
© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1007
 Methods

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Review so far

• We have:

– sequence, iteration, selection.

– variables, assignment, operators.

– expressions, statements and compound statements.

– and other useful bits.

• We want to build classes.

• But we need more building blocks...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Longer programs

• So far we have written rather

small programs.

• We want to write bigger and

more interesting programs!!

• Really long programs.

• But using only loops and selection

doesn’t scale up.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

But...

• We start to get management problems.

• Working with a huge long list of simple statements is

tedious.

• Worse, it is hard to see what the program does

without plodding through the detail.

• There’s just no real structure...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Repetition...

• The same sub-sequence of

statements often occurs in

several places…

• And loops don’t help.

• Bad news - we don’t want to

have duplicate lines of code.

Same!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Suppose...

• We take a sub-sequence of statements and give it a

name.

• And package the name and statements together.

square: Print a square of stars

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Abstraction in action!

• We can now refer to ‘square’ to denote the statement

sequence.

• Write the sequence once and refer to it from many

places in the program.

• Wow - we’ve exploited abstraction!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Method

• The name + statement sequence gives us a method

(a routine to do something).

• We can use the name to call the method on an object:

obj.square();

Note the parentheses.
We use them

 to denote a call being
made.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Calling you...

obj.square();

obj.square();

obj.square();

• The method can be repeatedly called as many times

as we want.

• But only needs to be written and debugged once.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Procedures, functions?

• Some programming languages have procedures or

functions don’t they?

• Yes, but Java is Object-Oriented.

• Objects have methods.

• A method is called for an object.

– Remember robot.forward() etc.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Methods and Classes

class MyClass

{

 public void methodOne()

 {

 // Statements

 }

 public void methodTwo()

 {

 // Statements

 }

 etc…

}

A class can declare a number

of methods.

Each method can be called

on an instance object of the

class.

MyClass obj = new MyClass() ;

obj.methodOne() ;

obj.methodTwo() ;

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

So let’s write a square method...

class MyClass

{

 public void square()

 {

 for (int i = 0 ; i < 4 ; i++)

 {

 System.out.println(“****”);

 }

 }

 // More methods can be added here.

}

Note that the

method is declared

in a (very simple)

class.

Hey, I’ve been writing

methods all the time!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

public void

• public — the method can be called from anywhere

within a program. Providing it is called on an object

that is accessible.

• void — is a type, the empty type that has no values. It

means our method returns no value.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Calling square()

Class MyClass

{

 // …

 public static void main(String[] args)

 {

 MyClass myObject = new MyClass();

 myObject.square();

 myObject.square();

 myObject.square();

 }

}

Create an object using new, then
call the square method.

Remember, a class defines
how an instance object is

implemented.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

main?

• The method named main has a special role.

– It is public.

– Is void (returns no value).

– It is the first method called to start the program running.

• Create an object, call methods.

– And static…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Static?

• A static method does not need to be called on an

object.

• Main has to be static as there are no objects available

before it is called…

• Main creates the initial object(s) needed by the

program and calls their methods.

– The object(s) then do the work.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Other static methods?

• Your exercise classes only ever need to declare one

static method – main!

• Don’t write any other static methods.

– Static methods do have valid uses as providers of utility

functions and services.

– But you need to know when to use them.

– If in doubt don’t.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

What is a program?

• Our view of what a program is starting to develop:

– Not simply a sequence of statements.

– But a collection of objects described by classes, where the

objects call each other’s methods.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Writing a program

• Identify objects needed.

– Responsibilities and collaborations.

• Identify classes from objects.

• Write classes.

– Methods, variables, etc.

• Run program by creating object(s) in a main method,

and then calling object methods.

– Objects then call each other’s methods.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Multiple Main Methods

• Each class can have a main method.

– But only one per class.

• Typically one is used to run the program.

– The rest can be used for things like testing objects of each

class.

– Or showing examples of how to use the class.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Methods calling methods
class MyClass

{

 public void square()

 {

 // As already seen

 }

 public threeSquares()

 {

 square();

 square();

 square();

 }

 etc…

square() ; – where’s the object?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Same class

• When a method calls another method in the same

class:

– It is called for the same object.

• So: square()

– called for the same object threeSquares was called for.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Main…

public static void main(String[] args)

{

 MyClass myObject = new MyClass();

 myObject.threeSquares();

}

Here is the object.

square() will be
called on the same

object.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

this

Could write:

 public threeSquares()

 {

 this.square();

 this.square();

 this.square();

 }

this is a variable referring to the
object the method was called on.

this is automatically declared in
every method.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

This or not to this…

• Sometimes you have to use this.

• Most of the time it is a matter of style.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Very nice but...

• square can only display a 4x4 square.

• (And I cheat by displaying a whole line of stars at one

go!)

• How can we modify square to print any size square?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Parameters

• We want to parameterise square.

• That is, be able to write:

this.square(3); // 3x3 square

this.square(10); // 10x10 square

• We can say that square takes a parameter or

argument.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Square.2

public void square(int size)

{

 for (int rows = 0 ; rows < size ; rows++)

 {

 for (int cols = 0 ; cols < size ; cols++)

 {

 System.out.print(“*”);

 }

 System.out.print(“\n”);

 }

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Parameter variable

public void square(int size)

• When square is called – this.square(5) – the

argument is used to initialise the parameter variable.

• Inside the method body, the value of size can be used

(or changed by assignment).

• size is created and initialised by every call to square.

size is a parameter variable

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Parameterisation

• We now have a way of varying the behaviour of a

method depending on which argument value it is

called with.

• Square is now more general purpose.

• A better abstraction.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Where can size be used?

public void square(int size)

{

 // size useable here only

}

• The parameter variable can only be used inside the

method.

