
Model Projection: Simplifying Models in Response to
Restricting the Environment

Kelly Androutsopoulos1 David Binkley2 David Clark1 Nicolas Gold1

Mark Harman1 Kevin Lano3 Zheng Li1

1 University College London, Malet Place, London, WC1E 6BT, UK.
2Loyola University Maryland, Baltimore, MD 21210-2699, USA.

3King’s College London, Strand, London, WC2R 2LS, UK.

ABSTRACT
This paper introduces Model Projection. Finite state models such as
Extended Finite State Machines are being used in an ever increasing
number of software engineering activities. Model projection facil-
itates model development by specializing models for a specific op-
erating environment. A projection is useful in many design-level
applications including specification reuse and property verification.

The applicability of model projection rests upon three critical con-
cerns: correctness, effectiveness, and efficiency, all of which are
addressed in this paper. We introduce four related algorithms for
model projection and prove each correct. We also present an empiri-
cal study of effectiveness and efficiency using ten models, including
widely–studied benchmarks as well as industrial models. Results
show that a typical projection includes about half of the states and a
third of the transitions from the original model.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Algorithms, Theory, Experimentation

Keywords
Model Projection, Extended Finite State Machines, Slicing

1. INTRODUCTION
Both automatically and manually generated state-based models

find many applications in software engineering. For example, they
are often constructed by model checkers [8] and built by engineers
in the telecommunications and embedded systems sectors [9, 10,
25]. They are also used in modelling notations such as the UML
[28], which draws heavily on state-based modelling [27], and are
widely used for specifying discrete-event control devices, such as
automated manufacturing systems (AMS) [30].

A great deal of engineering effort is directed towards the design
of an organisation’s models. As a result, it is common for models to
be reused. One such scenario arises when control models are reused
within a device that offers a restricted operational environment. For
example, the ‘basic model’ car air conditioning system may not offer
the climate control functionality found in more luxurious models. It
would be wasteful to specify different models for each potential car

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE11, May 21-28 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

configuration. Rather, there is typically a single controller for the
entire product line [3]. In this situation, model projections, special-
ized to the particular environment, are useful as they avoid producing
bloated controllers that implement unused functionality.

The design of models typically occurs earlier in the overall de-
velopment process than coding where the cost of errors is, in gen-
eral, higher. This makes it important to have powerful and flexible
tools for model analysis. Model projection facilitates such analysis
in much the same way that techniques such as program transforma-
tion and program slicing assist with code level analysis [29, 16, 32].

Figure 1 presents an example of model projection in which a
vending machine allows a user to insert coins and vends tea with
options of large cups, small cups, sugar, and double sugar. Con-
sider redeploying this controller in an environment where the ‘sugar’
button is disabled, and thus in an environment in which the event
Sugar() never occurs. The projection removes all states and tran-
sitions (shown in dashed grey) unreachable by event sequences in
the restricted environment. This causes the state Sugar to become
unreachable and subsequently the state Double Sugar, because it is
only reachable from the state Sugar. When these states and their
associated transitions are projected out of the model, only the black
elements remain.

Model projection can also be used to facilitate property verifica-
tion by reducing the complexity of a model and thus making analysis
more efficient. Consider the production cell example used in the in-
dustrial case study of a German metal processing plant [26]. In this
system, metal blanks enter the system on a feed belt and are con-
veyed via a table by robot arms to one of two presses. Assume that
we want to prove that the feed belt motor is off if there is a blank on
the belt and a blank on the elevating rotating table. Call this property
P . It turns out that property P only concerns two sensors and one
actuator of the model. To prove that P holds in the original model re-
quires consideration of a state space having over 3,000 states. How-
ever, only four events affect P (s1on, s1off, s3on, s3off). A model
projection produced by ignoring all other events has only four states
and eight transitions. This substantial reduction in controller size
means that P can be verified to hold in all states directly. As shown
in Section 4, this implies that P holds in the original model.

With these applications and others, the applicability of our ap-
proach depends upon both correctness and the reduction achieved in
reasonable time. Therefore, this paper concerns the theoretical and
empirical underpinnings of model projection as formalized in Sec-
tion 2. Section 3 then introduces four progressively more precise
(and more expensive) model projection algorithms. This is followed
in Section 4 by proofs of correctness for the four algorithms. Fi-
nally, Section 5 investigates the effectiveness and efficiency of our
approach in terms of the reduction achieved on a set of ten models
(including standard benchmarks and real world models).

