
A New Reduction from 3SAT to n-Partite Graphs
Daniel J Hulme

Dept. of Computer Science
University College London

Gower St, London
WC1E 6BT

T: +44 (0)20 7608 6840
F: +44 (0)20 7608 4064

d.hulme@cs.ucl.ac.uk

Robin Hirsch
Dept. of Computer Science
University College London

Gower St, London
WC1E 6BT

T: +44 (0)20 7679 1379
F: +44 (0)20 7387 1397

r.hirsch@cs.ucl.ac.uk

Bernard F Buxton
Dept. of Computer Science
University College London

Gower St, London
WC1E 6BT

T: +44 (0)20 7679 7294
F: +44 (0)20 7387 1397
b.buxton@cs.ucl.ac.uk

R.Beau Lotto
Institute of Ophthalmology
University College London

11-43 Bath St, London
EC1V 9EL

T: +44 (0)20 7608 4052
F: +44 (0)20 7608 4064

lotto@ucl.ac.uk

Abstract— The Constraint Satisfaction Problem (CSP) is one
of the most prominent problems in artificial intelligence, logic,
theoretical computer science, engineering and many other areas
in science and industry. One instance of a CSP, the satisfiability
problem in propositional logic (SAT), has become increasingly
popular and has illuminated important insights into our under-
standing of the fundamentals of computation.

Though the concept of representing propositional formulae
as n-partite graphs is certainly not novel, in this paper we
introduce a new polynomial reduction from 3SAT to Gn

7 graphs
and demonstrate that this framework has advantages over the
standard representation. More specifically, after presenting the
reduction we show that many hard 3SAT instances represented
in this framework can be solved using a basic path-consistency
algorithm, and finally we discuss the potential advantages and
implications of using such a representation.

I. INTRODUCTION

The Constraint Satisfaction Problem (CSP) describes a gen-
eral framework for problems in which values must be assigned
to a set of variables subject to specific constraints [1], [2], and
is one of the most prominent problems in artificial intelligence
(AI), logic, theoretical computer science, engineering and
many other areas in science and industry.

One instance of a CSP, the satisfiability problem in propo-
sitional logic (SAT), has become increasingly popular and has
lead to important insights into the nature of satisfiability and
dramatic improvements in CSP algorithms, which can solve
hard instances with thousands of variables [3] as well as many
restricted instances in polynomial-time [4].

Fundamental to the study of CSP, the P versus NP
problem, formulated independently by Stephen Cook [5] and
Leonid Levin [6], has been one of the most important scientific
questions posed to date. Indeed, over the past several decades
researchers have been trying to determine whether or not there
is a polynomial solution to any of the problems that have been
shown (using polynomial reduction) to be NP -complete [7],
many of which are described in Computers and Intractability:
A Guide to the Theory of NP-completeness [8].

In this paper we introduce a new framework to represent
SAT problems and demonstrate that this framework has ad-
vantages over the standard representation. More specifically,
after introducing some elementary concepts in complexity

and graph theory we present a new polynomial reduction
from 3SAT to G7. We demonstrate that a basic polynomial-
time algorithm can solve a number of hard SAT benchmark
instances represented using this framework, yet fails when
applied to the standard Gn

3 graph representation. Finally we
briefly discuss the potential advantages, practical benefits and
possible implications of using such a framework.

II. BACKGROUND

A. Satisfiability and the Conjunctive Normal Form

The satisfiability problem in conjunctive normal form (CNF)
consists of the conjunction (∧ representing the Boolean and
connective) of a number of clauses, where a clause is a
disjunction (∨ representing the Boolean or connective) of a
number of propositions or their negations.

If xi represent propositions that can assume only the values
True or False, then an example formula in CNF would be

(x0 ∨ x2 ∨ x̄3) ∧ (x3) ∧ (x1 ∨ x̄2) (1)

where x̄i is the negation of xi.
Given a set of clauses C0, C1, . . . , Cn−1 on the propositions

x0, x1, . . . , xm−1, the satisfiability problem is to determine if
the formula F =

∧
j<n Cj has an assignment of values to the

propositions such that it evaluates to True.

