
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Associations , Static,

and Overloading

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Outline

• Quick review of relationship between class
associations and references.

• The dreaded static.
• Overloading.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Classes and Program Structure

• A program consists of a collection of classes.
• Those classes define the abstract structure of the

program in terms of the relationships or associations
between the classes.

• When the program is run, the associations are
realised by object references.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Representing Associations

• An association between two classes means that an
object of one class has a reference to an object of
another class.

class Country
{
 private City capital;
 ...
}

In UML an association is bi-
directional by default.

In the implementation, we usually
want a uni-directional reference

only. This can be made explicit in
UML by adding an arrow head to

one end of the association.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Representing Associations (2)

• The type used to represent the association needs to
be determined correctly.

class Board
{
 private Square[] squares = new Square[64];
 // or
 // ArrayList<Square> squares = new ArrayList<Square>();
 ...
}

Note size constraint

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Representing Associations (3)

• Aggregation/Compositions are treated in the same
way but we may need to be careful about sharing
objects.

class MessageList
{
 private List< messages = new ArrayList();
 ...
}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Representing Associations (4)

• Need to decide if Employee has reference to Employer.
• If both have references to each other, then they mutually reference each

other.
• This creates compilation and initialisation issues.

– Which is compiled first, how is an Employee object initialised?
• Mutual references often indicate a design problem. Avoid if possible.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Static

• Why are some methods and variables declared as
static?

• It depends on whether variables or methods “belong”
to the class or to instance objects of the class.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Static (2)

• Non-static variables are instance variables.
– Each object gets its own independent copy of each variable.

• Static variables are class variables.
– A single copy of each variable exists and can be accessed

by any other method in the class.
class Test
{
 private int instanceVar;
 private static int classVar;
}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Example

• Count number of times a method is called for all
instance objects of a class.
private static int count = 0;
public void f()
{
 count++;
 // Rest of method…
}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

final

• Public static variables are often used to create
symbolic constants.
– E.g., Math.PI (static variable PI in class Math)

• Such variables are additionally declared final:
– public static final double PI = 3.141;

• The value of a final variable cannot be changed by
assignment.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Static (3)

• Non-static methods are instance methods.
– An instance method must be called for an object of the class.
– x.method(args);
– or method(args) if called on the same object.

• Static methods are class methods.
– Not called on an object.

• Can still write obj.staticmethod().

– Can be called by any method declared by the class, or any
method at all if public.

– Cannot access instance variables (no object).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Example – Singleton

class MyClass {
 private static MyClass instance;
 private MyClass() { … }
 public static MyClass getInstance() {
 if (instance == null) { instance = new MyClass(); }
 return instance;
 }
 // Rest of class
}

Allow a single
instance object only to

be created.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Static (4)

public class X
{
 private int i;
 public void f(){ i = 10; }
}

X a = new X();
X b = new X();
a.f();
b.f();

f(){}

f(){}

a:

b:

int i

int i

Each object has
its own instance

variable i.

Assignment to i
affects only the
variable in the

object method f is
called for.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

public class X
{
 private static int i;
 public static void f(){}
}
X a = new X();
X b = new X();
a.f();
b.f();
X.f();

Static (5)

X:

a:

b:

int i

Can think of
this as a ‘class

object’.

All calling the
static method.

One variable i
only.

f(){}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Questions

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Initialisation

• We have seen that constructors can be used to
initialise instance variables.

• Both class and instance variables can also be directly
initialised by initialisation expressions.

• private int x = 2;

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

Initialisation (2)

• And also by an initialiser block
– Declared in a class outside of any methods.

private Stack x;
{ x = new Stack(); x.push(1); x.push(2);}

• A static initialiser block can be used for static
variables.

 private static Stack x;
 static { x = new Stack(); x.push(1); x.push(2);}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Choosing

• 3 ways to initialise - how do you choose?
• No single answer but:

– aim to initialise a variable as close to the point of declaration
as possible.

– or group all initialisation into the constructor, so it is all in the
same place.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

More than one constructor

• A class can have more than one constructor.
• Each can be used to initialise objects in a specific

way.
• But won’t all the constructors have the same name?
• Yes.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Overloading

• Two or more methods or constructors can have the
same name.

• But must have different arguments.
– String()
– String(byte[])
– String(char[])
– String(String)
– String(byte[], int)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Overloading (2)

• Return types are not considered:
– int f(int)
– float f(int) // Error
– int f(int,int) // OK
– float f(int, float) // OK
– int f() // OK

• The compiler determines which method to call by
matching the argument types.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

this

• this is special variable that is automatically declared in
an instance method.

• It is a reference to the object the method was called
for.

• Allows you to refer directly to the current object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

this (2)

class T
{
 private Thing t;
 public int f(int x)
 {
 t.doSomething(this);
 }
}

Pass a reference to
current object to

another method called
on a different object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

this (3)

class T
{
 private int x;
 public int f(int x)
 {
 this.x = x;
 }
}

Don't forget
this idiom.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

this (4)

• Can also be used to call a different overloaded
constructor:
// This constructor does the real work
T(int x, int y, String z) { ... // Do the initialisation}

T() // Supply default values
{
 this(0,0,”Hello”);
}

Only allowed in
another constructor of

the same class.

Avoids duplicating
initialisation code in
another constructor.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Summary

• Looked at various details of the construction and use
of classes.

• Overloading is a new variety of abstraction.
• Lots of details for the programmer to know about and

use carefully.