EXIT

Sugar()

Coin()
[t+25>=price && price>0]/

s=0;t=0;

MoreSugar()

Tea()
[k==1 && s==1]/

k=k-1;

Tea()
[k1==1 && s==2]/

k1=k1-1;

Coin() Coin()

dispose()

insertlargecups(n)
[n>0]/
k=n;

insertsmallcups(n)
[n>0]/
k1=n;

Coin()

smallcup()/
s=2;

largecup()/
s=1;

Cancel()
Tea()

[k>1 && s==1]/
k=k-1; Tea()

[k1>1 && s==2]/
k1=k1-1;

setprice(p)[p>0]/price=p;

Coin()[t+25<price]/t=t+25;

insertlargecups(n)[n>0]/k=k+n;

insertsmallcups(n)[n>0]/k1=k1+n;

create()/
k=0;k1=0;t=0;price=0;

No Small
Cups

No Large
Cups

Coins
Inserted

Sugar
Double
Sugar

Idle

Tea()
[k1==1 && s==2]/

k1=k1-1; Tea()
[k1==1 && s==2]/

k1=k1-1;

Tea()
[k==1 && s==1]/

k=k-1;
Tea()

[k==1 && s==1]/
k=k-1;

Cancel()
Cancel()

Tea()
[k1>1 && s==2]/

k1=k1-1;

Tea()
[k1>1 && s==2]/

k1=k1-1;

Tea()
[k>1 && s==1]/

k=k-1;

Tea()
[k1>1 && s==2]/

k1=k1-1;

Coin()

Coin()

smallcup()/
s=2;

smallcup()/
s=2;

largecup()/
s=1;

largecup()/
s=1;

Figure 1: Illustrative example:
model projection for a simple vend-
ing machine. The complete vending
machine includes both the dashed
grey and black elements. The pro-
jection, for reuse in an environ-
ment where sugar is unavailable
(the ‘sugar’ button is disabled), in-
cludes only the black elements of the
model. The states and transitions
concerned with providing sugar are
projected out of the model. The pro-
jection is faithful to all other (sugar
free) interactions with its environ-
ment.

2. MODEL PROJECTION DEFINITION
This section first introduces some notation and terminology re-

lated to the particular models focused on in this paper: Extended
Finite State Machines (EFSMs). It then formalizes the notion of a
projection for EFSMs.

Definition 1 (Extended Finite State Machines (EFSMs))
An EFSM M is a tuple (S, T, A, Si) where S is a set of states, T
is a set of state to state transitions, A is an event alphabet (a set of
events), and Si is the set of initial states. A transition t ∈ T has
a label lbl(t) of the form e()[g]/a, where e ∈ A, g is a boolean
guard, written in an unspecified condition language, and a is an
action, written in an unspecified command language. All parts of
the label are optional. Only when the guard evaluates to True can
the transition be taken. An omitted guard is assumed to be True. For
transition t, source(t), target(t), guard(t), trigger(t), and action(t)
are used to refer to t’s source state, target state, boolean guard,
trigger event, and action, respectively.

An EFSM M takes as input a sequence of events E ∈ A∗. Each
event includes, in addition to the event name, a list of formal param-
eters that are passed values from the external environment with the
event. A transition’s action commonly updates the store and may
produce output events, which need not come from A. Finally, if two
transitions share the same source state, the same trigger event, and
their guards can be simultaneously True, then M is a non-deterministic
EFSM; otherwise, it is deterministic.

A completely specified EFSM includes, for every state, a tran-
sition triggered by every event in the event alphabet A. Since com-
pleteness can often obscure the true nature of an EFSM, as a conven-
tion EFSMs are often presented with certain transitions left implicit.
A common interpretation for implicit transitions is a self transition.
In effect the event is consumed by having the state machine stutter
(repeat) the same state without any effect other than consuming the
event. The following definition formalizes the event sequences that
do not require stuttering.