B. 3SAT

One of the original problems shown by Cook [5] to be NP -
complete, 3SAT is considered the ‘mother’ of all SAT prob-
lems. Instances of 3SAT are restricted to Boolean formulae in
CNF with three literals per clause. For example, the formula

(x0∨x1∨x2)∧(x̄0∨x1∨x̄2)∧(x0∨x̄1∨x3)∧(x̄0∨x̄2∨x̄3) (2)

is a 3CNF formula with four clauses and is a Y ES instance to
3SAT since the truth assignment θ satisfies the formula, where
one of the nine satisfying assignments is θ(x0) = θ(x1) =
True and θ(x2) = θ(x3) = False.



Fig. 1. An example of a 4-partite graph.

C. Satisfiability as a Constraint Satisfaction Problem

Representing a SAT instance as a CSP is specified by giving
a formula in propositional logic (such as CNF) and asking
whether there is an assignment to the set of propositions which
makes the formula True [9].

Example 1: For instance, finding a satisfying truth assignment
for Formula 1 can be formulated as a CSP instance. Perhaps
the most straightforward way is to construct the instance with
a set of:

• Variables V = {x0, x1, x2, x3}.
• Values D = {0, 1}, corresponding to False and True.
• Constraints C = {C0, C1, C2}, where

– C0 = 〈〈x0, x2, x3〉, D3 \ 〈0, 0, 1〉〉
– C1 = 〈〈x3〉, D1 \ 〈0〉〉
– C2 = 〈〈x1, x2〉, D2 \ 〈0, 1〉〉

D. Partite Graphs

Definition 1: A graph is n-partite iff the vertices can be
partitioned into n independent subsets — i.e., no two vertices
within the same set are adjacent (connect by an edge).

Fig. 1 is an example of a 4-partite graph, which in this case
has four independent sets of vertices: {A,B, C}, {D,E, F},
{G}, {H}. It should be noted that all graphs in this paper are
undirected and irreflexive.

E. Cliques

Definition 2: In a graph G, a clique C is a subset of vertices
of G such that every pair of distinct vertices in C are adjacent.

For instance, in Fig. 1 there are several cliques of size three
(3-clique), including {F,G,H}, {A,F, G} and {B,E,H},
with only one 4-clique {A,F, G,H}.

F. The Gm Graph Problem

Definition 3: A Gn
m graph has a partition into n independent

sets, each of which contains exactly m vertices. An instance
of Gm is a Gn

m graph (for some n), and is a YES instance if
it contains an n-clique and a NO instance otherwise.

Fig. 2. Formula 2 reduced to a G4
3 graph.

G. Polynomial Reduction

The method of showing that a problem is NP -complete by
polynomial reduction is one of the most elegant and productive
in computational complexity [10]. It is a means of providing
compelling evidence that a problem in NP is not in P .
Cook [11] defines the following:

Definition 4: Suppose that Li is a language over Σi, i = 1, 2.
Then L1 ≤p L2 (L1 is polynomially reducible to L2) iff there
is a polynomial-time computable function f : Σ1 → Σ2 such
that x ∈ L1 ⇔ f(x) ∈ L2, for all x ∈ Σ1.

Definition 5: A language L is NP -complete iff L is in NP ,
and L′ ≤p L for every language L′ in NP .

Proposition 1: Given any two languages, L1 and L2:
1) If L1 ≤p L2 and L2 ∈ P then L1 ∈ P .
2) If L1 is NP -complete, L2 ∈ NP , and L1 ≤p L2 then

L2 is NP -complete.
3) If L ∈ P and L is NP -complete, then P = NP .

