Maths revision for algorithmic analysis

The course will assume familiarity with a small range of standard mathematical functions, in particular powers (as in polynomials), exponentials, and logarithms.

Power functions

Suppose x is a real number and that for simplicity k is an integer. \mathbf{x}^{k} or ' \mathbf{x} to the power of k ' is a shorthand notation denoting the product

$$
x \underbrace{x \times x \times \ldots \times x}_{k \text { times }}
$$

k is referred to here as the exponent. For example, $2^{3}=8$, $10^{2}=100,3 \cdot 1^{2}=9.61$.

If we multiply x^{k} by x^{1} we have $(k+1)$ occurrences of x, so

$$
x^{k} \times x^{\prime}=x^{k+1}
$$

On multiplication, exponents are added.
Negative exponents indicate that divisions by x are taking place:
$x^{-k}=\frac{1}{x^{k}}=\frac{1}{x \times x \times \ldots \times x}$
For example $2^{-2}=1 / 2^{2}=0.25,10^{-3}=1 / 10^{3}=0.001$.

If we divide x^{k} by x^{\prime} we have ($k-1$) occurrences of x, so

$$
\frac{x^{k}}{x^{\prime}}=x^{k-1}
$$

On division, exponents are subtracted.
(The addition/subtraction rules still apply if k is not an integer but in almost all the cases encountered in this course it will be.)

We can therefore also give a meaning to x^{0}, since

$$
x^{0}=x^{k-k}=\frac{x \times x \times \ldots \times x}{x \times x \times \ldots \times x}=1
$$

the k occurrences of x in the numerator cancel the k x's in the denominator

Polynomials

Any function which takes the form of a sum of powers (with constant multipliers) is known as a polynomial. For example $3 x^{2}+2 x+1$ is a quadratic polynomial (fastest-growing part is proportional to x^{2}), $2.45 x^{3}-5.1 x^{2}+0.56 x+1.3$ is a cubic polynomial (fastest-growing part is proportional to x^{3}).

Growth of power functions

- If $x>y>0$, and $k>0$, then $x^{k}>y^{k}$, ie x^{k} is an increasing function of x.
- If $x>1$, and $k>1>0$, then $x^{k}>x^{\prime}$, ie the power for a fixed non-fractional x is an increasing function of the exponent.

Exponential functions

In an exponential function the variable x is the exponent, the power to which some other (fixed) number is raised. For example $2^{x},(1 /)^{x}$ are exponential functions.

Exponential functions behave very differently depending on whether the number being raised to the power x is in magnitude smaller or larger than 1.0 -- if it's smaller, like $1 / 2$, the function tends to zero as x increases but if it's larger, like 2, the function increases very rapidly. In the algorithmics context where the functions are time-demands it will be the latter which is the case -exponential growth of a time-demand is always bad news.

Logarithms

Suppose y is equal to the exponential function of x with base (the number being raised to the power) a:

$$
y=a^{x}
$$

An equivalent way to express this relationship is to say that x is the logarithm (log) to base a of y :

$$
x=\log _{a} y
$$

Common bases for logarithms are 2 ($\log _{2}$ is sometimes written ' Ig ', $10\left(\log _{10}\right.$ is often just written as 'log') and $e=2.7182818 \ldots\left(\log _{\mathrm{e}}\right.$ is usually written 'In').
($y=e^{x}$ has the useful property that $d y / d x=e^{x}$, ie its derivative is the same as the function itself -- but these derivative properties of exponential functions won't be needed in this course).

For example:
Base 2: $\log _{2}(8)=3\left(2^{3}=8\right)$
Base 10: $\log _{10}(0.0001)=-4\left(10^{-4}=0.0001\right)$

Logarithms were originally introduced as an aid to calculation before calculators were available. To multiply two numbers you looked up their logarithms (to base 10) in a book of tables, added the logs (since if $c=10^{x}$ and $d=10^{y}, c \times d=10^{x+y}$) and then looked up the antilogarithm ($=\mathrm{c} \times \mathrm{d}$) of this sum. To divide two numbers a similar process was followed except in this case the log values were subtracted ($\mathrm{c} / \mathrm{d}=10^{x-y}$).

The use of log tables is now a thing of the past but logarithms are still important in computer mathematics because $1+\left\lfloor\log _{2} n\right\rfloor$ is the number of bits needed to represent the value n in binary code (where $\lfloor x\rfloor$ is the floor of x, the largest integer not greater than x).

Some useful properties of logarithms

(NB the proofs are just here for interest, you don't need to memorise them.)
i. $\quad \log _{a}(1)=0 \quad\left(\right.$ as $^{0}=1$, for any a)
ii. $\quad \log _{\mathrm{a}} \mathbf{a}=1 \quad$ (as $\mathrm{a}^{1}=\mathrm{a}$, for any a)
iii. $\quad \log _{a}\left(x^{n}\right)=n \log _{a} x$

Proof: Let $y=\log _{a} x$, so $x=a^{y}$. $x^{n}=\left(a^{y}\right)^{n}=a^{n y}$ Hence $\log _{\mathrm{a}} \mathrm{x}^{\mathrm{n}}=\mathrm{ny}=\mathrm{nlog} \mathrm{g}_{\mathrm{a}} \mathrm{x}$
iv. $x=a^{\log _{\mathrm{a}} \mathrm{x}}$

$$
\text { Proof: } \quad \begin{aligned}
\log _{a} \text { of LHS } & =\log _{a} x \\
\log _{a} \text { of } R H S & =\log _{a}\left(a^{\log _{a} x}\right) \\
& =\log _{a} x \times \log _{a} a \quad \text { (by iii) } \\
& =\log _{a} x \quad \text { (by ii) }
\end{aligned}
$$

v. $\quad \log _{a}(x y)=\log _{a} x+\log _{a} y$

Proof: Using iv, $x=a^{\log _{9} x}, y=a^{\log _{a} y}$

$$
x y=a^{\log _{a} x} \times a^{\log _{y} y}=a^{\log _{a} x+\log _{a} y}
$$

$$
\rightarrow \log _{a}(x y)=\log _{a} x+\log _{a} y
$$

vi. $\quad \log _{a}(x / y)=\log _{a} x-\log _{a} y$

Proof: $\quad x / y=a^{\log _{a} x} / a^{\log _{a} y}=a^{\log _{a} x-\log _{a} y}$

$$
\rightarrow \log _{a}(x / y)=\log _{a} x-\log _{a} y
$$

vii. $\quad\left(\log _{a} b\right)\left(\log _{b} a\right)=1$

Proof: \quad Let $x=\log _{a} b\left(\right.$ so $\left.b=a^{x}\right), \quad y=\log _{b} a\left(\right.$ so $\left.a=b^{y}\right)$
Then $b=\left(b^{y}\right)^{x}=b^{x y}$
${ }_{a}^{4}$

$$
\rightarrow x y=\left(\log _{a} b\right)\left(\log _{b} a\right)=1
$$

viii. Change of base (from b to a): $\log _{a} x=\left(\log _{b} x\right)\left(\log _{a} b\right)$

Proof: $\quad \log _{a} x=\log _{a}\left[b^{\log _{5} x}\right] \quad$ (using iv)
$=\left(\log _{b} \mathrm{x}\right)\left(\log _{a} \mathrm{~b}\right) \quad$ (using iii)