Definition 2 (Implicit Transition Free Event Sequence)
For EFSM M = (S, T, A, Si), an input event sequence E ∈ A∗ is
referred to as implicit transition free if M takes no implicit transi-
tions when presented with E. Such an event sequence is also referred
to as stutter-free. For a set of event sequences X , itf(M, X) denotes
the implicit transition free subset of X:

itf(M, X) = {E ∈ X |M takes no implicit transitions
when processing E}.

basicProjection(EFSM M = (S, T, A, Si), Ignore Event Set I)
Let M ′ = (S′, T ′, A, Si) where

S′ = {s′ ∈ S | ∃ path p = s · · · s′ ∈ T ∗ ∧ s ∈ Si}
∧ ∀ t ∈ p, trigger(t) 6∈ I

T ′ = {t ∈ T | source(t) ∈ S′ ∧ target(t) ∈ S′}
in

M ′ = (S′, T ′, A− I, Si)

Figure 2: The basic model projection.

Given a set of events to ignore, denoted I, the projection of EFSM
M preserves M ’s behavior when placed in an environment that does
not generate events from I. The resulting set of event sequences,
formalized by the following filter, is used to define model projection.

Definition 3 (Event Sequence Set Filter)
Sequence-set Filter function fi(X, I) = {E ∈ X | E ∩ I = ∅}
where E ∩ I denotes the intersection of the set of events in E with
I.

Definition 4 (Model Projection)
A Model Projection of EFSM M = (S, T, A, Si) for ignore set I is
a reduced EFSM M ′ that is semantically indistinguishable from M
on all event sequences from fi(A∗, I).

For a projection to be semantically indistinguishable as required
by the definition, it must preserve the behavior of the original ma-
chine. There are two aspects to this semantic requirement: what
behavior is preserved and over what set of event sequences it is pre-
served. The first of these, “what behavior is preserved” is formalized
by Definition 9 in Section 4. Informally, the behavior includes the
variable values computed at each state.

The second aspect of the semantic requirement considers the set
of event sequences over which the semantics is preserved. Two
options are considered: the strong semantic requirement and the
weak semantic requirement. Under the strong requirement, behavior
is preserved on all sequences in fi(A∗, I), while for the weak re-
quirement, behavior is preserved only for the stutter free sequences
of fi(itf(M, A∗), I). Thus the weak requirement does not require
matching behavior on event sequences for which the EFSM implic-
itly consumes an event. Rather, it restricts this requirement to event
sequences where the behavior of M is explicitly defined.

Figure 2 presents the definition of a basic projection of an EFSM,
which is illustrated by the example in Figure 1. In Section 4 we

prove that the implementation of basicProjection shown in Fig-
ure 3 satisfies the strong semantic requirement. Furthermore this
algorithms removal of states and transitions can facilitate further
simplifications. Thus three additional algorithms go beyond the ba-
sic projection and consider simplifying the state machine using con-
stant propagation and state merging. The most aggressive of the state
merging algorithms satisfies only the weak semantic requirement.

3. ALGORITHMS
This section describes four model projection algorithms that rep-

resent differing performance/precision tradeoffs. Model projection
has several possible implementation strategies. For example, one
could build a projection by adding necessary elements to an initially
empty model. Alternatively, one could remove elements from the
model being projected. The initial implementation follows the later
approach. To do so, it recasts the notion of program slicing [34]
to the EFSM domain. However, this recasting differs from previ-
ous work on slicing state-based models [17, 21, 23, 24, 33], which
transplant concepts from the program slicing [34] in an attempt to in-
crementally adapt program-slicing concepts and techniques. These
differences are considered further in Sections 5.3 and 6.

For much of its history, dependence analysis has typically been
applied to programs, but there has been a recent increase in the the-
ory and practice of dependence analysis for models, and in particular
state-based models [1]. Indeed, it has been argued [15] that all de-
scriptions, whether they be specifications, models, or other descrip-
tions, will have a tendency to become executable over time, making
such descriptions more likely to become the subject of techniques
associated with program analysis, such as dependence analysis and
slicing. The recent interest in dependence analysis for state-based
models makes it timely to consider whether notions of slicing, hith-
erto defined for programs, remain appropriate when transplanted
into the paradigm of models. This paper argues that the notion of
slicing needs to be generalised to one of model projection for con-
sidering models both EFSMs and otherwise. Specifically, the ‘slic-
ing criterion’ and algorithms for slicing will need to take account of
model-specific characteristics.

