
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Unit Testing Classes

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Testing in practice

• Test always and often.

– Re-run all your tests every time you edit and compile any

code.

• This implies that testing is a core activity of the

programming process.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Repeatable

• Tests must be repeatable.

• Test data should be the same each time a test is run.

• New tests should be added and existing tests

retained.

• “Ad Hoc” testing is no good.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Automated

• Testing should be automated.

– A test framework runs the tests and checks the results.

• Manual testing is error prone and boring.

– It won’t be done properly. Ever.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Thinking about a Test

• Purpose – what is being tested and why?

– What is the specification of the method/class being tested.

• Design – how does a test advance the design.

• Test data – data used for testing.

• Test procedure – how the test is carried out.

• Expected results – what you expect to happen.

• Likely errors – is the test doing something likely to find

an error?

• Confidence – does the test give you confidence your

code is correct?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Test First

• Write your test first.

– Work in small steps.

• Then the program code you need to be tested.

– If the test is hard or impossible to write your program design

is wrong.

• Use testing to find errors as early as possible.

• Use testing to guide the design your program.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Testing Class Based Programs

• All classes must be tested, individually (unit testing)

and in collaboration (functional testing).

• The program as a whole is also tested (acceptance

testing).

• Primarily concerned with unit testing here.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

JUnit – www.junit.org

• JUnit is a very widely used unit test tool.

• Lightweight and straightforward to use.

– You will be using it lots next year in 2007.

• Visit the web site and see what you make of it.

– Use JUnit to test your mini-project.

• v3.8.1 has been in use for several years

• v3.8.2 recently released (minor updates)

• v4 also now released.

– Rewritten for Java 5.

– Not using it here.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

JUnit (1)

• A testing framework.

• Provided as a jar (library) file, junit.jar.

– Must be on your classpath (see web)

• Integrated into tools like BlueJ and Eclipse.

– For this course BlueJ is recommended.

– See www.bluej.org.

9 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Unit?

• A “unit” is a specific piece of functionality.

– A class.

– A method.

– A set of related methods.

– A behaviour.

• Fine grained.

– Basic principle is to work one small step at a time.

10

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Test

TestSuite TestResultTestCase

Assert

TestRunner TestListenerYour test
classes

0..*

{I}{A}

{A}

{I}

JUnit (2) Basic JUnit Framework

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

TestCase

• A test class you write is a subclass of TestCase

– Inherits the ability to run tests.

• A TestCase contains one or more test methods.

– Literally methods whose name starts with test:

• public void testGetName()

• public void testResult()

• A TestCase creates and initialises one or more fixture

objects.

– A fixture is an object used for testing by calling its methods.

12

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Assertions

• A test asserts something is true:

– assertTrue(value == 3)

– assertEquals(”UCL”,obj.getName())

– assertNull(aRef)

• If an assertion fails, the test containing the assertion

fails.

– Or really, the test succeeded in finding an error.

13 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Testing Process

• Create and initialise fixture object(s).

• Call public methods and check results.

– Either those returned directly,

– Or by calling another public method to check state of object.

• Private methods/variables are tested indirectly via

public methods.

– If you lack confidence that this is good enough, change your

design or scrap the code.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Example – Book class

public class Book {

 private String title;

 private String author;

 public Book(String title, String author) {

 this.title = title;

 this.author = author;

 }

 public String getTitle() {

 return title;

 }

 public String getAuthor() {

 return author;

 }

}

In this case we need to test
that objects are properly

initialised.

Note that instance objects
are immutable.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

class BookTest

public class BookTest extends junit.framework.TestCase

{

 private Book b;

 protected void setUp() {

 b = new Book("a","b");

 }

 public void testGetTitle() {

 assertEquals("a",b.getTitle());

 }

 public void testGetAuthor() {

 assertEquals("b",b.getAuthor());

 }

}

16

Test Methods

setUp Method to
initialise fixture.

Fixture object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Running the tests (1)

• From command line:

java junit.textui.TestRunner BookTest

• Displays

..

Time: 0.012

OK (2 tests)

17 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Running the tests (2)

• Using the GUI TestRunner

java junit.swingui.TestRunner BookTest

18

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Running the Test (3)

• From BlueJ (use right button menu on BookTest icon)

19

Green Bar — GREEN

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

If a test fails...

20

Red Bar — RED

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Running tests

• This happens automatically:

– call setUp to initialise fixture(s).

– run test.

– call optional tearDown method to remove fixtures.

• A test always runs with a new copy of the fixture(s).

– Running one test must not affect running another.

21 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Class Library (1)
public class Library

{

 private String name;

 private ArrayList<Book> books;

 public Library(String name) {

 this.name = name;

 books =

 new ArrayList<Book>();

}

public String getName() {

 return name;

}

 public void addBook(Book b) {

 books.add(b);

 }

22

 public Book searchByTitle(String title) {

 for (Book b : books) {

 if (b.getTitle().equals(title)) {

 return b;

 }

 }

 return null;

 }

}

Void method - result
of calling it will be tested
by using search method.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Class LibraryTest (1)

public class LibraryTest extends junit.framework.TestCase

{

 private Library library;

 protected void setUp() {

 library = new Library("name");

 library.addBook(new Book("a","b"));

 }

 public void testGetName() {

 assertEquals("name",library.getName());

 }

// Continues on next slide

23

Initialise fixture.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Class LibraryTest (2)
 public void testSearchByTitle() {

 Book b = library.searchByTitle("a");

 assertNotNull(b);

 assertEquals("a",b.getTitle());

 }

 public void testAddTwoBooks() {

 library.addBook(new Book("c","d"));

 Book b1 = library.searchByTitle("a");

 assertNotNull(b1);

 assertEquals("b",b1.getAuthor());

 Book b2 = library.searchByTitle("c");

 assertNotNull(b2);

 assertEquals("d",b2.getAuthor());

 }

}

24

Tests depends on
addBook
in setUp.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Run the tests...

25 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

If there are errors...

26

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Reminder: Basic Strategy

• Test the public methods.

• Methods that return a value: call the method and

check value returned.

• Void method: call method and then call another non-

void method to check right thing happened (e.g.,

addBook then search).

• Work one test at a time.

• Take small steps.

• Keep it simple (YAGNI - You Ain't Gonna Need It).

• DRY - Don't Repeat Yourself.

27 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Can’t test this method...

• Modify or get rid of it!

• Or add a non-void method to return a value that can

be checked.

• Having testable code is more important than “perfect”

design.

– But no excuse for being sloppy.

– Rethink if getting messy.

28

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Can I test...

• GUIs, database access, file handling, networking...

• Yes! But beyond the scope of this introduction.

– Wait for next year.

29 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

What do I need to know now?

• The basic ideas, as shown in the example:

– Test class as subclass of TestCase.

• Collection of tests.

– Using fixture(s) - objects to test.

– setUp method to initialise fixture(s).

• New fixtures created for every test.

– Test methods - call method and check result.

• Use assertions.

30

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Try it out!

• Use BlueJ and try out some examples.

31 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Summary

• Testing is a core part of the design and programming

process.

• Testing is used to find bugs and errors, so they can be

fixed at the earliest opportunity.

• Test early, often and always.

• Testing relies on establishing an acceptable degree of

confidence, not on “proof”.

• Testing is essential!

