PRACTICAL ZERO-KNOWLEDGE PROOFS FOR CIRCUIT EVALUATION

E. Ghadafi N.P. Smart B. Warinschi

Department of Computer Science, University of Bristol

Twelfth IMA International Conference on Cryptography and Coding $15^{th} - 17^{th}$ December 2009

- 2 GROTH-SAHAI PROOFS
- 3 IMPLEMENTATION
- **4 BATCH VERIFICATION**
- 5 **Results**

- GROTH-SAHAI PROOFS
- IMPLEMENTATION
- **BATCH VERIFICATION**
- **Results**

- GROTH-SAHAI PROOFS
- IMPLEMENTATION
- **BATCH VERIFICATION**
- **Results**

- GROTH-SAHAI PROOFS
- IMPLEMENTATION
- **BATCH VERIFICATION**
- **Results**

6 SUMMARY

- GROTH-SAHAI PROOFS
- IMPLEMENTATION
- **BATCH VERIFICATION**
- 5 RESULTS

- GROTH-SAHAI PROOFS
- IMPLEMENTATION
- **BATCH VERIFICATION**
- 5 RESULTS

NON-INTERACTIVE PROOFS

"A proof is whatever convinces me.", Shimon Even.

APPLICATIONS OF ZERO-KNOWLED GE PROOFS

Example applications:

- Anonymous Credentials: Client proves he possesses the required credentials without revealing them.
- **Online Voting:** Voter proves to the server that he has voted correctly without revealing his actual vote.
- Signature Schemes, Oblivious Transfer , CCA-2 Encryption Schemes, ...

HISTORY OF NIZK PROOFS

- Blum-Feldman-Micali, 1988.
- Damgard, 1992.
- Killian-Petrank, 1998.
- Feige-Lapidot-Shamir, 1999.
- De Santis-Di Crescenzo-Persiano, 2002.
- Groth-Sahai, 2008.

OUR CONTRIBUTION

- Efficient implementations of NIZK proofs for Circuit SAT in the ROM model using Sigma-Protocols and other optimizations (e.g. Computing shared monomials, etc.).
- Efficient implementations of NIZK proofs for Circuit SAT in the CRS model using Groth-Sahai proofs.

IMPLEMENTATION (RATIONALE)

Why Circuits ???

- Every *NP* problem could be reduced to Circuit SAT.
 Problem: Circuit Size ???
 Solution: Efficient implementations would help solve some of this problem.
- Other techniques that does not require reduction to *NP* are applicable to limited languages (i.e. You cannot prove much with them).

MPLEMENTATION BA

ROM PROOFS- Σ **Protocols**

Prover Public Parameters,

<u>Verifier</u> Public Parameters,

ROM PROOFS- Σ **PROTOCOLS**

ROM Proofs- Σ **Protocols**

ROM Proofs- Σ **Protocols**

ROM PROOFS- Σ **Protocols**

• The interactive proof could be made non-interactive using the Fiat-Shamir transformation. The challenge is now: *H*(Public parameters || Commitment)

GROTH-SAHAI PROOFS

Symmetric External Diffie-Hellman Assumption Proofs: Setup:

$$\mathbb{A}_1 \times \mathbb{A}_2 \xrightarrow{f} \mathbb{A}_T$$

GROTH-SAHAI PROOFS

Symmetric External Diffie-Hellman Assumption Proofs: Setup:

GROTH-SAHAI PROOFS

Symmetric External Diffie-Hellman Assumption Proofs: Setup:

Properties:

$$\forall x \in \mathbb{A}_1, \forall y \in \mathbb{A}_2 : F(\iota_1(x), \iota_2(y)) = \iota_T(f(x, y)), \\ \forall \mathcal{X} \in \mathbb{B}_1, \forall \mathcal{Y} \in \mathbb{B}_2 : f(p_1(\mathcal{X}), p_2(\mathcal{Y})) = p_T(F(\mathcal{X}, \mathcal{Y})).$$

Proof:

Consists of
$$\Theta \in \mathbb{B}_1$$
 and $\Pi \in \mathbb{B}_2$

• **Product Proof:** Prove that one value is the product of other two values.

Equation:
$$\vec{x_1}^{(1)} \cdot \vec{x_2}^{(1)} - \vec{x_1}^{(2)} = 0.$$

- Bit Proof: Prove that a commitment hides 0 or 1. Equation: $\vec{x_1}^{(1)} \cdot \vec{x_2}^{(1)} - \vec{x_1}^{(1)} = 0.$
- Equality Proof: Prove that two different commitments hide the same value.

