
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Testing

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Perfection

• Do your programs work perfectly?

• Are you perfect?

No!!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Perfection, or Lack of It

• No program is perfect.

• Programs will have errors.

• Often see quotes like:

– “On average program code has 10 errors per 1000 lines…”

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

 Two V’s

• Verification

– “Are we building the system right?”

– Testing code.

• Validation

– “Are we building the right system?”

– Testing behaviour against requirements.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Testing

• Testing is really about trying to find bugs.

– By actually running the code.

• Testing cannot show your program will always work

properly — only the deluded believe this can be

done!

• But it can remove sufficient bugs to make your

program “good enough”.

• Testing allows you to gain confidence in your code.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Testing and Proof

• To prove something we must show:

 ∀x • P(x)

• This implies we have to explore every possible state a

program can be in.

• But...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Testing and Proof (2)

• Take, for example, the sqrt method.

• To “prove” it works we would have to call it with every

possible floating point value.

• So if 264 = 18446744073709551616 # 1019 and we do

106 operations per second then this is 1013 seconds,

which is 106 years.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Testing and Proof (3)

• The philosophy behind all testing should be the finding

of errors.

– Need to identify tests most likely to uncover errors.

• No “proof” can be constructed that no errors exist.

– Just have the situation that no tests find any errors.

– The next test you add may find an error…

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Making testing sqrt manageable

• We still have the problem of 1019 possible values that

could give us an error.

• So, we need to focus on floating point values that:

– Are representative of typical input values.

– Might cause an error.

• But how do you find them?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Testing the sqrt Method

• We can start by studying the domain of the method.

– sqrt partitions the floating point numbers into 3 sets:

 x < 0

 x = 0

 x > 0

• And by looking at the method to see what the code

does and where potential errors might be.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Equivalence Classes

• Select values that are representative of the distinct

classes of input values.

– x >= 0 looks OK to test.

– x < 0 is a problem as we need to represent complex

numbers...

• Ignore it.

• Return an error value.

0
∀x•x > 0 ∧ sqrt(x) ∈ R∀x•x < 0 ∧ sqrt(x) ∈ C

∀x•x = 0 ∧ sqrt(x) = 0

!"!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Boundary Conditions

• Want to also focus on boundary conditions:

– 0.0, 1.0, 2.0, 3.0

– MIN_DOUBLE, MAX_DOUBLE

– .3, .33, .333, etc.

– 0.0000000000001, 0.11111111111111, etc.

– -0.0, -1.0

– numbers that might cause under/overflow in sqrt algorithm.

• Can use the code itself to help identify boundaries.

– If and loop statements.

– Maths expressions.

• But what level of accuracy (decimal places)?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Running Tests

• Select representatives from each of the sets to

construct the test data set.

• Create a test harness — a program to call sqrt with

the elements of the data set.

– Or use a test framework.

• Run the program and compare the results with what

was expected (which you need to work out some

other way!).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Most Basic Approach (not recommended in general)

public void testSqrt()

{

 System.out.println("sqrt(1.0) = " + Math.sqrt(1.0)) ;

 System.out.println("sqrt(2.0) = " + Math. sqrt(2.0)) ;

 System.out.println("sqrt(3.0) = " + Math. sqrt(3.0)) ;

 System.out.println("sqrt(10.0) = " + Math. sqrt(10.0)) ;

 System.out.println("sqrt(100.0) = " + Math. sqrt(100.0)) ;

 System.out.println("sqrt(1000.0) = " + Math. sqrt(1000.0)) ;

 System.out.println("sqrt(0.0) = " + Math. sqrt(0.0)) ;

 System.out.println("sqrt(-1.0) = " + Math. sqrt(-1.0)) ;

 // etc…

}

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Most Basic Approach (2)

sqrt(1.0) = 1.0

sqrt(2.0) = 1.4142135623730951

sqrt(3.0) = 1.7320508075688772

sqrt(10.0) = 3.1622776601683795

sqrt(100.0) = 10.0

sqrt(1000.0) = 31.622776601683793

sqrt(0.0) = 0.0

sqrt(-1.0) = NaN ?!

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

NaN?

• Not a Number.

• Value used when result of floating point operation

cannot be represented.

• This version of sqrt will return NaN for any

argument < 0.

• For this equivalence class, have “solved” problem by

updating specification of method.

– Implies method must check for input less than zero.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Using a different sqrt method implementation

sqrt(1.0) = 1.0
sqrt(2.0) = 1.4142135623746899
sqrt(3.0) = 1.7320508100147274
sqrt(10.0) = 3.162277665175675
sqrt(100.0) = 10.000000000139897
sqrt(1000.0) = 31.622776601684336
sqrt(0.0) = NaN !!!
sqrt(-1.0) = NaN Different results!

Which are correct?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

But

• This is quickly going to get boring and error prone.

– Manual checking process.

– OK for 10 tests,

– Tedious for 100 tests,

– Mind-numbing for 1000 tests.

– Mistakes will be made.

• Need an automated approach.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Automate

• Write a test harness program that reads data from

data structure or file.

• Get program to run tests and check the results.

19 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

public void test(double input, double expected, double delta)

{

 double sqrtValue = Math.sqrt(input);

 double diff = Math.abs((sqrtValue - expected));

 if (diff > delta)

 {

 System.out.print("Invalid result for sqrt("+input+"),");

 System.out.print(" expected: " + expected);

 System.out.println(", got: " + sqrtValue);

 }

}

20

Note how doubles
are compared.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

 public void testDataSet(double[][] data)

 {

 for (int i = 0 ; i < data.length ; i++)

 {

 test(data[i][0],data[i][1],0.00001);

 }

 }

 public void run()

 {

 double[][] d1 = new double[][]

 {{1.0,1.0}, {2.0,1.4142135}, {3.0,1.7320508},

 {10.0,3.1622776}, {100.0,10.0}, {0.1,0.316227},

 {0.0,0.0}, {-1.0,Double.NaN}

 };

 testDataSet(d1);

 }

21

Or read data

from a file.

But can do better than

this using a proper

testing framework

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

So, just how do you write sqrt anyway...

22

 public static double sqrt(final double x) {

 final double precision = 0.0000001;

 if (x < 0.0) {

 return Double.NaN ;

 }

 if (x <= precision) {

 return 0.0 ;

 }

 double a = 1.0 ;

 while (Math.abs(a*a - x) > precision) {

 a = (a + x/a)/2 ;

 }

 return a ;

 }

12

Newton Raphson approximation

Obvious boundary conditions

Potential overflow

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Summary

• Test to find errors.

• Use a test harness program.

– Let it do the repetitive hard work.

• Do enough tests to be confident in your code.

23 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

What does this mean for your code?

• Each method should be tested.

– Check value returned for given parameter values.

– For a void method, call a second method to observe the

results.

• e.g., adding an object to a data structure using void add(...), results in
the size increasing by one.

• Need accurate specification of what method is meant

to do.

• Use method implementation to focus on potential

problems.

– e.g., loop counting one too many/few times.

24

