
© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

1007
 Imperative Programming

Part II

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Agenda

• We’ve seen the basic ideas of sequence, iteration and

selection.

• Now let’s look at what else we need to start writing

useful programs.

Details now start to be really important.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Reading

Finish reading Part I, chapters 1 and 2.

Start looking at Part IV, the Java Language Reference.

Note, there is a lot of detail in these chapters. Don’t

expect to read them once and be done.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Displaying Messages

• Been using this to display text on the computer

screen. How does it work?

System.out.println(“Hello world”);

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Objects, of course!

• System.out.println(“Hello world”);

• out is another kind of object – a PrintStream object.

• A stream is a sequence of characters, with a source

and a destination.

• System.out is an object connected to the computer

display.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

println and print

System.out.println(“Hello world”) ;

• Display message, followed by a newline.

– next message appears on a next line.

System.out.print(“Hello world”) ;

• Just display message.

– next message appears on the same line as the last.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

\n

\n is the character representation of newline.

System.out.print(“Hello World\n”) ;

has the same result as:

System.out.println(“Hello World”) ;

System.out.println(“Hello World\n”) ;

will result in two newlines.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Displaying messages using a loop

// This is real Java syntax

while (true)

{

 System.out.println(“Hello”);

}

Hello for ever…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Counting

• How do we display our message just 10 times?

• We obviously need to count 1 to 10, then stop.

• We need a counter! How?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

A counter

• We need a container to hold a counter, which can be

incremented (add 1).

• The container is a Variable.

• A variable can hold an integer value we can count

with.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Let’s think variable

• A variable is a container:

• It can hold a value,

• and needs a name or identifier.

1myVariable

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

What is a value?

• Values are things like an integer or floating point

number, or a character, or text…

• Values themselves are abstract, intangible.

• So we use representations of values in order to work

with them.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Representations

• 1, I, One, one, one, ONE

– all representations of one.

• In the computer, integers are represented by binary

numbers (e.g., 32-bit 2s complement binary

numbers).

– 11001010010111010000110001111001

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Other representations

• Floating point numbers are represented using IEEE

754 format.

• Characters are represented by Unicode binary

character codes.

• Text by a sequence of characters.

• Boolean by binary zero or one.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Why talk about representations?

• Representations have finite ranges.

– 32-bit integer ranges from -2147483648 to 2147483647

• A variable holding an integer representation cannot

have a value outside the range.

• Floating point representations are approximations.

– Need to check results very carefully.

Note the use of this phrase.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Type

• A variable container is very specific about the kind of

values it can hold.

• A type defines what kind of value.

• To use a variable you have to state what type of value

it can hold.

• We typically say “a variable has a type”.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

Common types

• boolean – true or false

• int – 32-bit 2’s complement integer

• long – 64-bit 2’s complement integer

• char – 16-bit unsigned Unicode character code

• float – 32-bit floating point

• double – 64-bit floating point

(Check book for more detail)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Just checking - What has type?

• A value has a type that defines what kind of value it is.

• A variable has a type that determines what kind of

values it can hold.

• To store a value (or really its representation) in a

variable, the types must match.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Shape?

• It may help to think of a type denoting a shape.

• Only values of the right shape can fit in a variable of a

given shape.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Type int

• int is the name of the integer type (32-bit 2’s

complement).

• A variable named size of type int can be declared

like this:

int size;

• You must declare a variable before you can use it.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Declaration?

• Anything you name (such as a variable) must be

introduced first, in order to know what is being named.

• The introduction, or declaration, gives the name and

type of the thing being named.

• Once declared a name can be used but not before.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Missing declaration...

• If you use a name that has not been declared the

Java compiler will complain!

compiling: T1.java

T1.java:5: Undefined variable: counter

 counter = 10 ;

 ^

1 error

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Primitive types

• The types listed earlier (and a few others) are

primitive types.

• Why? They are directly represented by typical

processors (and, hence, the JVM).

• They are the most efficient.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Non-primitive types?

• Yes, they not only exist but will be very important.

• Every kind of value we use must have a type:

Address, BankAccount, Date, Book,…

• Non-primitive types are abstractions, constructed from

primitive types.

• They are classes.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

String

• String is the type of a sequence of character or text:

– “This is a String”

• It is a non-primitive type that is widely used.

• A String is actually an object.

• There is a class String.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Integer variables

• What can you do with them?

• First declare your variable:

– int myInteger;

• What is the value of this variable?

• It hasn’t got one – you must give it one before you can

use it.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Initialising

int myInteger = 10;

• Declare myInteger and give it an initial value.

• Always, ALWAYS, initialise a variable.

• Actually you have no choice! The Java compiler will

make sure you do.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

10?

• 10 is a literal value of type int.

• All primitive types have literal values that can be used

directly in a program.

• 3.141 is a floating point literal of type double.

• true and false are the boolean literals.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

More initialising

• double d = 1.23456789;

• boolean b = false;

• char c = ‘a’;

• float f = 1.234F;

• int x = 0xff;

• String s = “Hello”;

(Many more examples in book.)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Changing a variable’s value

• A variable is changed by an assignment expression.

age = 20;

• The value 20 (or really its representation) is stored

into the variable container.

• The old value is overwritten and lost.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

= or =

• Note that we have now used = for two things.

int length = 5;

length = 20;

• Intialisation v. assignment.

• Subtle but different.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

State

• The state of a program is given by:

– the Java Virtual Machine

– the value of the variables

• The basic idea of computation is to transform the

initial state to the final state.

• Each program instruction clicks the state forward one

step.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Wrong state?

• A computation can fail if any invalid state is

reached (e.g., a variable has the wrong value).

• A typical computation may proceed through

billions of states...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Operators and expressions

• An operator applies an operation to values!