Equation:
$$\vec{x_2}^{(1)} - \vec{x_1}^{(1)} = 0.$$

IMPLEMENTATION

\mathcal{I} : The circuit input wires $\{w_1,\}$	$, w_7 \}$
--	------------

- \mathcal{O} : The circuit final output wires $\{w_{13}\}$
- \mathcal{G} : The set of gates $\{g_1, ..., g_6\}$
- $\mathcal{M}on$: The set of monomials (i.e. products needed in the QEq Method)
- \mathcal{PW} : The set of proof wires (i.e. wires shared between monomials)

OUTLINE ROM PROOFS GROTH-SAHAI PROOFS IMPLEMENTATION BATCH VERIFICATION RESULTS SUMMARY LEQ-METHOD

• LEq Method (Groth et al.):

Each gate is represented by linear equation as follows :

$$out = a \cdot x + b \cdot y + c \cdot z + d$$
, where $out \in \{0, 1\}$

For each 2-to-1 gate, there exists unique values for a,b,c and d that makes the above equation hold.

OR gate as an example: we have a = -1, b = -1, c = 2 and d = 0.

X	у	Z	out	other
0	0	0	0	2
0	1	1	1	-1
1	0	1	1	-1
1	1	1	0	-2

PROVER FOR LEQ-METHOD

• Evaluate every wire in the circuit given the input.

- Evaluate every wire in the circuit given the input.
- $\forall w_i \in \mathcal{W} \text{ compute } comm_i = comm(w_i, r_i).$

- Evaluate every wire in the circuit given the input.
- $\forall w_i \in \mathcal{W} \text{ compute } comm_i = comm(w_i, r_i).$
- $\forall i \in \mathcal{W}$, Prove $comm_i \in \{0, 1\}$.

- Evaluate every wire in the circuit given the input.
- $\forall w_i \in \mathcal{W}$ compute $comm_i = comm(w_i, r_i)$.
- $\forall i \in \mathcal{W}$, Prove $comm_i \in \{0, 1\}$.
- $\forall i \in \mathcal{G}$, prove that the linear equation value $\in \{0, 1\}$.

- Evaluate every wire in the circuit given the input.
- $\forall w_i \in \mathcal{W}$ compute $comm_i = comm(w_i, r_i)$.
- $\forall i \in \mathcal{W}$, Prove $comm_i \in \{0, 1\}$.
- $\forall i \in \mathcal{G}$, prove that the linear equation value $\in \{0, 1\}$.
- Output the decommitment(i.e. Wire values and the randomness used in the commitment) of the circuit's final output wires(i.e. the set \mathcal{O}).

VERIFIER FOR LEQ-METHOD

• For all wires, verify that $comm_i \in \{0, 1\}$.

VERIFIER FOR LEQ-METHOD

- For all wires, verify that $comm_i \in \{0, 1\}$.
- For each gate, verify that the linear equation value $\in \{0, 1\}$.

VERIFIER FOR LEQ-METHOD

- For all wires, verify that $comm_i \in \{0, 1\}$.
- For each gate, verify that the linear equation value $\in \{0, 1\}$.
- For each gate, verify that the linear equation was formed correctly.

VERIFIER FOR LEQ-METHOD

- For all wires, verify that $comm_i \in \{0, 1\}$.
- For each gate, verify that the linear equation value $\in \{0, 1\}$.
- For each gate, verify that the linear equation was formed correctly.
- Compare the final output commitments of the circuit with those of the prover and Accept if they are identical, or Reject otherwise.

• QEq Method:

Each gate is represented by a quadratic equation as follows:

$$z = a_0 + a_1 \cdot y + a_2 \cdot x + a_3 \cdot x \cdot y$$

OR gate as an example :

	Х	у	Z	
	0	0	0	$\Leftarrow z_0$
	0	1	1	$\Leftarrow z_1$
	1	0	1	$\Leftarrow z_2$
	1	1	1	$\Leftarrow z_3$
)	=	z_0		
1	=	z_1	$-a_0$)
		_	~	

$$a_{0} = z_{0}$$

$$a_{1} = z_{1} - a_{0}$$

$$a_{2} = z_{2} - a_{0}$$

$$a_{3} = z_{3} - a_{0} - a_{1} - a_{2}$$

PROVER FOR QEQ-METHOD

• Evaluate the circuit given the input.

- Evaluate the circuit given the input.
- Compute a commitment to each input wire $comm_i = comm(w_i, r_i)$ where $w_i \in \mathcal{I}$.

- Evaluate the circuit given the input.
- Compute a commitment to each input wire *comm_i* = *comm(w_i, r_i)* where w_i ∈ *I*.
- Generate a proof that *comm_i* will open to an element $\in \{0, 1\}$ for $i = 1, ..., |\mathcal{I}|$.

