Inferring Test Models from Kate’s Bug Reports
Using Multi-objective Search

Yuanyuan Zhang®™), Mark Harman, Yue Jia, and Federica Sarro

CREST, Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK
yuanyuan.zhang@ucl.ac.uk

Abstract. Models inferred from system execution logs can be used to
test general system behaviour. In this paper, we infer test models from
user bug reports that are written in the natural language. The inferred
models can be used to derive new tests which further exercise the buggy
features reported by users. Our search-based model inference approach
considers three objectives: (1) to reduce the number of invalid user events
generated (over approximation), (2) to reduce the number of unrecog-
nised user events (under approximation), (3) to reduce the size of the
model (readability). We apply our approach to 721 of Kate’s bug reports
which contain the information required to reproduce the bugs. We com-
pare our results to start-of-the-art KLFA tool. Our results show that our
inferred models require 19 tests to reveal a bug on average, which is 98
times fewer than the models inferred by KLFA.

Keywords: SBSE - NLP - Topic modelling - Model inference + NSGA-II

1 Introduction and Background

Many systems allow users to submit bug reports when they encounter unex-
pected behaviour. Developers need to validate and fix these issues, based on these
bug reports. Unfortunately, not all of the bug-fixes work as expected. A recent
study suggests that up to 24 % of post-release bug-fixes of large software systems
are incorrect and some of the generated patches even introduce additional faults
into the software [1,2]. These bad bug fixes not only affect the reliability of the
software source code but also have negative impact on their users [1].

Generating additional tests that exercise the reported buggy features could
improve software developers’ confidence in their bug fixes. In this paper, we
adapt an event-based model inference approach for such test enhancement using
search-based algorithms. Event-based model inference has been widely used in
software testing [3,4]. This technique takes system logs as inputs and generates
a finite state machine which recognises execution sequences observed from the
log file. Such a log file is often automatically generated and contains a sequence
of function calls.

© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 301-307, 2015.
DOI: 10.1007/978-3-319-22183-0_27

302 Y. Zhang et al.

In this work, our approach aims to infer models from user bug reports instead
of using system logs. Bug reports submitted by users are written in natural lan-
guage, many of which include a set of instructions that can be used to reproduce
the bugs. An inferred model from these bug reports is a generalisation of the
set of user events which has triggered software bugs. The model can be used to
generate new test data targeting the user-reported buggy features of the system.

Traditional single objective inferencing approaches tend to suffer from two
intertwined problems. The inferred model either misses some behaviour specified
in bug reports (under generalising) and includes some infeasible behaviour (over
generalising). To overcome this limitation, we adapted the multi-objective app-
roach proposed by Tonella et al. [5] to balance these two conflicting objectives.

We apply our approach to the SSBSE 2015 Challenge program Kate [6],
a popular multi-platform text editor. We provide empirical evidence that the
model generated from our approach not only provides good trade-offs between
under and over approximation but also provides a good level of fault detection
ability.

2 Models Inference Framework

Our approach to bug-report model inference consists of four phases. The first
phase extracts raw bug issue reports from the Kate bug tracking system. Then
the second phase parses the raw data extracted to retrieve bug information,
such as textual descriptions of the execution steps for bug reproduction, the
related components, the status and severity of the bug. In the third phase, bug
descriptions are used to identify execution trace information. In particular, we
use topic modelling to mine and extract reproducible user events. In the final
phase, we use two multi-objective search algorithms to infer models from the
user events.

Phase 1 - Bug Report Extraction: Kate is a multi-platform text editor writ-
ten in C/C++. The KDE Bugtracking System [7] is used by the Kate project
to maintain and keep track of reported software bugs. A web crawler was imple-
mented to collect raw HTML webpage data from the KDE Kate bug repository.
There have been 5,583 bug issues reported (including those already resolved,
verified and closed) since January 2000. Our crawler visits the webpage of each
bug issue and saves it as raw bug report data.

