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Abstract—Source code analysis to detect code cloning, code
plagiarism, and code reuse suffers from the problem of pervasive
code modifications, i.e. transformations that may have a global
effect. We compare 30 similarity detection techniques and tools
against pervasive code modifications. We evaluate the tools using
two experimental scenarios for Java source code. These are
(1) pervasive modifications created with tools for source code and
bytecode obfuscation and (2) source code normalisation through
compilation and decompilation using different decompilers. Our
experimental results show that highly specialised source code
similarity detection techniques and tools can perform better than
more general, textual similarity measures. Our study strongly
validates the use of compilation/decompilation as a normalisation
technique. Its use reduced false classifications to zero for six of
the tools. This broad, thorough study is the largest in existence
and potentially an invaluable guide for future users of similarity
detection in source code.

I. INTRODUCTION

Assessing source code similarity is a fundamental activity

in software engineering and it has many applications. These

include clone detection, the problem of locating duplicated code

fragments; plagiarism detection; software copyright infringe-

ment; and code search, in which developers search for similar

implementations. While that list covers the more common

applications, similarity assessment is used in many other areas,

too. Examples include finding similar bug fixes [22], identifying

cross-cutting concerns [6], program comprehension [35], code

recommendation [23], and example extraction [37].
The assessment of source code similarity has a co-

evolutionary relationship with the modifications made to the

code at the point of its creation. In this paper we consider

not only local transformations but in particular pervasive

modifications, such as changes in layout or renaming of

identifiers, changes that affect the code globally. Loosely, these

are code transformations that arise in the course of code cloning,

software plagiarism, and software evolution, but exclude strong

obfuscation [10]. In code reuse by code cloning, which occurs

through copying and pasting a fragment from one place to

another, the copied code is often modified to suit the new

environment [47]. Modifications include formatting changes

and identifier renaming (Type I and II clones), structural

changes, e.g. if to case or while to for, or insertions or

deletions (Type III clones) [15]. Likewise, software plagiarisers

copy source code of a program and modify it to avoid being

caught [14]. Moreover, source code is modified during software

evolution [40]. Therefore, most clone or plagiarism detection

tools and techniques tolerate different degrees of change and

still identify cloned or plagiarised fragments. However, while

they usually have no problem in the presence of local or

confined modifications, pervasive modifications that transform

whole files or systems remain a challenge [46].
This work is motivated by the question: “When source code

is pervasively modified, which similarity detection techniques

or tools get the most accurate results?” To answer this question,

we provide a thorough evaluation of the performance of

the current state-of-the-art similarity detection techniques on

pervasively modified code. The study presented in this paper

is the largest extant study on source code similarity and covers

the widest range of techniques and tools. Previous studies,

e.g. on the accuracy of clone detection tools [5], [47], [54]

and of plagiarism detection tools [21], were mainly focused

on a single technique or tool, or on a single domain.
Our aim is to provide a foundation for the appropriate choice

of a similarity detection technique or tool for a given application

based on a thorough evaluation of strengths and weaknesses.

Choosing the wrong technique or tool with which to measure

software similarity or even just choosing the wrong parameters

may have detrimental consequences.
We have selected as many techniques for source code simi-

larity measurement as possible, 30 in all, covering techniques

specifically designed for clone and plagiarism detection, plus

the normalised compression distance, string matching, and

information retrieval. In general, the selected tools require the

optimisation of their parameters as these can affect the tools’

execution behaviours and consequently their results. A previous

study [57] has explored the optimisation of parameters only

for a small set of clone detectors. Therefore, we have explored

the range of configurations for each tool, studied their impact,

and discovered the configurations optimal for each data set

used in our experiments.
Clone and plagiarism detection use intermediate represen-

tations like token streams or abstract syntax trees or other

transformations like pretty printing or comment removal

to achieve a normalised representation [47]. We integrated

compilation and decompilation as a normalisation pre-process

step for similarity detection and evaluated its effectiveness.
This paper makes the following primary contributions:

1. A broad, thorough study of the performance of similarity
tools and techniques: We compare a large range of 30

similarity detection techniques and tools using two experimental

scenarios for Java source code in order to measure the

techniques’ performances and observe their behaviours. The
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results show that highly specialised source code similarity

detection techniques and tools can perform better than more

general, textual similarity measures.

The results of the evaluation can be used by researchers

as guidelines for selecting techniques and tools appropriate

for their problem domain. Our study confirms both that tool

configurations have strong effects on tool performance and

that they are sensitive to particular data sets. Poorly chosen

techniques or configurations can severely affect results.

2. Normalisation by decompilation: Our study confirms that

compilation and decompilation as a pre-processing step can

normalise pervasively modified source code and can greatly

improve the effectiveness of similarity measurement techniques.

Six of the similarity detection techniques and tools reported

no false classifications once such normalisation was applied.

II. EMPIRICAL STUDY

Our empirical study consisted of two different experiment

scenarios. The first scenario was on the products of the two

obfuscation tools and to search for optimised configurations of

the 30 similarity analysers. The second scenario examined the

effectiveness of compilation/decompilation as a preprocessing

normalisation strategy.

The study aimed to answer the following research questions:

RQ1 (Performance comparison): How well do current simi-

larity detection techniques perform in the presence of pervasive

source code modifications?

RQ2 (Optimal configurations): What are the best parameter

settings and similarity thresholds for the techniques?

RQ3 (Normalisation by decompilation): Does use of compi-

lation followed by decompilation as a pre-processing normali-

sation method improve detection results?