The recasting of slicing used to implement model projection pro-
vides a more natural slicing approach by providing a more natu-
ral way to specify the slicing criterion: an environment-based slice
is taken with respect to an ignore set I. As shown in Sections 4
and 5, environment-based slicing correctly and effectively imple-
ments model projection. This achieves a long standing goal in pro-
gram slicing of defining the slicing criteria in terms of higher level
concepts [14, 34].

The remainder of this section first introduces the slicing algorithm
basicSlice and then three extensions that incorporate constant prop-
agation and 2 different state mergings. Figure 3 presents basicSlice.
Given as a slicing criterion an ignore set I, basicSlice computes a
slice by deleting all transitions whose trigger event corresponds to
events in the ignore set. Then it removes all states and their transi-
tions that are no longer reachable from an initial state. The reduced
model is a basicProjection as defined in Figure 2. Figure 1 shows
the basicSlice produced for the Vending Machine example using
the ignore set I = {Sugar()}.

The first extension to basicSlice, Algorithm A2 is shown in Fig-
ure 4, incorporates constant propagation. Algorithm A2 further re-
duces the projection’s size by replacing a constant-valued variable
by its value throughout the machine. When a guard is updated, it
may simplify to False; thus the corresponding transition (and per-
haps its target state) can be removed. The algorithm implements
a simple flow-insensitive constant propagation algorithm in which
variables are mapped to values in a flat lattice [12]. Initially vari-

basicSlice(EFSM M = (S, T, A), Ignore Event Set I)
{
M ′ ←M
delete from T ′ all transitions t where trigger(t) ∈ I
while ∃ state s with no incoming transitions do

remove s and all transitions t where source(t) = s
return M ′

}

Figure 3: Algorithm A1: basicSlice. Basic algorithm for com-
puting an environment-based slice.

ables that appear as formal parameters of an event labelling a tran-
sition are assigned the value ⊥ (non-constant) because they receive
an unknown value from the environment. All other variables v are
initialized to > (uninitialized). The assignments that label the tran-
sitions are then taken into account. If the right-hand side of the as-
signment evaluates to a constant then the value of the left-hand side
variable is replaced with the meet of the constant and the variable’s
present value. Otherwise, the value is replaced with ⊥.

In addition to constant propagation, two state merging algorithms
are used to further reduce the size of a projection by combining
groups of states that have identical semantics. The right-equivalent
merging algorithm extends an algorithm of Ilie et al. [19] to EF-
SMs. R-equivalence equates to bisimulation for deterministic state

SliceCP (EFSM M , Ignore Event Set I)
{

M ′ = basicSlice(M, I)
constantPropagation(M ′)
return M ′

}

constantPropagation(EFSM M = (S, T, A, Si))
{

σ̄ = λ v.

8<: ⊥ if v is used as a formal parameter of an
input event in a transition label

> otherwise

foreach t ∈ T
foreach assignment “v = exp” ∈ action(t)

let x = result of evaluating exp using σ̄
in update(σ̄, v, x)

deleteUnTriggerableTransitions(M ′, σ̄)
}

deleteUnTriggerableTransitions(EFSM M = (S, T, A, Si),
abstract store σ̄)

{
while ∃ t ∈ T where guard(t) evaluates to False using σ̄

remove t from T
while ∃ s ∈ S with no incoming transitions do

remove s and all transitions t̄ where source(t̄) = s
}
where

update(σ̄, v, x) replaces v’s value in σ̄ with σ̄(v) u x
using the following meet operation:
> u> = > > u C = C > u⊥ = ⊥
C u C = C C u C′ = ⊥(C 6= C′)
C u ⊥ = ⊥ ⊥ u⊥ = ⊥

Figure 4: Algorithm A2: Constant Propagation removes transi-
tions whose guard is always False.

SliceMerge(EFSM M , Ignore Event Set I)
{

M ′ = basicSlice(M, I)
constantPropagation(M ′)
R-mergeEquivalentStates(M ′)
if only satisfying the weak semantic requirement then

G-mergeEquivalentStates(M ′)
}

R-mergeEquivalentStates(EFSM M = (S, T, A, Si))
{

while ∃ States s1, s2 ∈ S such that R-equivalent(s1, s2)
replace s1 and s2 with s, where s has as its outgoing (and self-) transitions a copy of those of s1,
and incoming transitions the union of those of s1 and s2.

