
© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1007
 Imperative Programming

Part I

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Imperative...

imperative — expressing command; commanding,
peremptory; urgent; obligatory.

• An imperative program is a sequence of commands.

• Let’s explore this.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Some commands

• Assume a simple robot can obey the following
commands:

– forward() - move 50 cm forward.

– left() - turn left.

– right() - turn right.

• The robot is instructed to move using a program
statement like:

robot.forward();

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

More robot commands

• The robot can also be asked questions:

– atDoor() – answer true if the robot is next to a door (in
front, left or right), false otherwise.

• (The robot has a detector triggered when close-by a small
transmitter attached to the door.)

– canMoveForward() – answer true if the robot can move
forwards, false otherwise.

• (The robot has a sensor switch on its front bumper.)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

A very simple program

robot.forward();

robot.right();

robot.forward();

robot.right();

robot.forward();

robot.right();

robot.forward();

Note the punctuation.
Each statement is
terminated by a semi-colon.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

How do we know what the robot does?

• Each statement has a well defined meaning.

• Each statement is carried out in the order given by
the written sequence.

Of course, we assume there are no
unexpected problems, like a hole in the floor!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Same statements, different sequence

robot.forward();

robot.forward();

robot.right();

robot.forward();

robot.right();

robot.right();

robot.forward();

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Same program, different starting state

robot.forward();

robot.forward();

robot.right();

robot.forward();

robot.right();

robot.right();

robot.forward();
Facing a different
direction at start.

Start

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Going to the door

robot.forward();

robot.forward();

robot.forward();

robot.right();

robot.forward();

robot.forward();

robot.left();

robot.forward();

Start

Easy - Problem solved??

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

What if ?

… the robot starts off facing in a different direction?

… the robot is put in a different starting position or a
 different room?

… the door moves?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

The program context

• The program only solves the problem (getting to the
door) in very specific circumstances.

• Change the circumstances, rewrite the program…

Start

?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Too much hard work!

• In fact, you have to do all the work of solving the
problem.

• The robot just does exactly what you command it to.

• No way! Let’s get the robot to do some of the hard
work.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

What we would really like

• A program that can guide the robot to the door in any
room, starting in any position.

• A program that doesn’t have to be changed for every
specific context.

Help!! That’s hard to do...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Too hard – simplify

• Let’s try to solve a simpler problem first.

• If we can solve that, hopefully we can learn more
about solving the harder problem.

• Strategy: Look for a sub-problem and solve it first.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

First go

• Assume the robot is always facing in the direction of
the door.

• Assume there are no obstacles between the robot
and the door.

Start

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Easy?

• Program is just: robot.forward(); robot.forward();
robot.forward()…

• But how many forwards?

• Depends on how far away door is.

• Snag: we still have to change the program for every
start position.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Solution

• We need to able to say: “Keep moving forward while
you have not reached the door”.

• But we need additional commands to do this.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

A While Loop

while (!robot.atDoor())

{

 robot.forward();

}

Loop Body

• Called a “loop” as it loops around!
• Keep looping while a condition is true.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Details

• while is a sequencing command providing iteration
or repetition.

• atDoor performs a test that has a boolean value.

• ! meaning not, is a logical operator that is applied to
a boolean value.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

A Result!

• We now have a program that will move the robot to
the door, regardless of the starting position.

• Providing it is facing the door.

• Providing there are no obstacles.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

A Harder Problem

• We’ve solved our simple problem, so let’s make it a
bit harder and see what happens.

• Assume robot can start facing any direction.

• Assume robot is in a room with four walls, one door
and no obstacles.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Brainstorming!!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

An idea!!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Try another program

while (robot.canMoveForward())

{

 robot.forward();

}

robot.right();

while (robot.canMoveForward())

{

 … Hmmm, what happens here?

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Rethink…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Find an example that fails

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Examine evidence…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Try again

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

How about?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Wow!

• Iteration allows a more general purpose program to
be written.

• We have a program that will work in any empty
room.

• (Providing all our assumptions remain true.)

• What about testing the code – does it really work…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Obstacles

• An unexpected pile of bricks…

• Need to divert round the bricks.

• Any need to change the program?

– Suggestions…

Start

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Selection

• Suppose the floor is covered in tiles of different
colours.

• If robot is on a red tile its red light turns on.

• If robot is on a blue tile its blue light turns on.

• If robot is on white tile no lights are on.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

If...

• We want to say:

“If the tile is red, then show red”

“If the tile is blue, then show blue”

“If the tile is white, then show no light”

• A selection command is needed.