A. Experimental framework

The general framework of our study as shown in Figure 1

consists of 5 main steps. In Step 1, we collect test data

consisting of Java source code files. Next, the source files are

transformed by applying pervasive modifications at source and

bytecode level. In the third step, all original and transformed

source files are normalised. A simple form of normalisation is

pretty printing the source files which is used in similarity or

clone detection [45]. We also use decompilation. In Step 4, the

similarity detection tools are executed pairwise against the set

of all normalised files, producing similarity reports for every

pair. In the last step, the similarity reports are analysed.

In the analysis step, we extract a similarity value sim(x, y)
from the report for every pair of files x, y, and based on the

reported similarity, the pair is classified as being similar (reused

code) or not according to some chosen threshold T . The set

of similar pairs of files Sim(F ) out of all files F is

Sim(F ) = {(x, y) ∈ F × F : sim(x, y) > T} (1)

We selected data sets for which we know the ground truth,

allowing decisions on whether a code pair is correctly classified

as a similar pair (true positive, TP ), correctly classified as a

test data 
(source 
code)

source 
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modified 
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Fig. 1. The experimental framework

dissimilar pair (true negative, TN ), incorrectly classified as

similar pair while it is actually dissimilar (false positive, FP ),

and incorrectly classified as dissimilar pair while it is actually a

similar pair (false negative, FN ). Then, we create a confusion

matrix for every tool containing the values of these TP , FP ,

TN , and FN frequencies. Subsequently the confusion matrix

is used to compute an individual technique’s performance.

B. Tools and Techniques

Several tools and techniques were used in this study. These

fall into three categories: obfuscators, decompilers, and detec-

tors. The tool set included source and bytecode obfuscators, and

two decompilers. The detectors cover a wide range of similarity

measurement techniques and methods including plagiarism and

clone detection, compression distance, string matching, and

information retrieval. All tools are open source in order to

expedite the repeatability of our experiments.
1) Obfuscators: In order to create pervasive modifications

in Step 2 (transformation) of the framework, we used two

obfuscators that do not employ strong obfuscations, Artifice

and ProGuard. Artifice [49] is an Eclipse plugin for source-

level obfuscation. The tool makes 5 different transformations to

Java source code including 1) renaming of variables, fields, and

methods, 2) changing assignment, increment, and decrement

operations to normal form, 3) inserting additional assignment,

increment, and decrement operations when possible, 4) chang-

ing while to for and the other way around, and 5) changing

if to its short form. Artifice cannot be automated and has to be

run manually because it is an Eclipse plugin. ProGuard [44] is

a well known open-source bytecode obfuscator. It is a versatile

tool containing several functions including shrinking Java class

files, optimisation, obfuscation, and pre-verification. ProGuard

obfuscates Java bytecode by renaming classes, fields, and

variables with short and meaningless ones. It also performs

package hierarchy flattening, class repackaging, and modifying

class and package access permissions.
2) Compiler and Decompilers: Our study uses compilation

and decompilation for two purposes: transformation (obfusca-

tion) and normalisation.

One can use a combination of compilation and decompilation

as a method of source code obfuscation or transformation.

Luo et al. [34] use GCC/G++ with different optimisation

options to generate 10 different binary versions of the same

program. However, if the desired final product is source code, a

decompiler is also required in the process in order to transform

the bytecode back to its source form.
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Decompilation is a method for reversing the process of

program compilation. Given a low-level language program

such as an executable file, a decompiler generates a high-level

language counterpart that resembles the (original) source code.

This has several applications including recovery of lost source

code, migrating a system to another platform, upgrading an

old program into a newer programming language, restructuring

poorly-written code, finding bugs or malicious code in binary

programs, and program validation [8]. An example of using

the decompiler to reuse code is a well-known lawsuit between

Oracle and Google [39]. It seems that Google decompiled a

Java library to obtain the source code of its APIs and then

partially reused them in their Android operating system.

Since each decompiler has its own decompiling algorithm,

one decompiler usually generates source code which is different

from the source code generated by other decompilers. Using

more than one decompiler can also be a method of obfuscation

by creating variants of the same program with the same

semantics but with different source code.

We selected two open source decompilers: Krakatau and

Procyon. Krakatau [30] is an open-source tool set compris-

ing a decompiler, a classfile dissembler, and an assembler.

Procyon [42] is also a Java open-source decompiler. It has

advantages over other decompilers for declaration of enum,

String, switch statements, anonymous and named local

classes, annotations, and method references. They are used

in both the transformation (obfuscation) and normalisation

post-process steps (Steps 2 and 3) of the framework.

The only compiler deployed in this study is the standard

Java compiler (javac).

3) Plagiarism Detectors: The selected plagiarism detectors

include JPlag, Sherlock, Sim, and Plaggie. JPlag [41] and

Sim [19] are token-based tools which come in versions for

text (jplag-text and simtext) and Java (jplag-java and simjava),

while Sherlock [50] relies on digital signatures (a number

created from a series of bits converted from the source code

text). Plaggie’s detection [2] method is not public but claims

to have the same functionalities as JPlag. Although there are

several other plagiarism detection tools available, some of

them could not be chosen for the study due to the absence of

command-line versions preventing them from being automated.

Moreover, we require a quantitative similarity measurement so

we can compare their performances. All chosen tools report a

numerical similarity value, sim(x, y), for a given file pair x, y.

4) Clone detectors: We cover a wide spectrum of clone

detection techniques including text-based, token-based, and tree-

based techniques. Like the plagiarism detectors, the selected

tools are command-line based and produce clone reports

providing a similarity value between two files.

