COMP1004 ALGORITHMS & DATA STRUCTURES COURSEWORK 2, 2011

Please hand in to 5th floor reception by 12pm on Monday 21 March

- 1) Are the following statements true or false? Justify your answers using a careful argument based on the formal mathematical definition of 'O' notation. (You may assume where necessary that n is a positive integer.)
 - (i) $n^3 \in O(n^2)$ (ii) $log_2(2n) \in O(log_2(n))$ (iii) $2^n \in O(4^n)$ (iv) $(n + 1)! \in O(n!)$
- 2) Consider the following short procedures, written in pseudocode. In each case work out f(n), the exact number of unit-time operations the procedure requires as a function of the input size n, simplifying your final answer using O-notation.
 - (i) for i <- 1 to n do
 for j <- 2 to (n+i) do
 // a unit cost operation
 - (ii) for i <- 1 to n do for j <- 1 to n do for k <- 1 to (i+j) do // a unit cost operation
 - (iii) for i <- 1 to n do for j <- 1 to n do for k <- 1 to i*j do // a unit cost operation

TURN OVER

- 3) Solve the following recurrence relations, simplifying your final answer using 'O' notation. (You may assume that n is a power of 2 where appropriate.)
 - (i) f(0) = 2f(n) = 6f(n-1) - 5, n > 0
 - (ii) f(0) = 2 f(1) = 5f(n) = 5f(n-1) - 6f(n-2), n > 1
 - (iii) f(0) = 3 f(1) = 12f(n) = 6f(n-1) - 9f(n-2), n > 1

(iv)
$$f(1) = 3$$

 $f(2) = 9$
 $f(n) = 5f(\frac{n}{2}) - 4f(\frac{n}{4}), n > 2$

4) Consider the following recurrence relations (in which you may consider that the variable n is always positive):

$$f(1) = 1$$

$$f(n) = 4f(\frac{n}{2}), n > 1$$

$$g(0) = 1$$

$$g(n) = 2g(n-1), n > 0$$

- (i) Solve each of these recurrence relations as a function of n.
- (ii) For what positive integer value(s) of n is the solution for g(n) less than that for f(n)?