• +,-,/,*

x = 2 + 3;

y = 3.2 * 2.4;

• We can combine variables, operators and literals to

write expressions.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

Comparison

• There are also boolean operators to compare

values:

<, > ,<= ,>= ,== , !=

boolean b1 = (x < 5);

boolean b2 = (y == 6);

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Precedence

• How do you know the meaning of:

2 + 3 * 5 / 8

• You use precedence rules – these determine

which operators are applied first.

• High precedence operators are applied before

low precedence.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

Use brackets

• Bracket the sub-expressions to make the

evaluation order explicit:

2 + ((3*5) / 8)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Lots of operators

• See the book for the full list!!

• Understand the difference between unary and binary

operators.

• Check the precedence table.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

41

Types and operators

• A type determines exactly which operators can

applied to a value.

• No other operators can be applied.

x = 2 ! 3; // Error!

• Meaningless as ! is not a binary operator taking

integer arguments.

• Won’t compile.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

So a type is?

• A type defines:

– the set of values belonging to the type.

– the set of operations that can be applied to the

values.

• In our programs, values of a type are given

concrete (and finite) representations.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

43

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

44

Interesting...

• Given assignment and operators we can write:

x = x + 1;

• Mathematicians panic now…

• But, of course, we are not writing a mathematical

formula.

• This is a program statement.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

45

Statement v. Expression

• A statement is a complete instruction.

– x = y + z;

– while (a < 10) { … }

– if (c != d) { … }

• An expression is part of a statement.

– x + y

– a < b

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

46

++ (and --)

x = x + 1;

x = x - 1;

• Increment or decrement a variable.

• Can use the ++ or -- operators:

– Or x++; x--;

– Or ++x; --x;

– Or x += 1; x -= 1;

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

47

Oh, yes...

• This all started as we wanted a counter for our

program.

• We now have the bits, let’s put them together.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

48

Counting

int counter = 0; // We count from zero

while (counter < 10)

{

 System.out.println(“Hello”);

 counter++;

}

Done!!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

49

A bit more...

int counter = 0; // We count from zero

while (counter < 10)

{

 System.out.print(“Hello ”);

 System.out.println(counter);

 counter++;

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

50

Result...

Hello 1

Hello 2

Hello 3

Hello 4

Hello 5

Hello 6

Hello 7

Hello 8

Hello 9

Hello 10

Correct???

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

51

A bit more compact...

int counter = 0; // We count from zero

while (counter ++ < 10)

{

 System.out.println(“Hello ” + counter);

}

Note the way this code is laid out.
Use indentation and blank space
to the best effect.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

52

Are there other kinds of loop?

• Yes!

• We have:

– while loops

– do loops

– for loops

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

53

While loops

• Seen them already:

while (boolean-expression)

{

 // Statements in loop body

}

• The loop body will be executed zero or more times.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

54

Do loops

 do

{

 // Statements in loop body

}

while (boolean-expression);

• The loop body will be executed one or more times.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

55

For loops

• Often used for counting:

for (start ; limit ; increment/decrement)

{

 // Statements in loop body

}

• Count from start to limit by increment/decrement size.

There is also an enhanced for
loop, which we will see later in

the course.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

56

For Loop Example

for (int counter = 0 ; counter < 10 ; counter++)

{

 System.out.println(“Hello ” + counter);

}

• Start at zero, then count up by one, while less than

10.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

57

Evens

for (int counter = 0 ; counter < 10 ; counter + 2)

{

 System.out.println(“Hello ” + counter);

}

• Count up 0,2,4,6,8

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

58

While v. For

• Q. Is a for loop a while loop in fancy dress?

• A. Yes!

• A for loop can be seen as syntactic sugar.

• But it often gives a neater solution than a while loop,

especially if counting.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

59

While, do, for – which to use?

• Many problems can be solved using any kind of loop.

• However, often one kind of loop gives a better (more

elegant) solution.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

60

Loops – want to know more?

See the text book and do the exercises!

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

61

Remember selection?

• The if statement

if (boolean-expression) // Must have the brackets

{

 // Statement sequence

}

else

{

 // Statement sequence

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

62

Short-cut?

• You can write:

if (boolean-expression)

 statement; // No braces

next-statement;

• In fact, you can do the same with loops.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

63

But...

Originally write:

if (x > 10)

 x = 10; // Limit x

z = x * y; // Use x

But then change:

if (x > 10)

 x = 10; // Limit x

 y = 1; // and update y

z = x * y; // Use x

Uh oh, this was meant to be

executed only if x > 10...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

64

Moral

Always put the braces in, even when the if
statement (or loop) body contains only a

single statement.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

65

Defensive programming

• Anticipate the kinds of programming errors you

might make.

• Write the code in a style that prevents mistakes

happening or, at least, makes them stand out.

• Code layout, indentation, use of blank space,

use of braces all help.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

66

More selection?

• Yes.

• Check out the switch statement.

• Look at the conditional operator (a ternary operator).

• All in the book!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

67

Statements (repeat)

• We’ve been using this bit of jargon – let’s just be clear

what it means.

• A statement is a complete command terminated by a

semi-colon.

a = b * c * d ; // A statement

In fact, an assignment statement.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

68

Expression (repeat)

• An expression is a sub-part of a statement:

1 * 2

a + b / c

• A full statement can be constructed from a number of

expressions.

int a = y * (p + q) - (r / s) ;

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

69

Compound Statement

• A sequence of statements bracketed by braces.

{

 a = 1 * 2;

 d = b / c;

}

• Loop and if statement bodies.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

70

Summary

• Programs need to work with values.

• We use variables, assignment and operators.

• Variables have types.

• We can write expressions and statements.

• We can do selection and iteration.