Most state-of-the-art clone detectors do not report similarity

values. Thus, we adopted the General Clone Format (GCF) as

a common format for clone reports. We modified and integrated

the GCF Converter [57] to convert clone reports generated by

unsupported clone detectors into GCF format. Since a GCF

report contains several clone fragments found between two

files x and y, the similarity of x to y can be calculated as the

ratio of the sum of n clone fragment lines found in x (overlaps

are handled) to the number of lines in x and vice versa.

simGCF(x, y) =

∑n
i=1 |frag i(x)|

|x| (2)

Using this method, we included five state-of-the-art clone

detectors: CCFinderX, NICAD, Simian, iClones, and Deckard.

CCFinderX (ccfx) [27] is a token-based clone detector detecting

similarity using suffix trees. NICAD [45] is a clone detection

tool embedding TXL for pretty-printing, and compares source

code using string similarity. Simian [51] is a pure, text-based,

clone detection tool relying on text line comparison with a

capability for checking basic code modifications, e.g. identifier

renaming. iClones [20] performs token-based incremental clone

detection over several revisions of a program. Deckard [25]

converts source code into an AST and computes similarity by

comparing characteristic vectors generated from the AST to

find cloned code based on approximate tree similarity.

5) Compression tools: Normalised compression distance

(NCD) is a distance metric between two documents based

on compression [9]. It is an approximation of the normalised

information distance which is in turn based on the concept

of Kolmogorov complexity [32]. The NCD between two

documents can be computed by

NCDz(x, y) =
Z(xy)−min {Z(x), Z(y)}

max {Z(x), Z(y)} (3)

where Z(x) means the length of the compressed version of

document x using compressor Z. In this study, five variations

of NCD tools are chosen. One is part of the CompLearn

suite [12] which uses the built-in bzlib and zlib compressors.

The other four have been created by the authors as shell

scripts. The first one utilises 7Zip [1] with various compression

methods including BZip2, Deflate, Deflate64, PPMd, LZMA,

and LZMA2. The other three rely on Linux’s gzip, bzip2, and

xz compressors respectively.

Lastly, we define another, asymmetric, similarity measure-

ment based on compression called inclusion compression
divergence (ICD). It is a compressor based approximation

to the ratio between the conditional Kolmogorov complexity

of string x given string y and the Kolmogorov complexity of

x, i.e. to K(x|y)/K(x), the proportion of the randomness in

x not due to that of y. It is defined as

ICDZ(x, y) =
Z(xy)− Z(y)

Z(x)
(4)

and when C is NCDZ or ICDZ then we use simC(x, y) =
1− C(x, y).

6) Other Techniques: We expanded our study with other

techniques for measuring similarity including a range of

libraries that measure textual similarity: difflib [16] compares

text sequences using Gestalt pattern matching, NGram [38]

compares text sequences via fuzzy search using n-grams,

fuzzywuzzy [18] uses fuzzy string matching, jellyfish [24]

does approximate and phonetic matching of strings, and cosine

similarity from scikit-learn [52] which is a machine learning
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TABLE I
TOOLS WITH THEIR SIMILARITY MEASURES

Tool/Technique Similarity calculation
Clone Det.
ccfx tokens and suffix tree matching
deckard characteristic vectors of AST optimised by LSH
iclones tokens and generalised suffix tree
nicad TXL and string comparison (LCS)
simian line-based string comparison
Plagiarism Det.
jplag-java tokens, Karp Rabin matching, Greedy String Tiling
jplag-text tokens, Karp Rabin matching, Greedy String Tiling
plaggie N/A (not disclosed)
sherlock digital signatures
simjava tokens and string alignment
simtext tokens and string alignment
Compression
7zncd NCD with 7z
bzip2ncd NCD with bzip2
gzipncd NCD with gzip
xz-ncd NCD with xz
icd Equation (4)
ncd ncd tool with bzlib & zlib
Others
bsdiff Equation (5)
diff Equation (5)
py-difflib Gestalt pattern matching
py-fuzzywuzzy fuzzy string matching
py-jellyfish approximate and phonetic matching of strings
py-ngram fuzzy search based using n-gram
py-sklearn cosine similarity from machine learning library

library providing data mining and data analysis. We also

employed diff, the classic file comparison tool, and bsdiff,

a binary file comparison tool. Using diff or bsdiff, we calculate

the similarity between two Java files x and y using

simD(x, y) = 1− min(|y|, |D(x, y)|)
|y| (5)

where D(x, y) is the output of diff or bsdiff.
The result of simD(x, y) is asymmetric as it depends on the

size of the denominator. Hence simD(x, y) usually produces a

different result from simD(y, x). This is because simD(x, y)
provides the distance of editing x into y which is different in

the opposite direction.

The summary of all selected tools and their respective

similarity measurement methods are presented in Table I.

III. EXPERIMENT SCENARIOS

To answer the research questions, two experiment scenarios

were designed and studied following the framework presented

in Figure 1. The experiments were conducted on a virtual

machine with 2.67 GHz CPU (dual cores) and 2 GB RAM

running Scientific Linux release 6.6 (Carbon). The details of

each scenario are explained below.

Scenario 1 (Pervasive Modifications)

Scenario 1 studies tool performance against pervasive

modifications (as simulated through source and bytecode

obfuscation). At the same time, the best configuration for every

tool is discovered. For this data set, we completed all the 5

steps of the framework: data preparation, transformation, post-

processing, similarity detection, and analysing the similarity

report. However, post-processing is limited to pretty printing

and no normalisation through decompilation is applied.

1) Preparation, Transformation, and Normalisation: This

section follows Steps 1 and 2 in the framework. The original

data consists of 5 Java classes: InfixConverter, SqrtAlgo-
rithm, Hanoi, EightQueens, and MagicSquare. All of them

are short Java programs with less than 200 LOC and illustrate

issues that are usually discussed in basic programming classes.