- Evaluate the circuit given the input.
- Compute a commitment to each input wire *comm_i* = *comm(w_i, r_i)* where w_i ∈ *I*.
- Generate a proof that $comm_i$ will open to an element $\in \{0, 1\}$ for $i = 1, ..., |\mathcal{I}|$.
- For every element of *Mon*, compute a commitment to the product $comm_{i,j} = comm(w_i * w_j, r_{i,j})$.

- Evaluate the circuit given the input.
- Compute a commitment to each input wire $comm_i = comm(w_i, r_i)$ where $w_i \in \mathcal{I}$.
- Generate a proof that *comm_i* will open to an element $\in \{0, 1\}$ for $i = 1, ..., |\mathcal{I}|$.
- For every element of *Mon*, compute a commitment to the product $comm_{i,j} = comm(w_i * w_j, r_{i,j}).$
- For each gate $,g_i$, compute a commitment $comm_k$ of the output wire w_k via $comm(w_k, r_k) = comm_{a_0} + a_2 \cdot comm_i + a_1 \cdot comm_j + a_3 \cdot comm_{i*j}$

- Evaluate the circuit given the input.
- Compute a commitment to each input wire $comm_i = comm(w_i, r_i)$ where $w_i \in \mathcal{I}$.
- Generate a proof that *comm_i* will open to an element $\in \{0, 1\}$ for $i = 1, ..., |\mathcal{I}|$.
- For every element of *Mon*, compute a commitment to the product $comm_{i,j} = comm(w_i * w_j, r_{i,j}).$
- For each gate ,g_i, compute a commitment *comm_k* of the output wire w_k via *comm*(w_k, r_k) = *comm_{a0}* + a₂ · *comm_i* + a₁ · *comm_j* + a₃ · *comm_{i*j}*
- For all monomials, generate a proof that the commitments *comm*_{i*j} are consistent with the wire commitments(i.e. do product proofs together).

- Evaluate the circuit given the input.
- Compute a commitment to each input wire $comm_i = comm(w_i, r_i)$ where $w_i \in \mathcal{I}$.
- Generate a proof that $comm_i$ will open to an element $\in \{0, 1\}$ for $i = 1, ..., |\mathcal{I}|$.
- For every element of *Mon*, compute a commitment to the product $comm_{i,j} = comm(w_i * w_j, r_{i,j}).$
- For each gate $,g_i$, compute a commitment $comm_k$ of the output wire w_k via $comm(w_k, r_k) = comm_{a_0} + a_2 \cdot comm_i + a_1 \cdot comm_j + a_3 \cdot comm_{i*j}$
- For all monomials, generate a proof that the commitments *comm*_{i*j} are consistent with the wire commitments(i.e. do product proofs together).
- Output the decommitment values of the final output wires.

VERIFIER FOR QEQ-METHOD

• $\forall i \in \mathcal{I}$, verify that *comm_i* will open to an element $\in \{0, 1\}$.

VERIFIER FOR QEQ-METHOD

- $\forall i \in \mathcal{I}$, verify that *comm_i* will open to an element $\in \{0, 1\}$.
- Compute the rest of wires' commitments (Taking advantage of the homomorphic property of the commitment scheme).

VERIFIER FOR QEQ-METHOD

- $\forall i \in \mathcal{I}$, verify that *comm_i* will open to an element $\in \{0, 1\}$.
- Compute the rest of wires' commitments (Taking advantage of the homomorphic property of the commitment scheme).
- Verify all product proofs .

VERIFIER FOR QEQ-METHOD

- $\forall i \in \mathcal{I}$, verify that *comm_i* will open to an element $\in \{0, 1\}$.
- Compute the rest of wires' commitments (Taking advantage of the homomorphic property of the commitment scheme).
- Verify all product proofs .
- Compare the final output commitments of the circuit with those of the prover and Accept if they are identical, or Reject otherwise.

Motivation:

Verification of individual proofs takes a lot of time, so we use batch verification to save some time.

BATCH VERIFICATION

Motivation:

Verification of individual proofs takes a lot of time, so we use batch verification to save some time.

Batch verification in the **ROM model**:

• Small Exponent Test(Bellare et al.): To check that $y_1 = g^{x_1}, \ldots, y_n = g^{x_n}$

BATCH VERIFICATION

Motivation:

Verification of individual proofs takes a lot of time, so we use batch verification to save some time.

Batch verification in the **ROM model**:

- Small Exponent Test(Bellare et al.): To check that $y_1 = g^{x_1}, \ldots, y_n = g^{x_n}$
 - Choose $\gamma_1, \ldots, \gamma_n$ at random where $|\gamma_i| = l$.
 - Compute X = ∑_{i=1}ⁿ (x_i · γ_i) and Y = ∏_{i=1}ⁿ y_i^{γ_i}.
 The verification is done by checking that g^X = Y.
- There are different ways to efficiently compute product of powers(i.e. Y).