}

R-equivalent(States s1, s2)
{

if finalState(s1) ∧ not finalState(s2) or not finalState(s1) ∧ finalState(s2)
return false

else return true iff
∀ t ∈ T · source(t) = s1 ⇒ ∃ t′ : T · source(t′) = s2 ∧ trigger(t′) = trigger(t) ∧ action(t′) = action(t)

∧ guard(t′) ≡ guard(t) ∧ target(t′) ∼ target(t)
∀ t ∈ T · source(t) = s2 ⇒ ∃ t′ : T · source(t′) = s1 ∧ trigger(t′) = trigger(t) ∧ action(t′) = action(t)

∧ guard(t′) ≡ guard(t) ∧ target(t′) ∼ target(t)
// Where s1 ∼ s2 means the targets are the same state, or one is s1 and the other s2.

}

G-mergeEquivalentStates(EFSM M = (S, T, A, Si))
{

For a set of transitions T , triggers[T] denotes the set of triggers of the transitions of T .
Function metric(g) denotes the number of states removed by merging groups in g into single states: Σs∈g(|s |−1)
where |s | denotes the size of set s.
possibleGroups = {ss ∈ 2S | |ss | ≥ 2 ∧

(∀ t ∈ T · source(t) ∈ ss ∧ target(t) ∈ ss⇒ action(t) = skip)
∧ ((triggers[{t ∈ T | source(t) ∈ ss ∧ target(t) ∈ ss}]
∩ triggers[{t ∈ T | source(t) ∈ ss ∧ target(t) 6∈ ss}] = ∅)}

if possibleGroups 6= ∅ then
mergeGroups = {pg ∈ 2possibleGroups | pg 6= ∅ ∧ ∀ state sets ss1, ss2 ∈ pg · ss1 6= ss2 ⇒ ss1 ∩ ss2 = ∅}
bestGroup = g ∈ mergeGroups such that metric(g) is maximal.
collapseStates(M, bestGroup)

}

Figure 5: Algorithms A3 and A4: Two State Merging algorithms

machines. It has a counterpart that merges left-equivalent states.
However, this merge is only relevant for non-deterministic EFSMs
and is not presently implemented. Merging both R-equivalent and L-
equivalent states forms a bisimulation for general EFSMs. The ap-
proach, implemented by the function R-mergeEquivalentStates,
shown in Figure 5, repeatedly merges pairs of states provided that
the two states of the pair are R-equivalent, until no further merging
is possible. States s1 and s2 are R-equivalent if, for every transition
from s1, there is a corresponding transition from s2 and vice versa.
That is, for each trigger event, the outgoing transitions from the two
states are identical in their guards and actions, and have equivalent
target states after the merge (i.e., s1 and s2 are considered to be the
same state). This transformation preserves the regular expression
language (i.e., the set of stutter-free event sequences) accepted by
the state machine.

The second merging algorithm, G-mergeEquivalentStates,
shown in Figure 5, is a more aggressive merge that can yield greater
simplification and, as a tradeoff, only preserves the weak seman-
tic requirement. In this function the set possibleGroups includes all

groups (subsets of S) that are eligible to be merged into single states.
A group ss can be merged if it has size two or more, all transitions
within the group have no actions, and the set of internal triggering
events is disjoint from the set of exiting triggering events. The set
of internal triggering events includes those events that trigger transi-
tions from a state in ss to another state in ss while the set of exiting
triggering events includes those events that trigger transitions from
a state in ss to a state outside of ss. While unimplemented, it is pos-
sible to relax this requirement and allow the merge, provided that
for all events E, the guard conditions of each internal transition trig-
gered by E are logically inconsistent with the guard conditions of
all of the exiting transitions triggered by E.

If the set possibleGroups is non-empty, then some merging is pos-
sible. To determine the best merge, a set of all possibilities merge-
Groups is defined. This set includes subsets of possibleGroups that
are pairwise disjoint and can thus be merged simultaneously. Finally,
the subset that maximizes the number of states removed is chosen.
Because this algorithm is exponential in the number of states (which
is likely to be the case for any algorithm which considers all possi-

ble candidates for state merging) future work includes considering
heuristics for applying G-mergeEquivalentStates. However the
empirical study reported in Section 5.3 indicates that, in practice,
the run times are reasonable.