The process of test data preparation and transformation is

illustrated in Figure 3. First, we selected each original source

code file and obfuscated it using Artifice. This produced the

first type of obfuscation: source-level obfuscation (No. 1). An

example of a method before and after source-level obfuscation

by Artifice are displayed on the left side of Figure 2 (formatting

has been adjusted due to space limits).

Next, both the original and obfuscated versions were

compiled to bytecode, producing two bytecode files. Then,

both bytecode files were obfuscated once again by ProGuard,

producing two more bytecode files.

All four bytecode files were then decompiled by either

Krakatau or Procyon giving back eight additional obfuscated

source code files. For example, No. 1 in Figure 3 is a pervasively

modified version via source code obfuscation with Artifice.

No. 2 is a version which is obfuscated by Artifice, compiled,

obfuscated with Proguard, and then decompiled with Krakatau.

No. 3 is a version obfuscated by Artifice, compiled and then

decompiled with Procyon. Using this method, we obtained

9 pervasively modified versions for each original source file,

resulting in 50 files for the data set. The only post-processing

step in this scenario is normalisation through pretty printing.

2) Similarity Detection: The generated data set of 50 Java

code files is used for pairwise similarity detection in Step 4

of the framework in Figure 1, resulting in 2,500 pairs of

source code files with their respective similarity values. We

denote each pair (x, y, sim). Since each tool can have multiple

parameters to adjust and we aimed to cover as many parameter

settings as possible, we repeatedly ran each tool several times

with different settings. Hence, the number of reports generated

by one tool equals the number of combinations of its parameter

values. A tool with two parameters p1 ∈ P1 and p2 ∈ P2 has

|P1| × |P2| different settings. For example, if ccfx has two

parameters b ∈ {10, 20, 30, 40, 50} and t ∈ {1, 2, .., 12}, we

needed to do 5×12×2, 500 = 150, 000 pairwise comparisons.

3) Analysing the Similarity Reports: In Step 5 of the

framework, the results of the pairwise similarity detection

are analysed. The 2,500 pairwise comparisons result in 2,500

(x, y, s) entries. As in Equation (1), all pairs x, y are considered

to be similar when the reported similarity s is larger than a

threshold T . Such a threshold must be set in an informed way

to produce sensible results. However, as the results of our

experiment will be extremely sensitive to the chosen threshold,

we want to use the optimal threshold, i.e. the threshold that

produces the best results. Therefore, we vary the cut-off

threshold T between 0 and 100.
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/* original */ /* ARTIFICE */ /* original + Krakatau */ /* ARTIFICE + Krakatau */
public MagicSquare(int n) { public MagicSquare(int v2) { public MagicSquare(int i) { public MagicSquare(int i) {

square=new int[n][n]; f00=new int[v2][v2]; super(); super();
for(int i=0;i<n;i++) int v3; this.square=new int[i][i]; this.f00=new int[i][i];

for(int j=0;j<n;j++){ v3=0; int i0=0; int i0=0;
square[i][j]=0; while(v3<v2) { while(i0<i) { while(i0<i) {
... int v4; int i1=0; int i1=0;

} v4=0; while(i1<i) { while(i1<i){
while(v4<v2) { this.square[i0][i1]=0; this.f00[i0][i1]=0;

f00[v3][v4]=0; i1=i1+1; i1=i1+1;
v4=v4+1; } }

} i0=i0+1; i0=i0+1;
v3=v3+1; ... ...
... } }

}

Fig. 2. The same code fragments, a constructor of MagicSquare, after pervasive modifications, and compilation/decompilation

original

source code  
obfuscator

bytecode 
obfuscator

decompilers pervasively  
modified code
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compiler

javac

2

3

Krakatau

Procyon

ProGuard

1

Fig. 3. Test data generation process

The ground truth of the generated data set contains 500

positives and 2,000 negatives. The positive pairs are the pairs

of files generated from the same original code. For example,

all pairs that are the derivatives of InfConv.java must be

reported as similar. The other 2,000 pairs are negatives since

they come from different original source code files and must be

classified as dissimilar. Using this ground truth, we can count

the number of true and false positives in the results reported

for each of the tools. We choose the F-score as the method to

measure the tools’ performance. The F-score is preferred in

this context since the sets of similar files and dissimilar files

are unbalanced and the F-score does not take true negatives

into account1.

The F-score is the harmonic mean of precision (ratio of

correctly identified reused pairs to retrieved pairs) and recall

(ratio of correctly identified pairs to all the identified pairs):

precision =
TP

TP + FP
recall =

TP

TP + FN

F-score =
2× precision× recall

precision + recall

Using the F-score we can search for the best threshold

T under which each tool has its optimal performance with

the highest F-score. For example in Figure 4, after varying

the threshold from 0 to 100, ncd-bzlib has the best threshold

1For the same reason, we decided against using Matthews correlation
coefficient (MCC).

T = 31 with the highest F-score of 0.8282. Since each tool may

have more than one parameter setting, we call the combination

of the parameter settings and threshold that produces the highest

F-score the tool’s “optimal configuration”.

Threshold value (T)
0 20 40 60 80 100

F
-s

co
re

0.2

0.4

0.6

0.8

31

0.8282

Fig. 4. The graph shows the F-score and the threshold values of ncd-bzlib.
The tool reaches the highest F-score when the threshold equals 31.

Scenario 2 (Decompilation)

We are interested in studying the effects of normalisation

through compilation/decompilation before performing similarity

detection. This is based on the observation that compilation has

a normalising effect. Variable names disappear in bytecode and

nominally different kinds of control structures can be replaced

by the same bytecode, e.g. for and while loops are replaced

by the same if and goto structures at bytecode level.