Phase 2 - Raw Data Parsing: we extract bug descriptions for each bug issue
by parsing the raw data according to a set of search rules. We manually developed
the search rules based on HTML files to capture information about bug issue
1D, status, component, importance, description. In particular, in the textual
description, steps to reproduce are the most important part of the bug report.
They provide valuable information for the developer in order to test and fix the
issue. We retrieve such information from the Kate bug HTML files by locating
content between the ‘Steps to Reproduce’ and ‘Actual Results’ keywords.

Phase 3 - Data Mining Trace Events: there are three steps in Phase 3:
(1) preparing the training corpus; (2) clustering similar trace steps; (3) mapping

Inferring Test Models from Kate’s Bug Reports Using Multi-objective Search 303

trace events. First, since ‘Steps to Reproduce’ patterns are written in natural
language, we need to refine the patterns to remove noise. The Natural Lan-
guage ToolKit (NLTK) [8] was used to preprocess the raw patterns. NLTK is
an open source library for Natural Language Processing (NLP) implemented
in Python. We first tokenise the patterns from strings to vectors, then remove
English language stop words, numbers and punctuation marks. Next, we stem
tokens to their root form and filter out low-frequency words that only appear
once. We save all the refined patterns together as corpus in the Vector Space
Model (VSM), which will be used in the next step.

In the second step, we cluster similar preprocessed trace steps using a tool
called gensim [9], an open source NPL topic modelling tool, supporting semantic
topic detection. In order to cluster steps, we transform a pre-prepared training
corpus into a term frequency-inverse document frequency (tf-idf) matrix and
then project it into a Latent Semantic Indexing (LSI) space. For each trace step,
we compute similarity against the transformed corpus. The similarity measure
used is the cosine similarity between two vectors. The most similar steps are
clustered. We repeatedly combine clusters if their similarity measure is greater
than a predefined similarity threshold (cosine > 0.7 in the experiment on which
we report here). At this stage, the user events are generated by locating shared
common tokens in one cluster. We found some generated user events have the
same semantics, for example, ‘open_kate’, ‘start_kate’ and ‘launch kate’ all rep-
resent the same user behaviour. These events should be treated as one, otherwise
the algorithm will generate many similar states. In the last step, we solve this
problem by manually examining half of the user events and creating a mapping
to transform duplicated user events.

Phase 4 - Model Inference: We use two multi-objective algorithms, a Genetic
Algorithm and the NSGA-II algorithm to infer models from the user events gen-
erated. In this work, there are three objectives taken into account to optimise
the inferred models. These objectives are those proposed by Tonella et al. [5].
The first objective is to minimise the amount of model behaviour which does
not follow any existing trace events generated. This type of unobserved model
behaviour is over approximation, which is unlikely to occur in reality. The second
objective is to minimise the amount of behaviour which is not accepted by the
model, namely under approximation. It is measured by the number of unrecog-
nised trace events. The third objective is to minimise the number of states in a
model, to ensure we favour simplicity where possible.

3 Experiments and Results

To evaluate the feasibility and effectiveness of our approach, we answer the
following research questions: RQO: What are the prevalence and the character-
istics of the trace events generated? RQ1: What are the performance of multi-
objective optimisation compared to the benchmark model inference technique,
KLFA [10] in terms of the hypervolume, running time and the number of solu-
tions? RQ2: What is the fault revealing ability of the models inferred?

304 Y. Zhang et al.

In total, our approach takes 721 bug reports that contain ‘Steps to Repro-
duce’ patterns as inputs and generates 452 user event trace files containing 265
unique trace events. To answer RQO, we manually analysed these events which
can be divided into six categories, as shown in Tablel. As can be seen from
the table, the user events generated from our approach cover a wide range of
functionalities of Kate, from basic operations to advanced features.

