
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Implementing Data Structures

Lists

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Outline

• Classes and abstract data types.

• Iterators

• List Elements

• Lists

• Note – here we deal only with the implementation of
data structures. 1b12 and 1b13 cover the properties
of data structures.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

A Class as a Data Abstraction

class Pair

{

 private int x ;

 private int y ;

 ...
 public Pair(int a, int b)

 { ... }

 ...

}

A new data
abstraction is
created here.

Also a new type.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Using a class...

. . .

Pair p = new Pair(1, 3) ;

Pair q = new Pair(34, -23) ;

. . .

• A Pair can now be directly used, rather than having
to manage two separate variables.

• Pair is (a bit) more abstract and hides unwanted
detail that would otherwise intrude.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Data Abstraction

• We know a class declaration creates a User Defined
Type.

• We can also use a class as an implementation of a
data abstraction or data type.

• An Abstract Data Type (ADT) provides a
specification of a data type.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Abstract Data Types (ADTs)

• An abstract data type is:

– A set of values.

– A set of operations relating values of the type.

– Specified formally (mathematically).

• An abstract data type description is abstract (!).

• It does not specify representation or algorithm.

– Only behaviour.

6

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

A Stack ADT

Stack<T>

 operations:

create: ! Stack

push: Stack<T> x T ! Stack<T>

pop: Stack<T> ! Stack<T> x T

top: Stack<T> ! T

isEmpty: Stack<T> ! Boolean

7

Operation
signatures

(types)

Parameterised Type:
Stack of T

(T is a type variable)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

A Stack ADT (2)

Stack

 axioms:

isEmpty(create) = true

isEmpty(push(s, e)) = false

top(create) = EXCEPTION

top(push(s, e)) = e

pop(create) = EXCEPTION

pop(push(s, e)) = (s,e)

8

Behavioural
specification

push(s,e) means push
value e on stack s,

returns a stack.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Abstract Data Types and Classes

• A class can be used to provide an implementation
that conforms to an ADT specification.

• Typically ADTs are associated with data structures.

– Collections or Containers.

– Collections are objects that act as containers in which
other objects (or really object references) are stored.

– List, Tree, ArrayList, Graph, Hash Table, etc.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Why abstract?

• Abstraction builds on the idea of using lower-level
concepts to implement higher level constructs.

• These higher level concepts effectively extend the
language by introducing new features to the
language (via new classes).

• Thus, we are raising the level of the language we
are using.

– Important principle, don’t want to do everything at the
lowest level.

10

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Abstraction Layers

Base language

Library

Framework

Application

User

Java

Classes & ADTs

Components

Word Processor

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Questions?

12

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Implementing a container

• Obviously use a class…

• Need a data structure to store contained object
references:

– one or more instance variables (private of course).

• Need algorithms to implement access operations as
methods.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Implementation properties

• Need to consider:

– Memory use.

– Speed of operation.

• Typically trading off one property against another.

• Need to select implementations that match the
needs of your program.

– Typically have several implementations, conforming to
the same interface for same abstraction.

– List -> ArrayList, LinkedList.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Iterators

• Every container class has to provide a mechanism
for accessing each element in sequence.

• Such a mechanism is called an iterator.

• Algorithms such as linear searching, comparison,
function application depend on use of iterators.

• An iterator aims to decouple element access from
container implementation.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Iterator Protocol

• Ideally we want a common iterator protocol across
all of our container classes.

– Make Iteration look the same for all container classes.

• Java provides a Collections Framework that includes
various container classes and provides Iterator as
the iterator protocol.

16

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Familiar container - the Array!

• An array is a container but it is primitive and there is
no class Array* (although arrays are actually
objects).

• An array is a collection of items of the same type.

• The number of items is fixed.

• Efficient but low-level abstraction.

• *OK, there is a class Array but it is a collection of
static utility methods.