Likewise, changes made by bytecode obfuscators may also

be normalised by decompilers. Suppose a Java program P is

obfuscated into Q (P
T−→ Q), then compiled (C) to bytecode

BQ, and decompiled (D) to source code Q′ (Q
C−→ BQ

D−→ Q′).
This Q′ should be different from both P and Q due to the

changes caused by the compiler and decompiler. However,

with the same original source code P , if it is compiled and

decompiled using the same tools to create P ′ (P
C−→ BP

D−→
P ′), P ′ should have some similarity to Q′ due to the analogous

compiling/decompiling transformations made to both of them.

Hence, one might apply similarity detection to find similarity

sim(P ′, Q′) and get more accurate results than sim(P,Q).
In this scenario, the data set is based on the same set of 50

source code files generated in Scenario 1. However, we added

normalisation through decompilation to the post-processing
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TABLE II
TOOL PERFORMANCE COMPARISON ON THE GENERATED DATA SET IN TERM OF ACCURACY, PRECISION, RECALL, AND F-SCORE, PRESENTED WITH THEIR

BEST SETTINGS AND THRESHOLD VALUES

Tool Settings T FP FN Accuracy Precision Recall AUC Prec@n F-score
ccfx b=20,t=1 4 42 48 0.9640 0.9145 0.9040 0.9468 0.9040 0.9095
simjava r=22 5 64 44 0.9568 0.8769 0.9120 0.9490 0.8840 0.8941
jplag-text t=8 2 96 52 0.9408 0.8235 0.8960 0.9453 0.8440 0.8582
py-difflib noautojunk 35 49 103 0.9392 0.8901 0.7940 0.9147 0.8080 0.8393
7zncd-BZip2 mx=1 39 44 114 0.9368 0.8977 0.7720 0.9419 0.8180 0.8301
ncd-bzlib 31 66 100 0.9336 0.8584 0.8000 0.9482 0.8200 0.8282
jplag-java t=3 43 142 68 0.9160 0.7526 0.8640 0.9667 0.7860 0.8045
py-sklearn 33 280 98 0.8488 0.5894 0.8040 0.9146 0.6200 0.6802
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py-difflib (0.9147)
py-sklearn.cos_sim (0.9146)
simjava (0.9490)

Fig. 5. The ROC curves of the 8 selected tools (zoomed in) and their respective
area under the curve (AUC).

(Step 3 in the framework) by compiling all the transformed

files using javac and decompiling them using either Krakatau

or Procyon. We then followed the same similarity detection

and analysis process in Steps 4 and 5. The results are then

compared to the results obtained from Scenario 1 to observe

the effects of normalisation through decompilation.

IV. RESULTS

RQ1: Performance Comparison

From Tables II and III, we can see that the tools’ performance

vary over the same data set. Due to the page limit, we present

detailed results for only eight tools from the total set of 30 tools

here (Table II): 7zncd-BZip2, ccfx, jplag-java, jplag-text, ncd-

bzlib, py-difflib, py-sklearn, and simjava. We selected these 8

tools to cover every category of code similarity detection (clone

detectors, plagiarism detectors, compression tools, and other

tools) and to cover different similarity detection techniques.

Table III gives only the F-score and the complete results of all

the tools can be found from the study website2, including the

complete generated data set.

In terms of accuracy and F-score, the token-based clone

detector ccfx is the winner with the highest F-score (0.9095) fol-

lowed by simjava (0.8941), simian (0.8719), deckard (0.8595),

and jplag-text (0.8582) respectively. In general, the best clone

and plagiarism detectors outperform compression techniques

and other methods. However, compression techniques and other

methods outperform the worst clone and plagiarism detectors.

2http://crest.cs.ucl.ac.uk/resources/cloplag/

Interestingly, while we include many NCD tools with

different compression algorithms in our study, the complete

results in Table III show that they generate comparable results.

The three bzip2-based NCD implementations, 7zncd-BZip2,

ncd-bzlib, bzip2ncd, and xzncd only slightly outperform other

compressors like gzip or LZMA. So the actual compression

method may not have a strong effect in this context.

From the overall performance found from varying the

similarity threshold from 0 to 100, we drew the receiver

operating characteristic (ROC) curves for the selected eight

tools, calculated the area under the curve (AUC), and compared

them. The closer the value is to one, the better the tool’s

performance. We can see from Figure 5 that jplag-java is the

winner in this analysis with the highest AUC (0.9667), followed

by simjava (0.9490), ncd-bzlib (0.9482), and ccfx (0.9468).

The two other methods, py-sklearn and py-difflib, are the last

with an AUC of 0.9146 and 0.9147.

We show accuracy, true and false positives, precision and

recall of the tools in Table II. The best tool with respect to

false positives, accuracy, precision, and F-score is ccfx, with

respect to false negatives and recall is simjava, and with respect

to AUC the best tool is jplag-java.

Additionally, we have repeated the process of finding the

optimal threshold each time we changed to a new data set.

The configuration problem for clone detection tools including

setting thresholds has been mentioned by several studies as one

of the threats to validity [56]. There has also been an initiative

to avoid using thresholds completely for clone detection [28].