H. 3SAT ≤p G3

The standard reduction [5, Theorem 2] of a 3CNF formula
F (that has a set of n clauses C) to a Gn

3 graph G = (V,E)
such that G has an n-clique iff F is satisfiable is as follows:

1) For each clause Ck in F (k < n), put a triple of vertices
in V respectively labelled by the three literals in Ck.

2) For each pair of vertices i, j ∈ V add an edge (i, j)
to E iff the vertices are in different triples, and their
corresponding literals are not contradictory.

Fig. 2 is the graph of Formula 2 resulting from this reduc-
tion. The number of n-cliques contained in a Gn

3 graph can
be greater than the number of possible satisfying assignments,
since it also represents assignments to subsets of literals
that also make the formula True. For instance, in Fig. 2
there is a 4-clique between {x0, x0, x̄2, x̄2} and also between
{x0, x0, x1, x̄3}.



III. A NEW REDUCTION: 3SAT ≤p G7

In a similar way to the standard G3 reduction we can
reduce 3SAT to G7. In this case, rather than constructing
a graph using the literals as vertices, we use the seven
possible satisfying assignments to each clause. Two vertices
are adjacent iff there are no contradictory assignments to the
literals represented by each vertex.

Theorem 1: There is a quadratic-time reduction from 3SAT to
G7.

Proof: Let F =
∧

i<n Ci (for some n) be an instance of
3SAT, where each Ci is a disjunction of exactly three literals.
We will define an instance of G7 from F , in polynomial-
time. We can assume that no clause contains a literal and
its negation (else we could exclude that clause and the result
would be logically equivalent). A partial valuation to a clause
is a valuation defined on the propositional variables occurring
in that clause only. Given a clause C = (l0 ∨ l1 ∨ l2) there
are at most seven partial valuations v to {l0, l1, l2} such that
v(C) = > (if the propositional variables in the literals are all
distinct then there is one valuation making all three literals
false and seven other valuations making at least one literal
true; if the propositional variables are not distinct then there
will be less than seven partial valuations).

For each clause Ci (i < n) and each partial valuation v
making Ci true, create a node (i, v) of a new graph G. G has
at most 7 × n nodes — seven for each clause. To complete
the definition of our reduction we must define the edges of G.
Let ((i, v), (j, w)) be an edge of G if i 6= j and v and w do
not contradict each other — i.e., we allow this edge so long
as there is no propositional variable p such that v and w are
both defined on p but one makes p true and the other makes it
false. It is easy to see that this graph G is a Gn

7 graph, hence
an instance of G7.

Now we must check that the reduction is correct. If F is a
YES instance of 3SAT, let v be a valuation such that v(F ) = >.
We must show that there is a n-clique of the graph G. For each
clause Ci, let vi be the restriction of v to the propositional
variables in Ci. Since v(F ) = > we must have vi(Ci) =
v(Ci) = >, so (i, vi) is a node of G. Let S = {(i, vi) :
i < n}. Since all the vi’s are restrictions of the same global
valuation v, none of them can contradict each other. Hence,
for any i, j < n, ((i, vi), (j, vj)) is an edge of G. Therefore
S is a n-clique, so G is a YES instance of G7. Conversely,
suppose G is a YES instance of G7, so let S be a n-clique
of G. For each i < k there must be one vertex (i, v) ∈ S.
We have (v(Ci) = >. Let w be the valuation, defined on all
propositions p in F by w(p) = v(p) if there is i < n such that
v is defined on p and (i, v) ∈ S. Since S is a clique, no two
partial valuations (i, v), (j, v′) contradict each other, so this is
well-defined. Now, for each (i, v) ∈ S, v is a restriction of
w, hence w(Ci) = v(Ci) = > and therefore w(F ) = >, as
required.

Creating upto 7n nodes takes O(n) time. Checking if v
contradicts v′ and adding an edge from (i, v) to (j, v′) takes
constant time. Adding all the edges takes O(n2) time.

Fig. 3. Formula 2 reduced to a G4
7 graph.

