
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Other OO Languages

C++ and Ruby

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Agenda

• Categories of Object-Oriented Languages
• Type Checking
• C++
• Ruby

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Other Object-Oriented Languages

• Many OO languages exist.
• Only a minority are in widespread use.

– See http://en.wikipedia.org/wiki/Object-oriented_programming#History
– and similar websites.

• Java is one of the most popular and actively used.
• All share the same underlying ideas and concepts.
• Try some other languages yourself!

3

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Categories of OO Languages

• Fully compiled to machine code run directly by
processor:
– C++, Eiffel, (Ada95)

• Compiled to bytecode run by virtual machine:
– Smalltalk, Java, (C#)

• Interpreted and scripting languages:
– Ruby, Python, JavaScript

4

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Type Checking

• Check that code follows language syntax and
grammar specification.

• Check that variables and values have correct type.
• Check that values of different types are not mixed up.

– e.g. void d = true + 10;
• Check that methods are called with correct kind of

parameters.
• And so on.

5

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Static v. Dynamic Type Checking

• Static type checking is done by the compiler.
– Compiler checks and enforces the type rules.

• Dynamic type checking is done while a program is
run.
– Runtime code checks types of values/objects are correct.

• Compiled languages typically use static type checking
but need some dynamic checking as well.
– C++, Java have extensive static checking.
– But, Java does make significant use of dynamic checking.

6

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Static v. Dynamic Type Checking (2)

• Static
– Advantages:

• An entire category of errors can be detected before a program is ever
run.

• Errors are reported early during compilation.
• Type safety.

– Disadvantages
• Can be complex.
• Program code longer (due to type declarations, etc.) and takes more

time to write.
• Limits, or makes more complicated, what can be expressed with the

language.
• More complicated and slower compilers.

7

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Static v. Dynamic Type Checking (3)

• Dynamic
– Advantages:

• Flexibility, greater ease of expression.
• Allows more dynamic code (e.g., reflection, self-modifying code).
• Don’t need to declare variables, types, etc. before use.
• Coding speed.

– Disadvantages:
• Type checking delayed until code is run.
• Type errors may not be found for some time.
• Less information in source code for understanding what it does.

8

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Static v. Dynamic Type Checking (4)

• Which is best?
• Long running and contentious debate!

– Static checking seen as good for larger, more complex
programs.

– Dynamic checking seen as good for rapid development,
prototyping and agile development.

– Static checking has been fairly dominant for several decades
but dynamic checking on rise again.

9

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Strong v. Weak Typing

• With a strongly typed language all type errors will be detected.
– Either by the compiler or at runtime.

• With a weakly typed language type errors are ignored.
– Binary representation just used without checking

• e.g., Use an binary may represent an int but used as float.

– Defaults used, e.g., treat everything as a string.
– Or errors just happen.

• C++, Java, Ruby, Python, Smalltalk are all strongly typed.
– Weakly typed languages are typically used for scripting,

e.g., bash shell script.

10

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++

• Well established, heavy-weight OO language.
– Has sunk a bit under its own weight, though.

• Compiles direct to machine code, so seen as good for
performance.

• Derived from C, which was developed with Unix.
• Syntax and many features inherited by Java.
• Widely used for systems programming and application

development.

11

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Language

• Big and complex.
• Fully supports OO programming.

– Methods called functions (& member functions).

• Also supports procedural programming (no classes)
– Upwardly compatible with the C programming language.

• Standard libraries, including STL (standard template
library).

• No virtual machine so gives direct access to memory.
• Efficient compilers can generate high-performance

code.

12

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Compilation

13

Source File Source File Source File

Compiler

Linker

Object File Object File Object File

Executable
Program

Linking combines
object files into single
executable program.

.o file contains
binary code

compiled from
source file.

Library Code
Library Code

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Compiler

• Many available
• Lots of programmers use GCC, the GNU Compiler

Collection
– Major Free Software Foundation project.

• See http://gcc.gnu.org/
– Supports C, C++, Objective-C, Objective-C++, Java, Fortran

and Ada.
– Operating Systems like GNU/Linux and OS X are written in

C/C++ and compiled by GCC.
– g++ command used for C++ compilation (gcc for C).

14

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Declaration v. Definition

• A declaration introduces a name and its type.
– Declarations are put into a header file, a .h file.

• A definition defines what a name is.
– e.g., provides a function body.
– Definitions are put in a .cpp (or .cc) file.

• Compiling a .cpp file typically requires one or more
hearder files to be included.