To avoid this problem of threshold sensitivity we employ

a measurement mainly used in information retrieval called

“precision at n (or precision at k)” which shows how well a

tool retrieves relevant results within top-n ranked items [36].

prec@n =
TP

n

To achieve this, we sort the retrieved pairs by measured

similarity and consider only the top n pairs with highest

similarities, where n is the number of pairs in the ground truth,

i.e. n = 500. The results in Table II show that evaluating the

tools using precision at n gives almost the same F-scores, having

ccfx as the best tool. Only the ranking of py-difflib, 7zncd-

BZip2, and ncd-bzlib are reversed but with small differences in

the prec@n scores. Hence, this precision at n error measure can
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TABLE III
BEST CONFIGURATIONS OF EVERY TOOL AND TECHNIQUE OBTAINED FROM

THE GENERATED DATA SET IN SCENARIO 1

Technique Settings T F-score Rank
Clone det.
ccfx b=20,21,24,t=1..7 4 0.9095 1

b=22,23,t=7 2
deckard MINTOKEN=30 5 0.8595 4

STRIDE=2
SIMILARITY=0.95

iclones minblock=10 0 0.6033 28
minclone=50

nicad abstractexpressions 0 0.7080 24
simian threshold=5,ignoreidentifiers 0 0.8719 3
Plagiarism det.
jplag-java t=3 43 0.8045 21
jplag-text t=8 2 0.8582 5
plaggie M=7 18 0.8210 12
sherlock N=6,Z=3 1 0.8284 8
simjava r=22 5 0.8941 2
simtext r=4 17 0.5622 30
Compression
7zncd-BZip2 mx=1,3,5 39 0.8301 7
7zncd-LZMA mx=7,9 33 0.8160 16
7zncd-LZMA2 mx=7,9 34 0.8189 13
7zncd-Deflate mx=9 30 0.8157 17
7zncd-Deflate64 mx=9 30 0.8142 19
7zncd-PPMd mx=9 35 0.8078 20
bzip2ncd C=1..9 32 0.8219 11
gzipncd C=9 25 0.8153 18
icd ma=Deflate, Deflate64,mx=9 37 0.7404 23
ncd-zlib N/A 28 0.8163 15
ncd-bzlib N/A 31 0.8282 9
xz-ncd -e 31 0.8228 10
Others
bsdiff N/A 71 0.5797 29
diff N/A 7 0.6996 25
py-difflib SM noautojunk 35 0.8393 6
py-fuzzywuzzy token set ratio 80 0.8167 14
py-jellyfish jaro distance 76 0.6169 27
py-ngram N/A 43 0.7925 22
py-sklearn N/A 33 0.6802 26

be chosen instead of the F-score in scenarios where searching

for all possible threshold values is expensive.

RQ2: Optimal Configurations

We thoroughly analysed various configurations of every tool

and found that some specific settings are sensitive to pervasively

modified code while others are not. The complete list of the best

configurations of every tool from Scenario 1 can be found in

Table III. The optimal configurations are significantly different

from the default configurations, in particular for the clone

detectors. For example, using the default settings for ccfx

(b=50, t=12) leads to a very low F-score of 0.5591 due to a

very high number of false negatives. Interestingly, a previous

study on agreement of clone detectors [57] observed the same

difference between default and optimal configurations and the

reported optimal settings are similar to the ones we found in

Table III.

In addition, we performed a detailed analysis of ccfx’s

configurations. This is because ccfx is a widely-used tool

in several clone research studies. Two parameter settings are

chosen for ccfx in this study: b, the minimum length of

TABLE IV
CCFX’S PARAMETER SETTINGS FOR THE HIGHEST PRECISION AND RECALL

Error measure Value
ccfx’s parameters

b t

Precision 0.964
20,21,22,24 1..7

23 7

Recall 1.000

10 6
17 1..8

18..21 12
22..25,30,40 10..12

45,50 1..12

Fig. 6. Trade off between precision and recall of 217 ccfx parameter settings.
The default settings provides low precision and recall.

clone fragments in the unit of tokens, and t, the minimum

number of kinds of tokens in clone fragments. From Figure 6,

we can see that the default settings of ccfx, b=50, t=12,

(denoted with a × symbol) provides an optimal recall but

low precision. We observed that one cannot tune ccfx to obtain

the highest precision without sacrificing recall. The best settings

for precision and recall of ccfx are described in Table IV.

Furthermore, we analysed the landscape of all 216 ccfx’s

parameter settings (excluding the default) in terms of F-score

as depicted in Figure 7. Visually, we can distinguish a region

that is the sweet spot for ccfx’s parameters settings against

pervasive modifications from the rest. The region covers the

b value from 18 to 25, and t value from 1 to 7. The region

provides the F-scores ranging from 0.8898 up to 0.9095.

RQ3: Normalisation by Decompilation

The results after adding compilation and decompilation for

normalisation to the post-processing step before performing

similarity detection is shown in Table V. The table shows the

results of using both Krakatau and Procyon as decompiler

compared to the results from Scenario 1. From the table, we

can see that normalisation by compilation/decompilation has

a strong effect on the number of false results reported by the

tools. For Krakatau, every tool has the amount of false positives

and negatives greatly reduced. In particular the leading tools

from Scenario 1, ccfx and simjava even no longer report any

false result (together with deckard, jplag-java, plaggie, and

sherlock). All compression or other techniques still report

some false results.

To confirm this, we carefully investigated the source code

after normalisation and found that decompiled files created

by Krakatau are very similar despite the applied obfuscation.

As depicted in Figure 2 on the right side, the two code
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Fig. 7. F-scores of various ccfx’s b and t parameter values

TABLE V
TOOL PERFORMANCE COMPARISON AFTER COMPILED/DECOMPILED USING

THE DATA SET’S OPTIMAL CONFIGURATIONS.