To illustrate this using an example, Fig.3 represents the
graph generated from the 3CNF Formula 2:

(x0∨x1∨x2)∧(x̄0∨x1∨ x̄2)∧(x0∨ x̄1∨x3)∧(x̄0∨ x̄2∨ x̄3)

In the following example, the subscript to xi, indicates the
index of the literal, with the superscript to it xa, as its Boolean
assignment — i.e., x0

2 states that the literal x2 is assigned the
Boolean value ‘0’, representing False.

Example 2: To construct the Gn
7 graph of this Formula:

• Convert each partial evaluation of the clause to an ‘as-
signment vertex’ (except the unsatisfiable assignment —
i.e., {x0

0, x
0
1, x

0
2} in the first clause).

• If necessary, also remove any ‘internally’ inconsistent
vertcies, e.g., {x0

0, x
0
1, x

1
0} could not exist since the as-

signment x0
0 contradicts x1

0.
• Add edges between vertices that are not contradictory, for

instance:
– Create an edge between {x0

0, x
0
1, x

1
2} and

{x0
0, x̄

1
1, x

1
3}.

– Do not create an edge between {x0
0, x

0
1, x

1
2} and

{x0
0, x̄

0
1, x

0
3} (because the assignment x0

1 contradicts
x̄0

1).

Using this framework the resulting Gn
7 graph only repre-

sents the n-cliques that correspond to each possible satisfying
assignment — i.e., the number of n-cliques exactly equals the
number of assignments that make a formula True. This means
that since a Gn

3 graph can represent solutions using subests of
literals, it can contain more n-cliques than the total number
of n-cliques represented by the corresponding Gn

7 graph.



IV. DISCUSSION

The primary focus of this paper is to introduce a new re-
duction from 3SAT to G7, however, to illustrate one benefit of
using such a representation, we ran a very basic complete path-
consistency algorithm [2] on a number of 3CNF unsatisfiable
SATLIB benchmarks reduced to G7 and G3 graph problems.

SATLIB [3] is an online resource for SAT-related research
with its core component, a freely distributed benchmark suite
of SAT instances and a collection of SAT solvers, aimed to
facilitate empirical research on SAT by providing a uniform
test-bed for SAT solvers.

Generally, it tends to be ‘hard’ for polynomial algorithms
to correctly solve unsatisfiable instances, so these algorithms
are usually used preliminarily to reduce the search-space for
backtracking algorithms [12]. To clarify what we mean by
‘solve’, the path-consistency algorithm simply prunes edges
that cannot be part of a tri-clique and it runs in polynomial-
time, O(n2). Since both the Gn

7 and standard Gn
3 represen-

tations contain an n-clique iff there is a satisfiable solution,
an empty graph (containing no edges) means that there are
no cliques and hence no satisfiable solutions. Therefore, ini-
tially for our purpose it is interesting to focus primarily on
unsatisfiable benchmarks.

Table I lists some unsatisfiable benchmark instances that
this algorithm successfully solves when represented as a Gn

7

graph (including the time taken). Moreover, if we reduce these
instances to the standard Gn

3 representation, the simple path-
consistency algorithm fails to solve a single case correctly.

Uniform Random-3SAT (UUF) is a family of SAT problems
obtained by generating 3CNF formulae, randomly drawing
from the 2n possible literals with uniform probability. The
AIM and DUBOIS instances are constructed with Random-
3SAT instance generators and run in a randomized fashion.
Although some SAT-solvers find it difficult to solve the AIM
instances, it should be noted that these instances can be solved
with polynomial preprocessing.

The results are very encouraging, and it is speculated
that this new framework is advantageous over the standard
representation since the Gn

7 graphs represent less information
than the Gn

3 graphs (i.e., the number of n-cliques equals the
number of satisfying assignments), resulting in graphs which
tend to be significantly less dense with proportionally up to
10 times fewer edges.