Figure 6 illustrates the impact of constant propagation and state
merging. EFSM A is sliced with respect to ignore set I = {a}. Slic-
ing removes the two assignments to x when it deletes the transitions
from s3 → s4 and s5 → s4. This leaves x with the constant value
1. Constant propagation rewrites the guard x < 2 on the transition
from s4 to the final state to “True”, which in turn enables R-merging
of states s4 and s5 leading to EFSM B. EFSM C shows the result of
R-merging states s1 and s3. This merge does not require constant
propagation; thus the example illustrates both that some merging
is possible without performing constant propagation and that con-
stant propagation can enable (additional) merging. If only stutter-
free sequences are acceptable then G-mergeEquivalentStates can
be used. This merges s1, s3 and s4, s5 yielding EFSM D.

4. ALGORITHM CORRECTNESS
In what follows we show that the basic slicing Algorithm A1 is

correct with respect to the strong semantic requirement. Moreover,
we show that the constant propagation and right-equivalent merging
algorithms, A2 and A3, are also correct with respect to this require-
ment. Finally, the group merging algorithm is shown to be correct
with respect to the weak semantic requirement. Before we present
the proofs of correctness, we describe the semantics of EFSMs, for-
mally.

Definition 5 (Configurations)
Let Σ be the set of all possible stores for an EFSM. For EFSM M =
(S, T, A, Si), a configuration is a pair (s, σ) where s ∈ S is a state
and σ ∈ Σ is a store.

Definition 6 (Status)
For EFSM M = (S, T, A, Si), a status is a pair (C, E) where C
is a configuration and E ∈ A∗ is an event sequence. A status is an
initial status if the state contained in its configuration is an initial
state.

Definition 7 (Enabled Transitions)
For Status St = (C, E) of an EFSM M = (S, T, A, Si) where C =
(s, σ), transition t is enabled iff source(t) = s, guard(t) evaluates
to True when evaluated using σ, and trigger(t) = head(E). The set
Enabled(St) denotes the set of all transitions enabled in Status St.

The semantics of an EFSM M , is formalized as a Labeled Tran-
sition System (LTS). States of the LTS are the statuses of M and
transitions of the LTS have the same labels as the transitions of M
but extended with an additional label for implicit transitions (see
the operational semantics definition below) . The LTS has a labeled
step rule which defines legal transitions. A closed system assump-
tion is made in which the status is only changed explicitly by the
step rule. The semantics of EFSM M taking enabled transition t
is given as an LTS move from Status St1 to Status St2, denoted
M ` St1

t−−−→
LTS

St2. In doing so the store is updated using the

store update function denoted by [[action(t)]]. This single step rule
is formalized as follows:

Definition 8 (LTS Step −−−→
LT S

)
For Status St = ((s, σ), E) of EFSM M , taking enabled transition
t produces the next status:

t ∈ Enabled(St) ∧ σ′ = [[action(t)]]σ

M ` ((source(t), σ), E)
t−−−→

LTS
((target(t), σ′), tail(E))

s4

b/acts2

s4, s5

d

g

d/acts1

db

b/acts2

b[x<2]/acts2g

A

s1
s3

s5

s2

d

g

db

b/acts2

g

B

s4, s5

s3

s2

s1
d/acts1

d

s2
C

s1, s3

b
d/acts1

g

a/x = x−1

a/x =5

/x =1

/x =1

/x =1

d

s2

b

D

s4, s5

s1, s3

d/acts1

b/acts2
g

/x =1

Figure 6: This example illustrates the roll of constant propaga-
tion and state merging in the current implementation of model
projection. Applying basicSlice to EFSM A using ignore set
I = {a} removes the two dashed transitions from EFSM A.
EFSM B shows the results of constant propagation, which re-
places the guard x < 2 with “True,” and then the R-merging
of states s4 and s5, which is enabled by the constant propaga-
tion. EFSM C shows the result of the additional R-merging of
states s1 and s3. Finally, EFSM D shows the result of applying
G-merge, combining s1, s3 and s4, s5.