• In fact, it only exists while the method is executing.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Scope revisited

• We say that the scope of size is given by the method

body (which is a compound statement).

• A name can only be used inside the scope it is

declared in.

• Nothing outside the scope can see the name or use it.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

Lifetime revisited

public void square(int size)

{ … }

• When the scope is entered, size is created and

initialised.

• When the scope is exited, size is thrown away.

• The scope determines the lifetime of size.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

New size every time

public void square(int size)

{ … }

• Whenever the method is called, a new scope is

created.

• And a new size variable.

• Once the scope is exited the current size variable is

gone for good.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Compound statement (reminder)

• When you see a compound statement:

 {

 // Statements …

 }

• you are seeing a scope.

• This includes loop bodies, if statement bodies and

class declarations.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

Local scope (reminder)

while (n < 10)

{

 int x = n + 1 ;

 String s = “Hello”;

 …

}

A local scope

A Local Variable

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Local variables - temporary storage

• Declared within a compound statement, including a

method body.

• Local to that scope.

• Lifetime limited to that scope.

• Created when scope is entered.

• Thrown away when scope is exited.

• Every time!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

Scope must be obeyed

// result not declared before loop

while (x < y)

{

 int result = 0;

 … // Do something

}

result++; // ERROR, result not in scope

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Nesting Scopes

• You can nest compound statements, so scopes are

nested as well.

{

 // Outer or nesting scope

 {

 // Inner or nested scope

 }

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

41

Nested Scopes (2)

 {

 String day = “Monday”;

 …

 {

 day = “Tuesday”; // day is accessible in

 } // nested scopes

 ...

 }

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

But...

 {

 String day = “Monday”;

 …

 {

 String day = “Tuesday”; // ERROR day is

 … // already in scope

 }

 ...

 }

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

43

For loop scope rule

for (int i = 0 ; i < 10 ; i++) // i is a for loop variable

{

 System.out.print(i + " ");

}

i = 6; // Error, not in scope

for (int i = 0 ; i < 10 ; i++) // i can be re-declared here.

{ // The two i’s are different

 System.out.print(i + " "); // and the scopes disjoint.

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

44

Names can be reused

• Providing the same name is declared in disjoint

scopes, the name can be reused.

• If you are unsure about how the rules apply, write

some test programs to try them out.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

45

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

46

More parameters

• A method can have any number of parameters.

• But good practice means no more than 5 or 6

maximum.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

47

Another method

 public void rectangle(int nRows, int nCols, char c)

 {

 for (int rows = 0 ; rows < nRows ; rows++)

 {

 for (int cols = 0 ; cols < nCols ; cols++)

 {

 System.out.print(c);

 }

 System.out.print("\n");

 }

 }

rectangle(3,7,’#’) ;
rectangle(10,4,’+’) ;

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

48

Parameter Types

rectangle(int nRows, int nCols, char c)

• Parameter variables are declared with types.

• The values supplied in the method call must have

matching types:

rectangle(5,7,’c’); // OK

rectangle(2.3,5,”hello”); // Error!!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

49

Typical error message

• compiling: Rectangle.java

Rectangle.java:7: Incompatible type for method.

Explicit cast needed to convert double to int.

 rectangle(4.5,6,'#');

 ^

1 error

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

50

Remember main?

public static void main(String[] args)

• main is called to run your program.

• It takes a String array as an argument.

• What is the contents of the array when the method is

called?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

51

Command line arguments

• When you run a program you can type additional

arguments on the command line:

java MyProg hello world

Arguments to the program.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

52

Displaying the arguments

 public static void main(String[] args)

 {

 for (String arg : args)

 {

 System.out.println(arg);

 }

 }

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

53

You see:

Prompt> java Args a few words

a

few

words

Prompt>

Arguments displayed here.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

54

Functions

• Suppose we want a method that looks like a function.

– Like Math.cos(x), for example.

• Need to be able to do a calculation and return a value

from a method.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

55

return

• The return statement allows a method to return a

value:

public int f(int x)

{

 x *= 2;

 return x;

}

Return the
value of x.

Declare the type of

the value returned

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

56

Effect of return

• Can now write: int y = myObject.f(10);

• Return causes the method to terminate, and return a

value.

• (Effectively a jump to the end of the method body.)

• The type of the returned value must be declared.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

57

Must return a value

• If a method is declared as returning a type, then it

must contain a return statement.

• Otherwise the compiler will complain!

T2.java:8: Return required at end of int f(int).

 int f(int x)

 ^

1 error

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

58

Can have multiple returns

public int f(int x)

{

 if (x < 10)

 {

 return x * 2;

 }

 else

 {

 return x * 3;

 }

}

Notice that regardless

of what the value of x

is, one return statement

will always be executed.

This must always be the

case.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

59

Also

public int f(int x)

{

 return x * 2;

 System.out.println(x);

}

The print statement
can never be executed!

The compiler will treat
this as an error.

It uses flow analysis to
determine what can be

executed.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

60

Only one value

• A method can only return one value.

• Methods declared void don’t return values.

– public void f(int x) { … } // No return

• Void is the empty type and has no values that could

be returned.

– But can use return on its own to return from (terminate) a

void method.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

61

Methods as functions

• Methods can be written to look like mathematical

functions:

– sqrt, pow, sin, cos, log, etc.

• However, beware, not all function methods behave

like mathematical functions...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

62

Mathematical functions

• Always return the same value when applied to the

same argument(s).

– Referential transparency.

• But methods can be written to return different values

when called with the same argument(s).

• Methods can also have side-effects (e.g., doing input

or output).

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

63

Summary

• We now have methods.

• To make methods more useful we need parameters.

• Local variables, scope and lifetime, combine with

compound statements and method bodies.

• Methods can return values.