Indeed, we intend to further this research by attempting
to understand why these polynomial-time algorithms fail to
solve some unsatisfiable formulae (graphs with no n-cliques)
as well as applying more robust complete polynomial-time
algorithms [4] to many more of the SATLIB benchmarks and
other pertinent scientific problems.

Though still unproven, the general consensus is that P 6=
NP [13]. From our preliminary findings for 3SAT, it would
appear that even the most basic of polynomial-time algorithms
may work for some of the inputs likely to be encountered in
practice. In this sense, using more robust algorithms thus might
yield many of the stunning practical benefits to be expected
in a world in which P = NP [11].

TABLE I
SOME SOLVED UNSATISFIABLE BENCHMARKS REPRESENTED AS Gn

7

GRAPHS USING A BASIC PATH-CONSISTENCY ALGORITHM, WHICH FAILS

TO SOLVE THE Gn
3 GRAPHS CORRECTLY. TIME IS IN SECONDS.

benchmark set instances props clauses solves avg time

uuf50-218 1000 50 218 1000 1.16

uuf75-325 100 75 325 55 25.05

uuf100-430 1000 100 430 4 120.45

dubois# 11 60-90 160-240 11 0.24-0.75

dubois100 1 300 800 1 30.2

aim-50-1 6-no 4 50 80 4 0.032

aim-50-2 0-no 4 50 100 4 0.062

aim-100-1 6-no 4 100 160 4 0.27

aim-100-2 0-no 4 100 200 4 0.40

aim-200-1 6-no 4 200 320 4 1.85

aim-200-2 0-no 4 200 400 4 3.00

ACKNOWLEDGMENT

Daniel J Hulme wishes to acknowledge the support of an
EPSRC Engineering Doctorate from the VEIV EngD Pro-
gramme at UCL.

REFERENCES

[1] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,”
AI Magazine, vol. 13, no. 1, pp. 32–44, 1992.

[2] E. Tsang, Foundations of Constraint Satisfaction. London: Academic
Press, 1993.

[3] H. H. Hoos and T. Stützle, “Satlib: An online resource for research on
SAT,” in SAT’2000. IOS Press, 2000, pp. 283–292.

[4] J. K. Pearson and P. G. Jeavons, “A survey of tractable constraint
satisfaction problems,” Royal Holloway University of London, Tech.
Rep. CSD-TR-97-15, 1997.

[5] S. A. Cook, “The complexity of theorem-proving procedures,” in STOC
’71: Proceedings of the third annual ACM symposium on Theory of
computing. New York, NY, USA: ACM Press, 1971, pp. 151–158.

[6] B. A. Trakhtenbrot, “A survey of Russian approaches to perebor (brute-
force search) algorithms,” Annals of the History of Computing, vol. 6,
no. 4, pp. 384–400, Oct./Dec. 1984, partial English translation of L.
Levin, Universal Search Problems, 9(3), pp. 265–266, (1973).

[7] M. Sipser, “The history and status of the P versus NP question,” in
In Proceedings of the 24th ACM Symposium on Theory of Computing,
1992, pp. 603–618.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[9] P. Jeavons, D. Cohen, and J. Pearson, “Constraints and universal
algebra,” Annals of Mathematics and Artificial Intelligence, vol. 24, no.
1-4, pp. 51–67, 1998.

[10] L. Adleman and K. Manders, “Reducibility, randomness, and intractibil-
ity (abstract),” in STOC ’77: Proceedings of the ninth annual ACM
symposium on Theory of computing. New York, NY, USA: ACM Press,
1977, pp. 151–163.

[11] S. A. Cook, “The P versus NP problem,” 2000, computer Science
Department, University of Toronto.

[12] J. Gu, P. Purdom, J. Franco, and B. Wah, “Algorithms for the satisfia-
bility (sat) problem: a survey,” 1996.

[13] L. A. Hemaspaandra, “Sigact news complexity theory column 36,”
SIGACT News, vol. 33, no. 2, pp. 34–47, 2002.


