Maths revision for algorithmic analysis

The course will assume familiarity with a small range of standard mathematical functions, in particular **powers** (as in **polynomials**), **exponentials**, and **logarithms**.

Power functions

Suppose x is a real number and that for simplicity k is an integer. \mathbf{x}^{k} or 'x to the power of k' is a shorthand notation denoting the product

$$x \underbrace{\times x \times \dots \times x}_{k \text{ times}} x$$

k is referred to here as the **exponent**. For example, $2^3=8$, $10^2=100$, $3.1^2=9.61$.

If we multiply x^k by x^l we have (k+l) occurrences of x, so

 $\mathbf{x}^{k} \times \mathbf{x}^{l} = \mathbf{x}^{k+l}$

On multiplication, exponents are added.

Negative exponents indicate that divisions by x are taking place:

 $\mathbf{X}^{-k} = \frac{1}{\mathbf{X}^{k}} = \frac{1}{\mathbf{X} \times \mathbf{X} \times \ldots \times \mathbf{X}}$

For example $2^{-2} = \frac{1}{2^2} = 0.25$, $10^{-3} = \frac{1}{10^3} = 0.001$.

If we divide x^k by x^l we have (k-l) occurrences of x, so

$$\frac{\mathbf{X}^{k}}{\mathbf{X}^{l}} = \mathbf{X}^{k-l}$$

On division, exponents are subtracted.

(The addition/subtraction rules still apply if k is not an integer but in almost all the cases encountered in this course it will be.)

We can therefore also give a meaning to x^0 , since

$$x^{0} = x^{k-k} = \frac{x \times x \times \dots \times x}{x \times x \times \dots \times x} = 1$$

the k occurrences of x in the numerator cancel the k x's in the denominator

Polynomials

Any function which takes the form of a sum of powers (with constant multipliers) is known as a polynomial. For example $3x^2 + 2x + 1$ is a *quadratic polynomial* (fastest-growing part is proportional to x^2), $2.45x^3 - 5.1x^2 + 0.56x + 1.3$ is a *cubic polynomial* (fastest-growing part is proportional to x^3).

Growth of power functions

- If x > y > 0, and k > 0, then x^k > y^k, ie x^k is an increasing function of x.
- If x > 1, and k > l > 0, then $x^k > x^l$, ie the power for a fixed non-fractional x is an increasing function of the exponent.

Exponential functions

In an exponential function the variable x is the exponent, the power to which some other (fixed) number is raised. For example 2^x , $(\frac{1}{2})^x$ are exponential functions.

Exponential functions behave very differently depending on whether the number being raised to the power x is in magnitude smaller or larger than 1.0 -- if it's smaller, like $\frac{1}{2}$, the function tends to zero as x increases but if it's larger, like 2, the function increases *very* rapidly. In the algorithmics context where the functions are time-demands it will be the latter which is the case -- exponential growth of a time-demand is always bad news.

Logarithms

Suppose y is equal to the exponential function of x with **base** (the number being raised to the power) a:

$$y = a^{x}$$

An equivalent way to express this relationship is to say that **x is the logarithm (log) to base a of y**:

$$x = log_a y$$

Common bases for logarithms are 2 (\log_2 is sometimes written 'lg', 10 (\log_{10} is often just written as 'log') and e=2.7182818... (\log_e is usually written 'ln').

(y = e^x has the useful property that dy/dx = e^x , ie its derivative is the same as the function itself -- but these derivative properties of exponential functions won't be needed in this course).

For example: Base 2: $\log_2(8) = 3 \ (2^3 = 8)$ Base 10: $\log_{10}(0.0001) = -4 \ (10^{-4} = 0.0001)$

Logarithms were originally introduced as an aid to calculation before calculators were available. To multiply two numbers you looked up their logarithms (to base 10) in a book of tables, added the logs (since if $c = 10^x$ and $d = 10^y$, $c \times d = 10^{x+y}$) and then looked up the antilogarithm (= $c \times d$) of this sum. To divide two numbers a similar process was followed except in this case the log values were subtracted ($c / d = 10^{x-y}$).

The use of log tables is now a thing of the past but logarithms are still important in computer mathematics because $1 + \lfloor \log_2 n \rfloor$ is **the** number of bits needed to represent the value n in binary code

(where |x| is the *floor* of x, the largest integer not greater than x).

Some useful properties of logarithms

(NB the proofs are just here for interest, you don't need to memorise them.)

 $\log_{a}(1) = 0$ (as $a^{0} = 1$, for any a) i. $\log_a a = 1$ (as $a^1 = a$, for any a) ii. $\log_a(\mathbf{x}^n) = n \log_a \mathbf{x}$ iii. Let $y = \log_a x$, so $x = a^y$. Proof: $x^{n} = (a^{y})^{n} = a^{ny}$ Hence $\log_a x^n = ny = n\log_a x$ $\mathbf{x} = \mathbf{a}^{\log_a \mathbf{x}}$ iv. Proof: $\log_a \text{ of LHS} = \log_a x$ $\log_a \text{ of RHS} = \log_a(a^{\log_a x})$ $= \log_a x \times \log_a a$ (by iii) $= \log_a x$ (by ii) ۷. $\log_a(xy) = \log_a x + \log_a y$ Using iv, $\mathbf{X} = \mathbf{a}^{\log_a x}$, $\mathbf{Y} = \mathbf{a}^{\log_a y}$ Proof: $XV = a^{\log_a x} \times a^{\log_a y} = a^{\log_a x + \log_a y}$ $\rightarrow \log_a(xy) = \log_a x + \log_a y$ vi. $\log_a(x/y) = \log_a x - \log_a y$ $x/y = a^{\log_{a} x} / a^{\log_{a} y} = a^{\log_{a} x - \log_{a} y}$ Proof: $\rightarrow \log_a(x/y) = \log_a x - \log_a y$ $(\log_a b)(\log_b a) = 1$ vii. Proof: Let $x = \log_a b$ (so $b = a^x$), $y = \log_b a$ (so $a = b^y$) Then $b = (b^y)^x = b^{xy}$ \rightarrow xy = (log_ab)(log_ba) = 1 viii. Change of base (from b to a): $\log_a x = (\log_b x)(\log_a b)$ $\log_a x = \log_a [b^{\log_b x}]$ Proof: (using iv) = $(\log_b x)(\log_a b)$ (using iii)