Batch verification in the CRS model:

• Product Proof: To verify a single Product Proof, one checks:

$$F\left(\vec{C_1}^{(2)}, -\mathcal{W}_2\right) \cdot F\left(\vec{C_1}^{(1)}, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Batch verification in the CRS model:

• Product Proof: To verify a single Product Proof, one checks:

$$F\left(\vec{C_1}^{(2)}, -\mathcal{W}_2\right) \cdot F\left(\vec{C_1}^{(1)}, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Only need n + 3 products of *Four lots* of pairings compared to 4n products of *Four lots* of pairings.

Batch verification in the CRS model:

• Product Proof: To verify a single Product Proof, one checks:

$$F\left(\vec{C_1}^{(2)}, -\mathcal{W}_2\right) \cdot F\left(\vec{C_1}^{(1)}, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Only need n + 3 products of *Four lots* of pairings compared to 4n products of *Four lots* of pairings.

• Bit Proof: To verify a single Bit Proof, one checks:

$$F\left(\vec{C_1}^{(1)}, -\mathcal{W}_2\right) \cdot F\left(\vec{C_1}^{(1)}, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Only need n + 3 products of *Four lots* of pairings compared to 4n products of *Four lots* of pairings.

Batch verification in the CRS model:

• Product Proof: To verify a single Product Proof, one checks:

$$F\left(\vec{C_1}^{(2)}, -\mathcal{W}_2\right) \cdot F\left(\vec{C_1}^{(1)}, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Only need n + 3 products of *Four lots* of pairings compared to 4n products of *Four lots* of pairings.

• Bit Proof: To verify a single Bit Proof, one checks:

$$F\left(\vec{C_1}^{(1)}, -\mathcal{W}_2\right) \cdot F\left(\vec{C_1}^{(1)}, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Only need n + 3 products of *Four lots* of pairings compared to 4n products of *Four lots* of pairings.

• Equality Proof: To verify a single Equality Proof, one checks:

$$F\left(\vec{C_1}^{(1)}, -\mathcal{W}_2\right) \cdot F\left(\mathcal{W}_1, \vec{C_2}^{(1)}\right) \cdot F(-\mathcal{U}_1, \Pi) \cdot F(\Theta, -\mathcal{U}_2) = 1$$

Only need 4 products of *Four lots* of pairings(16 pairings) compared to 4*n* products of *Four lots* of pairings(16*n* Pairings)!!!

PROOF SIZES COMPARISON

Parameter	LEq-Method	QEq-Method
Commitments	$ \mathcal{W} $	$ \mathcal{I} + \mathcal{M}on $
Bit Proofs	$ \mathcal{W} + \mathcal{G} $	$ \mathcal{I} $
Product Proofs	-	$ \mathcal{PW} ^1 or \mathcal{M}on ^2$
Decommitments	$ \mathcal{O} $	$ \mathcal{O} $

²If we are using the Common Reference String Model.

PRACTICAL ZERO-KNOWLEDGE PROOFS FOR CIRCUIT EVALUATION

¹If we are using the Random Oracle Model.

CIRCUITS' DETAILS

- Circuit-1: 32-bit integers comparison.
- **Circuit-2:** AES-128(Prove that the plain text was encrypted under the secret key).

TABLE: Details of the two circuits used in the experiments

Parameter	Circuit-1	Circuit-2
Gates	184	33880
Input Wires	64	128
Output Wires	1	128
Total Wires	248	34136
$ \mathcal{PW} $	93	15596
$ \mathcal{M}on $	154	32244

Curves Used

- **ROM:** secp256r1 curve from the SECG standard.
- **CRS:** 256–bit Barreto-Naehrig curve.

RESULTS AND TIMINGS

All our timings are in seconds and were tested on a Linux machine with Intel Core Duo 3.00GHz processor.

		Proof	Prover	Verifier	Batch	Time
Model	Circuit	Method	Time	Time	Time	Saved
ROM	1	LEq	4.7	5.3	1.97	62.8%
ROM	1	QEq	1.95/2.25	2.5	2.01/1.28	19.6%/48.8%
ROM	2	LEq	729	839	321	61.7%
ROM	2	QEq	296/280	372	360/253	3.2%/31.9%
CRS	1	LEq	44	450	64	85.8%
CRS	1	QEq	15.23	163	29.5	81.9%
CRS	2	LEq	7174	70300	9431	86.6%
CRS	2	QEq	2406	24861	4200	83.1%

TABLE: Timings for our two circuits

- QEq method is faster than the LEq method.
- Computing the shared monomials saves time.
- GS proofs are slower than the ROM proofs. This is no surprise as proofs in the standard model are usually less efficient than the ROM ones.
- GS proof verification is faster when using the "pairing product" trick.
- Batch verification is very beneficial in Groth-Sahai proofs.

The End. Questions?