Table 1. Example of user events generated

Basic operation
Start_Kate

open_multiple_files

Category Text editing Programming

Examples copy -paste_text select_haskell_mode

change_input_method show_javascript_console

score_screen fold_section check_regular_expression

drag_cursor

find_replace

fold_function

resize_window

captialize_text

check_indentation

close_file set_bookmark_color enter_vi_command
Category | Configuration Plugins Shortcut
Examples | change_keyboard_setting | enable_plugin_quickswitcher | ctrl_1
change_background_color | enable_plug_xml ctrl_g
change_print_margin enable_plugin_spellcheck ctrl_o
change_print_page_range | enable_plugin_tabbar ctrlr
enable_command_line enable_plugin_terminal alt_right
enable_static.-word_wrap | enable_plugin_treeview alt_tab

To answer RQ1, we adopt one of standard, widely-used measures of multi-
objective solution quality - hypervolume. Hypervolume is the volume covered by
the solutions in the objective space. It is the union of hypercubes of solutions
on the Pareto front [11]. By using a volume rather than a count, this measure
is less susceptible to bias when the numbers of points on the two compared
fronts are very different. We also measure the running time of the algorithms
and the number of solutions generated. For algorithms that produce good quality
solutions, quick and diverse answers are an important algorithmic property for
decision makers.

Table 2. Objectives and performance metrics results for GA, NSGA-II and KLFA

Objectives - Mean (Min, Max) Quality Metrics - Mean
Performance - -
Algorithm Over Under Size of |Running No. of
& Approximation|Approximation| Model Time Solutions
GA 2 (0, 66) 219 (208, 225) |13 (2, 53)(3239.66s 25
NSGA-II 0.1 (0.0, 7) |215 (183, 226) |19 (1, 94)|2341.14s 17
KLFA 55707 4 289 556.30s 1

Table 2 shows the mean, lowest and highest values of three objectives and
average running time and the number of solutions generated by GA and NSGA-
IT for 30 executions. As KLFA generates deterministic solutions, we only report

Inferring Test Models from Kate’s Bug Reports Using Multi-objective Search 305

the results with one run for KLFA. Figure 1 shows the distribution of models
generated by three techniques, along three objectives, in the form of box plots.
As can be seen from the results, both GA and NSGA-IT are able to infer models
which have a lower over-approximation account but relatively higher under-
approximation account. By contract, the models inferred by KLFA have a very
high over-approximation account. In terms of size of a model, both GA and
NSGA-II are able to keep the size of a model small.

The statistical analysis of hypervolume results is reported in Table 3. We use
Cliff’s method [12] for assessing statistical significance and the Vargha-Delaney
Alg metric for effect size measure where the result is significant (at the 0.05 «
level). The results of all algorithms are significantly different. The effect size of
the two search algorithms are very small and both of them outperform KLFA.

s
8
p— — 8 p—
2 | =B
g1 2 | ‘ s
3 S : g
g ’
g < s
5§ € S 84 &7
o Ev— B
£33 = 3
8 &1 2 = 8
g ° 2o s T
T = 8
g 81 g ? 84
o« 5 -]
g 8 1 4
€1 84 g |
S N .=
GA NSGA-II KLFA GA NSGA-II KLFA GA NSGA-II KLFA

Algorithms Algorithms Algorithms

Fig. 1. Box plots of the over-approximation, under-approximation and size counts from
the models inferred by multi-objective GA, NSGA-II and KLFA - 30 runs

Table 3. Hypervolume results of the statistical analysis for GA, NSGA-IT and KLFA

Algorithm | Algorithm | Hypervolume
Cliff’s method | Vargha-Delaney effect size
(x) (v) p-value Ars
GA NSGA-II |1le-04 0.06
GA KLFA le-04 1.00
NSGA-II | KLFA le-04 1.00

To answer RQ2, we investigate the fault-revealing ability of the models
inferred. In software testing, the effectiveness of a test suite is assessed according
to its ability to detect real bugs. We evaluate the fault-revealing ability of the
models by checking the number of bug traces accepted by the models. If a bug
trace is accepted by a model, it means the model can be used to generate test
event traces to capture this bug. We have equally divided all valid bug reports
into training and validation sets based on their submission time. We used the