– And commands to check tile colour.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Let’s Try...

while (!robot.atDoor() && robot.canMoveForward())

 {

 robot.forward();

 if (robot.onRed())

 {

 robot.turnOnRed();

 robot.turnOffBlue();

 }

 etc.

 …

An if statement

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

New Commands

• The robot needs:

– onRed, onBlue and onWhite to check tile colours.

– turnOnRed, turnOffRed, turnOnBlue, turnOffBlue to
control lights.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

Results

• We can now write a program to get the robot to find
the door of a room.

• And flash its lights as it moves around.

• We’ve discovered iteration and selection as being
fundamentally necessary to get things working.

• And discovered a set of commands the robot needs
to understand.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Language v. Robot

• While loops and if statements are part of the
programming language.

– They are basic language features.

• Moving, testing for door, controlling lights are part of
the robots behaviour.

– Not part of the programming language.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Remember – Java and Objects

• Java is object-oriented, so you will encounter many
software objects and soon be creating your own.

• You have already seen out

– System.out.println(“hello”);

• And g

– g.drawLine(…);

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

41

Objects

• Our robot is really a software object.

• It has an external interface.

– The actions you ask it to perform.

• And an internal implementation.

– The code that does the work, but which you don’t see.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

Objects and Methods

robot.forward();

• robot is the name of the object.

• forward() is a method call.

– We use the name method rather than command or
action.

• The robot is instructed what to do but actually
performs the actions itself.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

43

Methods

• Each method is a sequence of program statements.

• A robot has a collection of methods, each of which is
a different statement sequence.

• Hence, statements are grouped into units rather than
being one big long list.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

44

Responsibilities and Collaborations

• We can also take the point of view that the robot has
responsibilities:

– To move, to test, to control lights.

• And collaborations:

– To ask other objects about the floor colour and location
of walls and doors.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

45

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

46

Core Language Statements

• The statements (if, while, etc.) we use need to be at
the right level of detail.

• Too low level – too awkward to work with.

• Too high level – can’t express the amount of detail
needed.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

47

Abstraction

• abstraction:

– A representation or model that includes the important,
essential or distinguishing aspects of something while
suppressing or ignoring less important, immaterial or
diversionary details.

– Removing distinctions to emphasise commonality.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

48

Choosing the right abstractions

• Our basic commands, selection and iteration are all
abstractions of behaviour.

• They represent the lowest level of abstraction that
we generally want to work with.

• (We can go lower – assembly language
programming or even direct binary coding…)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

49

Creating new abstractions

• Programming relies heavily on using and creating
abstractions.

• As programs get larger we have to create new
abstractions to manage the huge amount of detail
involved.

• The robot object is a higher-level abstraction
constructed from programming language
abstractions.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

50

Further thoughts...

• We have seen programs with the basic structure of:

Start -> Do the work -> Stop

• Where we explicitly expect the program to run to a
pre-determined conclusion.

• Are all programs like that?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

51

Programs that stop?

• The robot “find the door” program may never stop...

– but that would be a flaw that requires the program to be
fixed.

• What about the drawing programs? How do they
stop?

• What about a word processor?

• Or the control system in a car?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

52

Run for ever...

• In fact, many kinds of programs are designed to run
continuously until the user explicitly stops them.

• If the program stops any other way something has
gone wrong...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

53

The main loop

• Consider this overall program structure:

while (true)
{
 doWork();
 if (userQuits())
 {
 stop();
 }
}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

54

Event driven

• Loop forever, responding to events.

• Events are mouse clicks, key presses, timer and so
on.

while (true)
{
 waitForEvent();
 handleEvent();
 if (userQuits())
 {
 stop();
 }
}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

55

And the drawing programs?

• Your drawing programs are actually event driven,
with a main loop.

• You don’t see that explicitly – it comes for free as
part of the infrastructure of the Java code libraries.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

56

The Graphical User Interface (GUI)

• All programs that use windows, the mouse and so
on, have a GUI.

• These programs are all event driven, with a main
loop.

• They are designed to keep running for ever until you
tell them to stop.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

57

Event loop means GUI?

• No. An event driven program doesn’t need a GUI.

• Consider control systems (in a car, plane, lift, ATM
machine).

• They run continuously, responding to events, until
explicitly stopped.

– Or the power is cut off.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

58

Summary

• Sequence, iteration, selection.

• Problem solving by decomposing a large problem
into simpler smaller problems.

• Starting to think about abstraction.

• The main loop and event driven programming.