Tool/Technique generated Krakatau Procyon
FP FN FP FN F-score FP FN F-score

ccfx 42 48 0 0 1.0000 0 4 0.9960
deckard 44 90 0 0 1.0000 0 16 0.9837
iclones 0 284 0 56 0.9407 0 166 0.8010
nicad 0 226 40 24 0.9370 0 72 0.9224
simian 2 112 2 0 0.9980 14 14 0.9720
jplag-java 142 68 0 0 1.0000 24 20 0.9562
jplag-text 96 52 16 0 0.9843 28 8 0.9647
plaggie 83 94 0 0 1.0000 0 40 0.9583
sherlock 60 104 0 0 1.0000 16 0 0.9843
simjava 64 44 0 0 1.0000 8 0 0.9921
simtext 170 238 0 24 0.9754 58 0 0.9452
7zncd-BZip2 44 114 40 12 0.9494 106 40 0.8630
7zncd-LZMA 105 83 47 5 0.9501 56 64 0.8790
7zncd-LZMA2 74 102 47 4 0.9511 56 63 0.8802
7zncd-Deflate 104 84 46 6 0.9500 52 73 0.8723
7zncd-Deflate64 103 86 46 6 0.9500 52 73 0.8723
7zncd-PPMd 108 88 49 2 0.9513 52 69 0.8769
bzip2ncd 102 80 40 16 0.9453 90 40 0.8762
gzipncd 58 116 40 8 0.9535 61 40 0.9011
icd 112 140 39 93 0.8605 60 93 0.8418
ncd-bzlib 66 100 46 14 0.9419 88 44 0.8736
ncd-zlib 67 109 50 5 0.9474 61 44 0.8968
xz-ncd 98 82 46 0 0.9560 58 56 0.8862
bsdiff 66 269 8 78 0.9075 28 149 0.7986
diff 238 103 52 65 0.8815 27 76 0.8917
py-difflib 49 103 16 73 0.9056 12 40 0.9465
py-fuzzywuzzy 68 108 0 28 0.9712 0 36 0.9627
py-jellyfish 222 178 38 146 0.7937 32 192 0.7333
py-ngram 76 122 32 56 0.9098 58 64 0.8773
py-sklearn 280 98 98 0 0.9107 50 0 0.9524

fragments become very similar after compile and decompile

by Krakatau. This is because Krakatau has been designed to

be robust to minor obfuscations and the transformations made

by Artifice and Proguard are not very complex. Normalisation

via decompilation with Procyon also improves the performance

of the similarity detectors, but not as much as Krakatau.

Interestingly, Procyon performs slightly better for diff, py-

difflib, and py-sklearn.

The main difference between Krakatau and Procyon is that

Procyon attempts to produce much more high-level source code

while Krakatau’s is nearer to the bytecode. It seems that the

low-level approach of Krakatau has a stronger normalisation

effect. Hence, the compilation/decompilation may be used as an

effective normalisation method that greatly improves similarity

detection between Java source code.

Discussion

In summary, we have answered the three research questions

after investigating the two experiment scenarios. We found

that the state-of-the-art tools perform differently on pervasively

modified code. Properly configured, a well known and often

used clone detector, ccfx, performs best, closely followed by a

plagiarism detector, simjava.

The experiment using compilation/decompilation for normal-

isation showed that compilation/decompilation is effective and

greatly improves similarity detection techniques. Therefore,

future implementations of clone or plagiarism detection tools

or other similarity detection approaches could consider using

compilation/decompilation for normalisation.

We analysed the search space of configurations of ccfx and

found that there is a specific region of parameter settings

that drive ccfx to the highest performance (F-score) against

pervasive modifications. This set of parameter settings can be

used as a guideline for other code similarity research. Moreover,

we illustrate that one can trade off between precision and recall

of ccfx by adjusting its parameters and pick the one that suits

the purposes. However, every technique and tool turned out to

be extremely sensitive to its own configurations consisting of

several parameter settings and a similarity threshold. Moreover,

for some tools the optimal configurations turned out to be very

different to the default configuration, showing one cannot just

reuse (default) configurations.

V. THREATS TO VALIDITY

Internal validity: We carefully chose the data sets for

our experiment. We created the first data set (generated) by

ourselves to obtain the ground truth for positive and negative

results. However, the obfuscators (Artifice and ProGuard)

possibly may not represent typical pervasive modifications.

Although we have attempted to use the tools with their best

parameter settings, we cannot guarantee that we have and it

may be possible that the performance of some detectors is due

to wrong usage instead of the techniques used in the detector.

Moreover, in this study we mainly compare performance

based on standard measurements of accuracy and F-score. There

might be some situations where precision or recall is preferred

over another and that might produce different results.

External validity: The tools used in this study are restricted

to being open-source ones or at least freely available. They

cover several areas of similarity detection (including string,

token, and tree-based approaches) and some of them are well-

known similarity measurement techniques used in other areas

such as normalised compression (information theory) and
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cosine similarity (information retrieval). They might not be

sufficiently representative of all available techniques and tools.

In addition, the two decompilers (Krakatau, Procyon) are

only a subset of all decompilers available. So they may

not be sufficiently representative of the performances of

the other decompilers in the market or even other source

code normalisation techniques. We chose two so that we

could compare their behaviours and performances. As we are

exploiting features of Java source and byte code, our findings

only apply to Java code. Lastly, it may not be possible to

apply decompilation to a given Java code file depending on the

dependencies in the source code and the chosen decompilers.

VI. RELATED WORK

Plagiarism is obviously a problem of serious concern in

education. Similarly in industry, the copying of code or

programs is copyright infringement. They both affect the

originality of one’s idea, his or her credibility, and also

the quality of their organisation. The problem of software

plagiarism has been occurring for several decades in schools

and universities [13], [14] and in law, where one of the more

visible cases regarding copyright infringement of software is

the ongoing lawsuit between Oracle and Google [39].