306 Y. Zhang et al.

training set to infer models. We then check if the models inferred can capture
the bug reported in the validation set. The training set contains 226 bug reports
submitted between 07/2009 to 10/2012 , while the evaluation set contains 226
more recently submitted between 11/2012 and 02/2015. Table 4 shows the aver-
age number of bugs by each set of Pareto Front solution, the total number of
bug detected and the average number of tests to be generated per bug revealed.
Although KLFA generates find more bug in the validation set, it generates 500
times more tests traces. On the other hand, the models inferred using search only
take less than 20 tests to reveal a bug on average where as KLFA takes 1,863.
This makes former models preferable in place as the cost involved in checking
the results of test sequence requires human effort.

Table 4. Results for fault-revealing ability of the models inferred

Avg. # Traces | Avg. # Bugs | Total # | Avg. Test per
(L=4) Pareto Front | Bugs bug revealed
GA 147 8 16 18
NSGA-IT | 116 6 22 19
KLFA 55,906 30 30 1863

4 Conclusion

We have studied the use of multi-objective search algorithm to infer models from
software bug reports. The models inferred are well-balanced between the amount
of over- and under-approximation of users behaviour. We also found that our
approach generates smaller number of user event traces per bug revealed than
KLFA, thereby these models are more preferable in practice. We believe that
model inferencing techniques for documents written in natural language may
prove to be widely applicable to many software documents, such as bug reports
in our case.

Acknowledgements. We wish to express our gratitude to Paolo Tonella for his help-
ful suggestion and the search-based FSM tools provided.

References

1. Yin, Z., Yuan, D.; Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes
become bugs? In: Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering (ESEC/FSE
2011), Szeged, Hungary, pp. 26-36. ACM, 5-9 September 2011

2. Buggy McAfee update whacks Wndows XP PCs: http://news.cnet.com/8301-1009-
3-20003074-83.html

http://news.cnet.com/8301-1009_3-20003074-83.html
http://news.cnet.com/8301-1009_3-20003074-83.html

Inferring Test Models from Kate’s Bug Reports Using Multi-objective Search 307

© ® N>

10.

11.

12.

Krka, I., Brun, Y., Popescu, D., Garcia, J., Medvidovic, N.: Using dynamic exe-
cution traces and program invariants to enhance behavioral model inference. In:
Proceedings of the ACM/IEEE 32nd International Conference on Software Engi-
neering (ICSE 2010), Cape Town, South Africa, pp. 179-182. IEEE, 2-8 May 2010
Lorenzoli, D., Mariani, L., Pezze, M.: Automatic generation of software behav-
ioral models. In: Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, pp. 501-510. ACM, 10-18 May 2008
Tonella, P., Marchetto, A., Nguyen, D.C., Jia, Y., Lakhotia, K., Harman, M.:
Finding the optimal balance between over and under approximation of models
inferred from execution logs. In: Proceedings of IEEE 5th International Conference
on Software Testing, Verification and Validation (ICST), Montreal, QC, Canada,
pp. 21-30. IEEE, 17-21 April 2012

The Kate Editor: http://kate-editor.org/

KDE Bugtraking System: https://bugs.kde.org/

The Natural Language ToolKit (NLTK): http://www.nltk.org/

Rehiifek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, Valletta, Malta, pp. 45-50. ELRA, May 2010. http://is.muni.cz/
publication /884893 /en

Mariani, L., Pastore, F.: Automated identification of failure causes in system logs.
In: Proceedings of the 19th International Symposium on Software Reliability Engi-
neering (ISSRE 2008), Seattle, WA, USA, pp. 117-126. IEEE, 10-14 November
2008

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257-271
(1999)

Cliff, N.: Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum Asso-
ciates Inc., New Jersey (1996)

http://kate-editor.org/
https://bugs.kde.org/
http://www.nltk.org/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Inferring Test Models from Kate's Bug Reports Using Multi-objective Search
	1 Introduction and Background
	2 Models Inference Framework
	3 Experiments and Results
	4 Conclusion
	References