• Linking a complete program requires all the
declarations and definitions to be consistent.

15

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Class Person Header File
#include <string>
#include <vector>

using std::string;
using std::vector;

class Person
{
 private:
 string firstName;
 string familyName;
 vector<string> emailAddresses;

 public:
 Person(string firstName, string familyName);
 string getFullName();
 void addEmailAddress(string email);
 vector<string> getEmailAddresses();
};

16

Include header files for string
and vector library classes.

Vector is like ArrayList.

std::string means string in
standard namespace.

Using allows string to be used
instead of std::string.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Class Person Member Functions
#include "Person.h"

Person::Person(string firstName, string familyName)
 : firstName(firstName), familyName(familyName)
{}

string Person::getFullName()
{
 return firstName + " " + familyName;
}

void Person::addEmailAddress(string email)
{
 emailAddresses.push_back(email);
}

vector<string> Person::getEmailAddresses()
{
 return emailAddresses;
}

17

Include Person header file in
order to declare class.

Declare member functions using
Person:: to identify which class

function belongs to.

Class can be compiled using:
g++ -c Person.cpp

Creates Person.o, unlinked binary
code representation.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Using Class Person
#include <iostream>
#include "Person.h"
using std::cout;
using std::endl;

void show(vector<string> v) {
 cout << "---" << endl;
 vector<string>::iterator iter;
 for (iter = v.begin(); iter != v.end(); iter++) {
 cout << *iter << endl;
 }
 cout << "---" << endl;
}

void usePerson() {
 Person p("Arthur","Dent");
 cout << "Person fullName: " << p.getFullName() << endl;
 p.addEmailAddress("dent@earth.com");
 p.addEmailAddress("dent@earth.co.uk");
 show(p.getEmailAddresses());
}

int main (int argc, char* const argv[]) {
 usePerson();
 return 0;
}

18

main function where
execution starts.

cout << “message” is like
System.out.println

<< is the inserter operator.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Running Program
From the command line:
> g++ -c Person.cpp
> g++ -c main.cpp
> g++ -o Person Person.o main.o
> Person
Creates an executable program called Person.

For simple programs can do this in one step:
> g++ *.cpp
> a.out
This creates an executable program called a.out.

19

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Objects and Memory

• The C++ Person class looks like it works the same
way as the Java version.
– Object references pointing to objects.

• But it is not...
• C++ has a more complex memory model.

– Gives programmer control but programmer must understand
how memory is used.

20

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Variables and Objects
Person p("Arthur","Dent");
Person q("Ford","Prefect");
...
q = p;

• Variable p actually holds the Person object, not a reference to it.
• The assignment copies the object.
• Hence in the Person example:

– objects passed as parameters
– objects returned from methods
– and objects used in assignment expressions

are all copied.
• No references, changing copy doesn't change original.
• Memory allocation is handled automatically.
• C++ allows a copy constructor to control copying.

21

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Using Pointers

• We have to rewrite C++ Person to use pointers, to
make it behave like the Java version.

• A pointer is a memory address.
• A pointer variable stores the address in memory

where the object is located.
– Like a reference but a pointer is a real memory address.

22

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Person Header with Pointers
#include <string>
#include <vector>

using std::string;
using std::vector;

class Person2
{
 private:
 string* firstName;
 string* familyName;
 vector<string*>* emailAddresses;

 public:
 Person2(string* firstName, string* familyName);
 ~Person2();
 string* getFullName();
 void addEmailAddress(string* email);
 vector<string*>* getEmailAddresses();
};

23

* is used to denote a pointer type.
Person* is pointer to Person (object).

Objects are allocated on the Heap
(heap object).

Also have to
introduce a
destructor.

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

p:

Note - this is an example, not
necessarily normal practice.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

C++ Person Member Functions with Pointers
#include "Person2.h"
Person2::Person2(string* firstName, string* familyName)
: firstName(firstName), familyName(familyName) {
 emailAddresses = new vector<string*>();
}
Person2::~Person2() {
 delete firstName;
 delete familyName;
 vector<string*>::iterator iter;
 for (iter = emailAddresses->begin(); iter != emailAddresses->end(); iter++) {
 delete *iter;
 }
 delete emailAddresses;
}
string* Person2::getFullName() {
 return new string(*firstName + " " + *familyName);
}
void Person2::addEmailAddress(string* email) {
 emailAddresses->push_back(email);
}
vector<string*>* Person2::getEmailAddresses() {
 return emailAddresses;
}

24

* also used as dereference
operator to follow pointer and

access object.
-> is also a dereference
operator to call function.

