
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Overview of

File Handling

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Streams

• Have seen FileInput and FileOutput classes.

– They are wrappers for the library file handling classes.

• Now want to look at Java library classes for file I/O.

• A stream is a sequence of values with a source and
destination:

– write/output: Program Data -> File.

– read/input: File -> Program data.

• Java libraries define a number of stream classes.

– Reader/Writer for dealing with character formatted data (e.g.,

unicode characters).

– InputStream/OutputStream for dealing with unformatted data

(bytes).

2

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Class File

• Provides a representation for file/directory pathnames.

– Not the actual files/directories.

• Also provides methods to operate on the files/directories
named.

• Creating a File object specifies name/path only:

– File myFile = new File("data.txt");

– File myDirectory = new File("/users/person/directory);

• See the Javadoc for full details.

3 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Manipulating Files/Directories

• File class contains number of methods to manipulate files:

– exists

– isFile

– delete

– createNewFile

– renameTo

• For directories can use:

– mkdir

– listFiles

– isDirectory

4

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

PathNames

• Different operating systems represent paths with different
separators:

– Unix: /cs/students/fred/coursework

– Windows: C:\cs\students\fred\coursework

• File class will attempt to translate given path to style
supported on current machine

– but c:\ is a problem...

– also note that for \ you need to use an escape:

• c:\\cs\\students\\fred\\coursework

• Can use File.separator instead of \ or /.

5 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Listing files

• Like the ls command

import java.io.*;

import java.util.*;

public class LS {

 public static void main(String[] args) {

 File currentDirectory = new File(".");

 String[] contents = currentDirectory.list();

 Arrays.sort(contents);

 for (int i = 0; i < contents.length; i++)

 { System.out.println(contents[i]); }

 }

}

6

"." stands for current

directory - where

program is run

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

FileReader

• FileReader opens file for reading:

– throws exception if open fails

– FileReader reader = new FileReader("filename");

– FileReader reader = new FileReader(fileObject);

• Provides basic set of read methods:

– read character (mapped to character set).

– read array of characters.

• Also has close method to close stream.

7 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

FileWriter

• FileWriter opens file for writing:

– throws exception if open fails

– FileWriter writer = new FileWriter("filename");

– FileWriter writer = new FileWriter(fileObject);

• Provides basic set of write methods:

– write character.

– write array of characters.

– write String.

• Also has close method to close stream.

– Important to close file, otherwise some data may not be

written to file.

8

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

FileWriter (2)

• Opening an existing file for writing, deletes existing
contents,

• Unless append mode is selected:

– FileWriter writer = new FileWriter(fileObject,true);

• Used for writing character based data.

9

All FileReader/Writer methods throw

exceptions. Must use try/catch blocks or

write methods with a throws declaration.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Copying a text file

import java.io.*; // Note the import

public class Copy {

 public static void main(String[] args) throws IOException {

 File inputFile = new File(args[0]);

 File outputFile = new File(args[1]);

 FileReader in = new FileReader(inputFile);

 FileWriter out = new FileWriter(outputFile);

 int c;

 while ((c = in.read()) != -1) { out.write(c); }

 in.close();

 out.close();

 }

}

10

java Copy file1 file2

Copy one character at a

time. Read returns -1

when no more data.

Note exception

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

File Input/Output Streams

• Streams read/write byte data.

– Raw data.

– Use for binary data.

• FileInputStream

• FileOutputStream

11 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Copy any file as bytes

import java.io.*;

public class CopyBytes {

 public static void main(String[] args) throws IOException {

 File inputFile = new File(arg[0]);

 File outputFile = new File(arg[1]);

 FileInputStream in = new FileInputStream(inputFile);

 FileOutputStream out = new FileOutputStream(outputFile);

 int c;

 while ((c = in.read()) != -1) { out.write(c); }

 in.close();

 out.close();

 }

}

12

Copy one byte at a time.

Type int used to store

byte.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

PrintWriter

• A kind of Writer that reads its input (source), formats it, and
writes to an output.

• System.out is actually a PrintWriter.

– Provides character-based formatted output of primitive types

and Strings.

• Can chain together Writer/Stream objects:

• PrintWriter pw = new PrintWriter(new FileWriter(...));

– Can also create a PrintWriter directly on to a file using a File

object.

– Data -> PrintWriter (format) -> FileWriter -> text file

– Use print/println methods.

13 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

BufferedReader

• Reader that reads an entire line of text into a buffer and
provides a readLine method to read complete line into a
String

 BufferedReader in

 = new BufferedReader(new FileReader("data.txt"));

• String s = in.readLine();

• String can then be converted to other types (int, double,
etc.)

– This is what FileInput does.

14

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Counting Words
import java.io.*;

import java.util.*;

public class WordCount {

 public static void main(String args[]) throws IOException {

 Map<String,Integer> counts = new HashMap<String,Integer>();

 BufferedReader br = new BufferedReader(new FileReader(args[0]));

 String line;

 while ((line = br.readLine()) != null) {

 countWords(line, counts);

 }

 String[] keys = counts.keySet().toArray(new String[0]);

 Arrays.sort(keys);

 for (String word : keys) {

 System.out.println("Word: " + word + " count: " + counts.get(word));

 }

 br.close();

 }

15

Use a Map to store

word counts. Then

display map.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Counting Words (2)

 public static void countWords(String line, Map<String,Integer> counts) {

 StringTokenizer st = new StringTokenizer(line);

 while (st.hasMoreTokens()) {

 incrementCount(counts, st.nextToken());

 }

 }

 public static void incrementCount(Map<String,Integer> counts, String word) {

 Integer count = counts.get(word);

 if (count == null) {

 counts.put(word, 1);

 } else {

 counts.put(word, count + 1);

 }

 }

16

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Scanner

• Class that "scans" input and translates to required type.

– Library class that does what FileInput does.

import java.io.*;

import java.util.*;

public class ScanFor {

 public static void main(String[] args) throws IOException {

 Scanner s = new Scanner(new BufferedReader(new FileReader(arg[0])));

 while (s.hasNext()) {

 System.out.println(s.next());

 }

 s.close();

 }

}

17

hasNext returns true if

there is more to scan.

next returns next token

(word separated by

whitespace).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Reading Doubles

import java.io.*;

import java.util.*;

public class SumFile {

 public static void main(String[] args) throws IOException {

 Scanner s = new Scanner(new BufferedReader(new FileReader(arg[0])));

 double sum = 0;

 while (s.hasNext()) {

 if (s.hasNextDouble() {

 sum += s.nextDouble();

 }

 else { next(); }

 }

 s.close();

 System.out.println(sum);

 }

}

18

Read double or skip if

input cannot be

converted to a double.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Other Reader/Writers

• StringReader, StringWriter

– read/write to/from strings rather than files or writers.

• InputStreamReader

– Convert from stream to reader.

• OutputStreamWriter

– Convert from writer to stream.

• Plus a family of InputStream and OutputStream classes.

19 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Summary

• Just an overview

– Readers/Writers

– Input/Output Streams

• Family of classes, providing wide range of features.

• See
http://java.sun.com/docs/books/tutorial/essential/io/index.html

for more information.

20