17 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Array Iteration

int[] array = new int[42] ;

for (int j = 0 ; j < array.length ; j++)

{

 doSomething(array[j]) ;

}

for (int n : array.length)

{

 doSomething(n) ;

}

18

Array indexing.
Depends on integer

index mapping to
element.

Enhanced for loop.
More generic and will

work for other
containers that cannot
be indexed by integers.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Iterator Objects

• General abstraction of iteration.

ArrayList<String> a = new ArrayList<String> () ;

...

for (Iterator<String> i = a.iterator() ; i.hasNext() ;)

{

 doSomething(i.next()) ;

}
Iterator object stores state

of iteration and gives
access to next object

reference.

Ask ArrayList
object for an

iterator.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Iterator v. Enhanced For Loop

• The enhanced for loop actually uses iterator objects.

– Loop syntax mapped to creating/using iterator.

– Works properly with nested loops.

• Container class should implement Iterable interface
to work with enhanced for:

interface Iterable<E> {

 Iterator<E> iterator();

}

– Call iterator method to get iterator object.
• Container class responsible for provide correct iterator that

works with its representation.

20

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Iterator

• Type Iterator declared as an interface.

 public interface Iterator<E>

 {

 boolean hasNext() ;

 E next() ;

 void remove() ; // May not be supported by

 // implementing class

 }

21 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Interface Reminder

• An interface declares a collection public methods.

– All methods are abstract - no method bodies.

– No instance variables.

– A class implements an interface and must override the
methods.

– (Like an abstract class declaring only abstract
methods.)

22

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Iterator Class

class MyIterator<E> implements Iterator<E>

{

 // Must override methods

 // declared in the interface.

}

• An iterator object allows each value in a collection to
be visited in turn (iterated).

• A variable of type Iterator can reference an object of
an implementing class.

• Iterator<String> iterator = new MyIterator<String>(...);

23 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Iterating

public <E> void print(Iterator<E> iterator)

{

 while (iterator.hasNext())

 {

 System.out.println(iterator.next());

 }

}

• Can print contents of any data structure that can
provide an Iterator implementation.

• Class of actual iterator object does not need to be
known.

24

Programming to
an interface.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Iterator classes

• Typically declared as a nested class.

– Inside (member of) a container class.

– In the container class scope, so has access to private
data.

– Iterator object can access container object to get data.

– Examples later.

25 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Linked Lists

• A linked list is implemented as a chain of linked
elements (objects).

Head

1 3

7

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Linked Lists

• Each element or node consists of a stored value and
a reference to the next element.

• A reference is maintained to the head of the list.

• An individual element is located by following the
chain from the head.

– Sequential access.

• Elements in a list (or vector, or array) are stored in
sequence.

• Accessing elements relies on the sequence.

• A list is a sequence container.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Inserting/Removing a Value

• An element is inserted or removed by manipulating links.

• There is no need to shift other elements to add/remove
space.

• Head/End are
special cases.

Head

1 3

7

5

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

List v. LinkedList v. ListElement

• To implement a LinkedList class we will have:

– interface List<E>, defining public methods that all kinds
of lists have.

– class LinkedList<E>, defining a list implementation
using a chain of elements.

– class ListElement<E>, defining a list element used by
LinkedList

• ListElement will be part of the private implementation of
LinkedList.

• Not accessible externally.

30

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

List<E> Interface

public interface List<E> extends Iterable<E> {

 void insertHead(E val);

 E getHead();

 List<E> getTail();

 boolean isEmpty();

}

31

Extend the Iterable
interface, so our Lists
will provide a standard

iterator.

Plus Iterator<E>
iterator() inherited from

Iterable.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

List Element<E>

 private static class ListElement<T> {

 public ListElement<T> next;

 public T val;

 public ListElement(ListElement<T> next, T val) {

 this.next = next;

 this.val = val;

 }

 public ListElement<T> copy() {

 return new ListElement<T>(next == null ? null : next.copy(), val);

 }

}

Nested in class
LinkedList.