Destructor must be declared to
delete object and anything it

points at. No garbage
collection.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Using Person with Pointers
#include <iostream>
#include "Person2.h"
using std::cout;
using std::endl;
void show2(vector<string*>* v) {
 cout << "---" << endl;
 vector<string*>::iterator iter;
 for (iter = v->begin(); iter != v->end(); iter++) {
 cout << **iter << endl;
 }
 cout << "---" << endl;
}
void usePerson2() {
 Person2* p2 = new Person2(new string("Ford"), new string("Prefect"));
 std::cout << "Person fullName: " << *(p2->getFullName()) << endl;
 p2->addEmailAddress(new string("dent@earth.com"));
 p2->addEmailAddress(new string("dent@earth.co.uk"));
 show2(p2->getEmailAddresses());
}
int main (int argc, char * const argv[]) {
 usePerson2();
}

25

new is used to create
objects

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Pointers and Memory

26

person:

Local variable in
stack memory

Objects in heap
memory

Person
object string

object

string
object

vector
object

string
object

string
object

...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

delete

• C++ no garbage collection.
• Heap Objects must be deleted explicitly using the delete

operator.
• If an object has pointers to other objects, then code must

be written to delete all the objects.
– Hence, the need to declare a destructor function.

• If a heap object is not deleted it remains in memory.
– A memory leak occurs when heap objects are not

deleted (a bug).
– If the program is run long enough, memory can run out

even though the objects cannot be used.

27

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Pointer Arithmetic

• A reference in Java can only be used in a controlled
way.

• A pointer in C++ can be changed by addition and
substraction.
– Any location in data memory can potentially be accessed.
– Any piece of memory could be treated as an object, whether

it holds an object or not.

28

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Pointer Errors

29

Memory

Location
of object

Location
accessed
by pointer

Person* p = new Person("Arthur","Dent");

p = p + 2; // pointer arithmetic
p->getFullName(); // Runs and tries to use whatever is in memory as a Person object.

// May or may not fail, depending on memory content.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

No Pointers in Java

• Pointers give a lot of power, but:
– Programmer must get use correct.
– Programmer must manage memory, new/delete.
– Can easily be abused.
– Allows encapsulation to be completely bypassed.
– Cause of many bugs in C++ programs.

• Pointers can lead to very efficient code.
• Java deliberately replaced pointers with references

and memory management.
– To eliminate a large source of errors.

30

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Questions?

31

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Ruby

• An interpreted language.
– No compiler.
– An interpreter reads program text line by line and carries out

each statement.
• This can be optimised.

– Trade-off performance for flexibility and rapid programming
(no time compiling).

• Small, light-weight language.
• Very strongly typed, dynamically type checked.

32

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Ruby Class Person — Person.rb
class Person
 def initialize(firstName,familyName)
 @firstName = firstName
 @familyName = familyName
 @emailAddresses = []
 end

 def getFullName
 @firstName + " " + @familyName
 end

 def addEmailAddress(address)
 @emailAddresses << address
 end

 def getEmailAddresses
 Array.new(@emailAddresses)
 end

33

No type
declarations

needed

@name used to
denote an instance
variable. Variable is

added to object
when used.

Constructor
method

An empty
array

Append to
array

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Using Ruby Class Person
person = Person.new("Arthur","Dent")
puts person.getFullName
person.addEmailAddress "arthur@earth.com"
emails = person.getEmailAddresses
puts emails.length
puts emails[0]
person.addEmailAddress "arthur@HoG.com"
emails = person.getEmailAddresses
puts emails.length
puts emails[0..-1]

Displays:
Arthur Dent
1
arthur@earth.com
2
arthur@earth.com
arthur@HoG.com

34

Run using the command:
ruby Person.rb

Ruby interpreter reads file
and interprets code line by

line.

This code can simply be
appended to the source file
after the class declaration.
Note that no class, method
or main has to be declared.

puts (put string) is used to
display output.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Ruby, objects and memory

• Like Java, Ruby uses object references.
• Provides garbage collection.
• Strong dynamic typing means that only methods

declared by object’s class can be called.
– But Ruby language provides more ways of declaring

methods than Java.
• Everything is an object, no primitive types.

– e.g., 1.next => 2 (call method next on 1)

35

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Summary

• Strong v. Weak Type Checking
• Static v. Dynamic Type Checking
• C++, compiled OO language
• Ruby, interpreted OO language

36

