
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Implementing Data Structures
Binary Trees and Hash Tables

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Trees

• Trees are another variation of data structures based
on linked elements.

• They use a hierarchical organisation of elements
rather than straight chains.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Trees (2)

node

leaf node

root

child
nodes

parentLevel 0

Level 1

Level 2

height = depth = 3

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Trees (3)

• Crucial properties of Trees:

– Links only go down from parent to child.

– Each node has one and only one parent (except root
which has no parent).

– There are no links up the data structure; no child to
parent links.

– There are no sibling links; no links between nodes at
the same level.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Trees (4)

• Trees are immensely useful for sorting:

– insertion automatically sorts!

• and searching:

– sorted structure minimises the number of comparisons.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Ordered Binary Trees

• The simplest kind of tree.

root

3 14

9

37

68

54

This is a complete
binary tree.

Each node has a
maximum of 2 child

nodes.

Nodes are ordered
so that left child

nodes have a value
less than parent,
right child nodes

greater than or equal
to parent.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Ordered Binary Trees (2)

 // A binary tree node

 private static class TreeNode

 {

 public Node(Comparable o, TreeNode l, TreeNode r)

 { value = o ; left = l ; right = r ; }

 Comparable value ;

 TreeNode left;

 TreeNode right;

 // etc...

 }

Anything put in a
binary tree must be

Comparable.

Not a generic class but
doesn't need to be as value

stored in node must be
Comparable.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Ordered Binary Trees (3)

public class BinaryTree

{

 private class TreeNode { … }

 private TreeNode root = null ;

 public BinaryTree() { ... }

 public void insert(Comparable obj) { ... }

 public void delete(Comparable obj) { ... }

 public boolean includes(Comparable obj) { ... }

 // Iterator(s)

 public Iterator iterator() { ... } // But which order?

 ...

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Binary Tree Iteration

• Four ways of iterating through a tree:

– In-order.

– Pre-order.

– Post-order.

– Level-order.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Binary Tree Iteration (2)

• Pre-order, post-order and in-order are related since
they just rearrange order of iteration.

– Depth-first searches.

• Level-order is different.

– Breadth-first search.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Binary Tree Iteration (3)

root

3 14

9

37

68

54

In-order: 3, 9, 14, 37, 54, 68
Pre-order: 37, 9, 3, 14, 68, 54
Post-order: 3, 14, 9, 54, 68, 37
Level-order: 37, 9, 68, 3, 14, 54

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Binary Tree Iteration (4)

In-order iteration:

 public void inOrder ()

 {

 if (left != null) { left.inOrder(); }

 System.out.println(value);

 if (right != null) { right.inOrder(); }

 }

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Binary Tree Iteration (5)

Pre-Order Iteration:

public void preOrder ()

{

 System.out.println(value);

 if (left != null) { left.preOrder(); }

 if (right != null) { right.preOrder(); }

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Binary Tree Iteration (6)

Post-Order Iteration:

public void postOrder ()

{

 if (left != null) { left.postOrder(); }

 if (right != null) { right.postOrder(); }

 System.out.println(value);

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Binary Tree Iteration (7)

• Level-order iteration.

• Need a queue of nodes:

void levelOrder()

{

 create empty queue

 add root node to queue

 while (queue is not empty)

 {

 Node n = get and remove node at front of queue

 print n.value

 add n.left to end of queue

 add n.right to end of queue

 }

}
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Binary Tree Iteration (8)

• Actually need a family of iterator classes and
iterator() methods in class BinaryTree.

• But all iterator classes can implement interface
Iterator.

• Once specific iterator is selected, client code doesn’t
need to now which kind it is.

– Programming to an interface.

16

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Searching Ordered Binary Tree

• Use node value to determine whether to go left or right.

boolean search(int n)

{

 if (value == n) {return true;}

 if ((value < n) && (left != null))

 {return left.search(n);}

 if ((value >= n) && (right != null))

 {return right.search(n);}

 return false;

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

More Trees

• Only looked at basic binary trees,

• But there are many more kinds

– AVL trees

– Balanced trees

– etc.

• See text book.

18

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Map

• In mathematics a map (aka function) relates
members of one set to members of another set:

 m : X ! Y

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Arrays

• Arrays (and ArrayLists) are implementations of
maps:

 array : int ! Y

• For example:

 char array[20] ;

 array[3] = ‘c’ ;

 array[5] = ‘w’ ;

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Generalise: Keys and values

m : X ! Y

• For example:

– Key type String.