Helper method for
copying chain of

elements.

This is a private
infrastructure class so

val and next are public,
and can be directly
accessed in class

LinkedList.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Using ListElements

• If a version of ListElement<T> is made a top level class, it
could be used to created chains of objects directly.

– Without a LinkedList class.

• Would need to provide methods to use the chain (add,
remove, search, etc.).

• Useful where a full LinkedList class is not needed.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

LinkedList<E>

public class LinkedList<E> implements List<E> {

 private ListElement<E> head;

 private static class ListElement<T> { // As seen on previous slide}

 public LinkedList() {

 head = null;

 }

 private LinkedList(ListElement<E> e) {

 head = e;

 }

 public void insertHead(E val) {

 head = new ListElement<E>(head, val);

 }

Private constructor is useful
for LinkedList implementation

but not meant to be used
publicly.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

LinkedList<E> (2)

public E getHead() {

 if (head == null) { return null; }

 else { return head.val; }

 }

 public List<E> getTail() {

 if ((head == null) || (head.next == null)) {

 return new LinkedList<E>();

 }

 return new LinkedList<E>(head.next.copy());

 }

public boolean isEmpty() {

 return head == null;

 }

35

Note that tail of list is
copied.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

List Iterator

• To provide an iterator, LinkedList should create and
return an Iterator object.

– Iterator knows how to access elements from the
LinkedList implementation.

– Iterator class will be another nested member class to
have access to the LinkedList class scope.

– Implements the Iterator interface, so will be a standard
kind of iterator.

36

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Getting an Iterator

• Ask the LinkedList:

public Iterator<E> iterator() {

 return new LinkedListIterator<E>(head);

}

• Declared in class LinkedList.

• Can have multiple iterators active at same time.

• But if list changes during iteration, iterator may break.

– Unless a more sophisticated implementation is used.

37 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

LinkedListIterator

 private class LinkedListIterator<T>

 implements Iterator<E> {

 private ListElement<E> current =

 new ListElement<E>(head,null);

 public LinkedListIterator(ListElement<E> e) {

 current = e;

 }

 public boolean hasNext() {

 return (current != null)

 && (current.next != null);

 }

 public E next() {

 if (current != null) {

 current = current.next;

 return current.val;

 }

 return null;

 }
38

 public void remove()

 {

 throw new UnsupportedOperationException();

 }

 }

Another nested
member class.

Remove is declared
in Iterator interface

so must be
implemented. But is

not supported so
throws an exception.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

Linked List Properties

• Inserting/removing at beginning.

• Insertion/removal in middle can be fast once the
location is found.

• But there is the potential cost of linear access – O
(n).

• Good for situations when elements are repeatedly
inserted and deleted.

– And where linear access is required.

– And where number of elements is unknown or changes
frequently.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Double-Link List

• Links in both directions.

• Head and tail references.

• Some algorithms easier to implement but extra
storage cost for each element.

tail

head

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Inserting?

• Provided a “Lisp style” list that provides head/tail
operations.

– car & cdr functions

– Natural for divide & conquer style recursive algorithms.

– Search the web for more about Lisp.

• But what about inserting elements at any position in
the list?

41 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Insert Iterator
private class LinkedListInsertIterator<T>

 extends LinkedListIterator<E>

 implements InsertIterator<E> {

 private ListElement<E> last = current;

 public void insert(E value) {

 if (head == null) {

 insertHead(value);

 current = new ListElement<E>(head,null);

 return;

 }

 if (current != null) {

 current.next = new ListElement<E>(current.next,value);

 }

 }

42

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Summary

• Lists are a basic data structure build from chains of
elements.

– Exploits properties of references (pointers).

– Not fixed size, can grow and shrink.

– Suitable where data structure size changes frequently.

– But O(n) sequential access.
• Start from head and search.

• Not good good for searching/sorting.

43

