberts




Representing Associations (4)

Employee Employer

WorksFo
name : String *—é companyName : String
age : int 0.. 1

getEmployee(name)
addEmployee(name, age,
getName() department)
getAge()
getDepartment()

department : String

* Need to decide if Employee has reference to Employer.

» If both have references to each other, then they mutually reference each
other.

* This creates compilation and initialisation issues.
— Which is compiled first, how is an Employee object initialised?
+ Mutual references often indicate a design problem. Avoid if possible.

© 2006, Graham Roberts 7

Static

+ Why are some methods and variables declared as
static?

* It depends on whether variables or methods “belong”
to the class or to instance objects of the class.

© 2006, Graham Roberts 8

Static (2)

* Non-static variables are instance variables.
— Each object gets its own independent copy of each variable.
« Static variables are class variables.

— A single copy of each variable exists and can be accessed
by any other method in the class.

class Test

{

private int instanceVar;
private static int classVar;

© 2006, Graham Roberts 9




Example

* Count number of times a method is called for all
instance objects of a class.

private static int count = 0;
public void f()
{

count++;

/I Rest of method...

}

© 2006, Graham Roberts 10

final

+ Public static variables are often used to create
symbolic constants.
— E.g., Math.PI (static variable Pl in class Math)
» Such variables are additionally declared final:
— public static final double Pl = 3.141;
» The value of a final variable cannot be changed by
assignment.

© 2006, Graham Roberts 11

Static (3)

* Non-static methods are instance methods.
— An instance method must be called for an object of the class.
— x.method(args);
— or method(args) if called on the same object.

+ Static methods are class methods.

— Not called on an object.
« Can still write obj.staticmethod().

— Can be called by any method declared by the class, or any
method at all if public.

— Cannot access instance variables (no object).

© 2006, Graham Roberts 12




Example — Singleton

class MyClass {
private static MyClass instance;
private MyClass() { ... }
public static MyClass getlnstance() {
if (instance == null) { instance = new MyClass(); }
return instance;

} Allow a single
instance object only to
/I Rest of class b
© 2006, Graham Roberts 13
.
Static (4)

public class X

{

Each object has
its own instance
variable i.

private int i;
public void f(){i = 10; }

X a=new X(); Assi ttoi :
a=newX(); | Asgnmentio! b

X b = new X(), variable in the

object method f is

a.f(); called for. O

b.f();
© 2006, Graham Roberts 14

o
Static (5) One variable i
only.
public class X AN
{ . N
private static int i;

public static void f(){}

}
X a=new X(); \

X b =new X(); X:

00 b:
a.f();
b.f(); Al calling the ,\
Xf(), static method. Can think of
this as a ‘class
object’.

© 2006, Graham Roberts 15




Questions

© 2006, Graham Roberts

Initialisation

* We have seen that constructors can be used to
initialise instance variables.

» Both class and instance variables can also be directly
initialised by initialisation expressions.
» private int x = 2;

© 2006, Graham Roberts

Initialisation (2)

* And also by an initialiser block

— Declared in a class outside of any methods.
private Stack x;

{ x = new Stack(); x.push(1); x.push(2);}
» Astatic initialiser block can be used for static
variables.
private static Stack x;
static { x = new Stack(); x.push(1); x.push(2);}

© 2006, Graham Roberts




Choosing

» 3 ways to initialise - how do you choose?
* No single answer but:

— aim to initialise a variable as close to the point of declaration
as possible.

— or group all initialisation into the constructor, so it is all in the
same place.

© 2006, Graham Roberts

More than one constructor

« Aclass can have more than one constructor.

» Each can be used to initialise objects in a specific
way.

« But won't all the constructors have the same name?

* Yes.

© 2006, Graham Roberts 20

Overloading

* Two or more methods or constructors can have the
same name.

* But must have different arguments.
— String()
— String(bytel])
— String(charf])
— String(String)
— String(byte[], int)

© 2006, Graham Roberts 21




Overloading (2)

* Return types are not considered:
— int f(int)
— float f(int) // Error
— int f(int,int) // OK
— float f(int, float) // OK
— intf() // OK
* The compiler determines which method to call by
matching the argument types.

© 2006, Graham Roberts 22

this
« this is special variable that is automatically declared in

an instance method.

* ltis a reference to the object the method was called
for.

» Allows you to refer directly to the current object.

© 2006, Graham Roberts 23

this (2)

class T

{
private Thing t;
public int f(int x)

{ Pass a reference to
. LN, current object to
t.doSomethlng(thIS), another method called
} on a different object.

© 2006, Graham Roberts 24




this (3)
class T
{
private int x;
i ; Don't forget
public int f(int x) his idiom.
{
this.x = x;
}
}
© 2006, Graham Roberts 25

this (4)

* Can also be used to call a different overloaded
constructor:
/I This constructor does the real work
T(int x, inty, String z) { ... // Do the initialisation}

Avoids duplicating

initialisation code in
T() I SUppIy default values another constructor.

this(0,0,”Hello”);
} Only allowed in
another constructor of
the same class.
© 2006, Graham Roberts 26

Summary

» Looked at various details of the construction and use
of classes.

* Overloading is a new variety of abstraction.

* Lots of details for the programmer to know about and
use carefully.

© 2006, Graham Roberts 27




