GC05 ALGORITHMIC ANALYSIS COURSEWORK, 2011

 Please hand in to $5^{\text {th }}$ floor reception by 12 pm on Thursday 24 March1) Consider two algorithms A and B which solve the same problem, and have timecomplexities (in terms of the number of elementary operations they perform) given respectively by $a(n)=9 n+6, b(n)=2 n^{2}+1$.
(i) Which algorithm is the best asymptotically?
(ii) Which is the best for small input sizes n, and for what values of n is this the case? (You may assume where necessary that $n>0$.)
2) Are the following statements true or false? Justify your answers using a careful argument based on the formal mathematical definition of 'O' notation. (You may assume where necessary that n is a positive integer.)
(i) $\mathrm{n}^{3} \in \mathrm{O}\left(\mathrm{n}^{2}\right)$
(ii) $\log _{2}(2 \mathrm{n}) \in \mathrm{O}\left(\log _{2}(\mathrm{n})\right)$
(iii) $2^{n} \in O\left(4^{n}\right)$
(iv) $(\mathrm{n}+1)!\in \mathrm{O}(\mathrm{n}!)$
3) Consider the following short procedures, written in pseudocode. In each case work out $\mathrm{f}(\mathrm{n})$, the exact number of unit-time operations the procedure requires as a function of the input size n , simplifying your final answer using O-notation.
(i) for $\mathrm{i}<-1$ to n do for $\mathrm{j}<-2$ to ($\mathrm{n}+\mathrm{i}$) do // a unit cost operation
(ii) for $\mathrm{i}<-1$ to n do for j <- 1 to n do for $k<-1$ to ($\mathrm{i}+\mathrm{j}$) do // a unit cost operation
4) Solve the following recurrence relations, simplifying your final answer using 'O' notation. (You may assume that n is a power of 2 where appropriate.)
(i) $f(0)=2$
$f(n)=6 f(n-1)-5, n>0$
(ii) $f(0)=2$
$f(1)=5$
$f(n)=5 f(n-1)-6 f(n-2), n>1$
(iii) $f(0)=3$
$f(1)=12$
$f(n)=6 f(n-1)-9 f(n-2), n>1$
(iv) $f(1)=3$
$f(2)=9$
$f(n)=5 f(n / 2)-4 f(n / 4), n>2$