To detect plagiarism or copyright infringement of source

code, one has to measure similarity of two programs. Two

programs can be similar at the level of purpose, algorithm, or

implementation [61]. Most of software plagiarism tools and

techniques focus on the level of implementation since it is most

likely to be plagiarised. The process of code plagiarism involves

pervasive modifications to hide the plagiarism which often

includes obfuscation. The goal of code obfuscation is to make

the modified code harder to understand by humans and harder

to reverse engineer while preserving its semantics [10], [11],

[58]. Deobfuscation attempts to reverse engineer obfuscated

code [55]. Because Java bytecode is comparatively high-level

and easy to decompile, obfuscation of Java bytecode has

focused on preventing decompilation [3] while decompilers

like Krakatoa [43], Krakatau [30] and Procyon [42] attempt to

decompile even in the presence of obfuscation.

Several similarity detection tools for source code and binary

code have been introduced by the research community. Many

of them are based on string comparison techniques such as

Longest Common Subsequence (LCS) found in NICAD [45],

Plague [58], YAP [59], and CoP [34]. Many tools transform

source code into an intermediate representation such as tokens

and apply similarity measurement on them (Plague [58], Sher-

lock [26], Sim [19], YAP3 [60], JPlag [41], CCFinder [27], CP-

Miner [33], iClones [20], MOSS [48] and a few more [7], [17],

[53]). Structural similarity of cloned code can be discovered

by using abstract syntax trees as found in CloneDR [4] and

Deckard [25] or by using program dependence graphs [29],

[31]. The transformation into an intermediate representation

like a token stream or an abstract syntax tree can be seen as

a kind of normalisation. NICAD [45] uses pretty printing as

part of the normalisation process for clone detection.

Although there have been a large number of clone detectors,

plagiarism detectors, and code similarity detectors invented in

the research community, there exist few studies that compare

and evaluate their performances. Bellon et al. [5] proposed

a framework for comparing and evaluating clone detectors

and six tools were chosen for the studies. Later, Roy et

al. [47] performed a thorough evaluation of clone detection

tools and techniques covering a wider range of tools. However,

they compare the tools and techniques using the evaluation

results obtained from the tools’ published papers without any

real experimentation. Moreover, the performances in terms

of recall for 11 modern clone detectors are evaluated based

on four different code clone benchmark frameworks including

Bellon’s [54]. Hage et al. [21] compare five plagiarism detectors

in term of their features and performances against 17 code

modifications.

The work that is closest to ours is the empirical study

of the efficiency of current detection tools against code

obfuscation [49]. The authors created the Artifice source code

obfuscator and measured the effects of obfuscation on clone

detectors. However, the tools chosen for the study were limited

to only three detectors: JPlag, CloneDigger, and Scorpio. This

study showed that token-based clone detection outperformed

text-, tree- and graph-based clone detection (similar to our

findings).

Roy et al. [46] use a mutation based approach to create a

framework for the evaluation of clone detectors. However, their

framework was mostly limited to locally confined modifications,

with systematic renaming the only pervasive modification.

Due to this limitation, we haven’t included their framework

in our study. Moreover, they used their framework for a

comparison limited to three variants of their own clone detector

NICAD [45].

VII. CONCLUSIONS

This study of similarity detection on pervasively modified

source code is the largest existing similarity detection study

covering the widest range (30) of similarity detection techniques

and tools to date. We found that the techniques and tools

achieve extensive variation in performance when they are run

against two different scenarios of modifications on source code.

Our analysis provides a broad, thorough, performance-based

evaluation of tools and techniques for similarity detection.

Our experimental results show that highly specialised source

code similarity detection techniques and tools can perform

better than more general, textual similarity measures. Moreover,

through systematic investigation we determined the range of

the optimal parameter settings for employing the tool ccfx

against pervasive modifications and the effects of the settings

on its precision and recall.

Finally, we confirmed that compilation and decompilation

can be used as an effective normalisation method that greatly

improves similarity detection on Java source code, leading to 6

clone and plagiarism tools not reporting any false classifications

on our generated data set.
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[20] N. Göde and R. Koschke. Incremental clone detection. In CSMR’09,
pages 219–228, 2009.

[21] J. Hage, P. Rademaker, and N. van Vugt. A comparison of plagiarism
detection tools. Technical Report UU-CS-2010-015, Department of
Information and Computing Sciences, Utrecht University, 2010.

[22] B. Hartmann, D. Macdougall, J. Brandt, and S. R. Klemmer. What would
other programmers do? suggesting solutions to error messages. In ACM
Conference on Human Factors in Computing Systems, 2010.

[23] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In Proceedings of the 27th international conference
on Software engineering, 2005.

[24] A python library for doing approximate and phonetic matching of strings.
https://github.com/jamesturk/jellyfish, Accessed: 2015-08-24.

[25] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable
and accurate tree-based detection of code clones. In ICSE, 2007.

[26] M. Joy, N. Griffiths, and R. Boyatt. The BOSS online submission
and assessment system. ACM Journal on Educational Resources in
Computing, 5(3), 2005.

[27] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654–670, July 2002.

[28] I. Keivanloo, F. Zhang, and Y. Zou. Threshold-free code clone detection
for a large-scale heterogeneous java repository. In SANER, 2015.

[29] R. Komondoor and S. Horwitz. Using slicing to identify duplication in
source code. In SAS’01, pages 40–56, 2001.

[30] Java decompiler, assembler, and disassembler. https://github.com/
Storyyeller/Krakatau, Accessed: 2015-08-27.

[31] J. Krinke. Identifying similar code with program dependence graphs. In
Working Conference on Reverse Engineering, pages 301–309, 2001.
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