– Value type PhoneNumber.

– Mapping from names to phone numbers.

Key Value

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Hash Table

• An structure that implements a map from any class
type to any class type.

– For example:

map : String ! Colour

Colour c = (Colour)a.get(“green”) ;

• Need a data structure to store mapping.

– Want O(1) access.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Mapping

• Want to implement a generalised mapping, so:

– Set up a mapping from the key to an int value,

– and then use the int as an array index.

G : X ! int

H : int ! Y

m = H . G

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Hash Function

• Use a hash function to map the search key into an
integer that can be used as an index into the array:

int hash(X key);

• The hash function must:

– return an integer within the array bounds of the storing
array.

– map keys consistently and evenly to the integers.

• Don’t want too many keys mapping to same integer.

– be quick to calculate.

• Hard to write a good hashing function.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Hash Function example

• Consider the case where keys are strings.

• Need a mapping from the string to an integer array
index.

• If we use characters as the key then:

int key = (key[0] + 3*key[1]) % tableSize

• is a possible hash function.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Hash Function (3)

• Hashing is so important that in Java every object has
a hash code to enable easy storage in hash tables
and other data structures.

• See the method hashCode implemented by all
objects.

– Inherited from Object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Hash Function (4)

• Given that there are more keys that array entries,
there will be “multiple hits” or collisions.

– The hash function will return the same integer for a
number of keys.

• Need a mechanism for handling this.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Chained Hashing

• The hash table is an array of linked nodes (like
linked lists).

• The first stage of search is to use hash function to
access array element.

• The second stage of search is a linear search along
the linked chain of nodes at array element.

• The chains allow for overflow when hash values
collide.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Chained Hashing (2)

array

chains

key value keyvalue key value

keyvalue keyvalue

key value

A good hash function keeps
chains even lengths, otherwise
table turns into a linked list...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Chain Node Class

private static class Node

{

 public Node next ;

 public Object key ;

 public Object val ;

 etc.

}

Like a LinkedList node,
but with an extra field.

Rest of class is a
simplified list class.

Non-generic version using
Object references.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Hash Table class

class HashTable

{

 private static class Node { ... }

 private Node[] table =

 new Node[tableSize] ;

 . . .

}

Hash table has a
fixed size array of

nodes.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Chained Hashing (3)

• Values are inserted by:

– Hashing key and performing array index.

– Creating new node.

– Inserting new node at head of chain.

• Look-up:

– Hash key and perform array index.

– Linear search of chain to find node with matching key.

– Return value from node.

• Allows duplicate key/values pairs to exist.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

Open Hashing (1)

• Have seen linked lists used as the overflow
technique in an hash table.

• There is one other major technique for handling
hash collisions: open hashing.

– Also known as linear probing.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Open Hashing (2)

• The array holds the data itself (object reference), not
chains of nodes holding the data.

• If the slot determined by the hash function is full,
linearly search down the array for the next empty
slot.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Open Hashing (3)

x

x

x

Node array with
some elements

used (marked x).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

x

x

x

37

Open Hashing (4)

Y

XY can be inserted
directly, but X
collides so a

search is made
along the array for

an unused
element.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Open Hashing (5)

• Can do this linearly, e.g. step by 1 if there is a clash.

• Can also do this quadratically, or even exponentially.

• But number of elements that can be stored is limited
by array size.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Hash Table Summary

• Various implementations.

• Maps one type to another.

• Widely used, useful data structure.

• O(1) access and update.

39 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Example code

• See the 1008 web page for example code for a
Linked List, Binary Tree and Chained Hash Table.

• Make sure you study this code and understand how
it works.

• See PartII of text book for in-depth description of
data structures.

• See Java Collections Framework for classes
provided with Java.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

You Should...

• Understand the principles of lists, trees and hash
tables.

• Understand iterators.

• Be able to implement straightforward list, binary tree
and hash table classes.

• Be able to write code that uses chains or trees of
element/node objects.

• Be able to select the right data structure for the job
in hand.

41 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

Summary

• Looked at the key data structures:

– List

– Tree

– Hash Table (Map)

• All rely on object references (pointers).

• Have different performance properties.