Definition 9 (Operational Semantics)
The operational semantics defines the meaning of EFSM M = (S,
T, A, Si) as the LTS (ST, STi, L,−−−→

LTS
) where ST and STi are

sets of statuses and initial statuses, respectively, the label set L is
T ∪ {ε}, where the special label ε is used to model implicit transi-
tions, and −−−→

LTS
is the LTS step rule from Definition 8.

Definition 10 (Stuttering Rule)
For a Status St = (C, E), if no transitions are enabled, then the
head of the event sequence is consumed without changing C.

Enabled(St) = ∅
M ` (C, E)

ε−−−→
LTS

(C, tail(E))

Definition 11 (Reachable Statuses Set)
For EFSM M = (S, T, A, Si) having LTS (St, Sti, L,−−−→

LTS
) and

a restricted event alphabet AR, the set Statuses(M, AR) is the set
of statuses reachable in zero or more steps from an initial status in
an environment that produces only events found in AR:

Statuses(M, AR) , { st ∈ St | sti ∈ Sti

∧M ` sti
t−−−→

LTS

∗
st where trigger(l) ∈ AR}

Definition 12 (Status Congruence ∼=)
Statuses ((s1, σ1), E1) and ((s2, σ2), E2) are congruent, written
((s1, σ1), E1) ∼= ((s2, σ2), E2) iff σ1 = σ2 and E1 = E2.

In the following proofs, M ′ continues to denote a slice of EFSM
M . Subscripts are added to denote a slice produced by a particular
slicing algorithm; thus, a slice of M produced by A1 (Figure 3)
is denoted M ′

1. The main theorem uses simulation to establish the
correctness of Algorithm A1 by showing that for all event sequences
E ∈ fi(A∗, I) M and its slice M ′

1 produce corresponding statuses.
That is, whatever M can do using only the restricted event set M ′

also can do. This result is then extended to show that the simulation
still holds for A2 slices. Finally, it is shown that A3 produces slices
who’s simulation is homomorphic to those for slices produced by A2

and, for event sequences in fi(itf(M, A∗), I). This result extends to
slices produced by A4.

Simulation is a relation between statuses in the operational se-
mantics of a pair of EFSMs. We write St1 � St2 to mean St2
simulates St1. We mildly abuse the word simulation when saying
M ′ simulates M for a given set of event sequences E . The intu-
ition is that if M ′ simulates M for E then the two machines have the
same behavior when placed in an environment that can only produce
event sequences in E . First we give the general definition of a sim-
ulation between the semantics of EFSMs and then the definition for
the meaning of M ′ simulates M for E .

Definition 13 (Simulation relation � for the operational seman-
tics of EFSMs)
Let EFSMs M = (S, T, A, Si) and (its slice) M ′ = (S′, T ′, A′, S′

i)
have statuses (C1, E1) and (C′

1, E1) respectively.
Then (C1, E1) � (C′

1, E1) iff whenever
(C1, E1) ∼= (C′

1, E1) and M ` (C1, E1)
t−−−→

LTS
(C2, E2)

there exists a status (C′
2, E2) such that

M ′ ` (C′
1, E1)

t−−−→
LTS

(C′
2, E2) and (C2, E2) � (C′

2, E2)

where E2 denotes tail(E1).

Definition 14 (EFSM simulation)
EFSM M ′ = (S′, T ′, A′, S′

i) simulates EFSM M = (S, T, A, Si)
for E , written M �E M ′, if

• there is a simulation relation, �, between the two semantics
whose range includes all statuses in the semantics of M ′ for
event sequences in E and

• for every start state s′i ∈ S′
i for M ′ there is a corresponding

start state si ∈ Si for M so that any event sequence E in E
and store σ, ((si, σ), E) � ((s′i, σ), E)

The first theorem states that projecting the behavior of an EFSM
via an ignore set is safe as the resulting EFSM simulates the original
with respect to the reduced environment.

Theorem 1 Given EFSM M = (S, T, A, Si) and its slice M ′
1 =

(S′, T ′, A′, Si) produced by algorithm A1 using ignore set IM �E
M ′

1 for E = (A− I)∗ (M ′
1 simulates M for E = (A− I)∗).

Proof. We first prove that a non-empty simulation relation exists
between the semantics of M ′

1 and the semantics of M . If M ′
1 is pro-

duced from M by Algorithm A1 using ignore set I, then M ′
1 is a

sub machine of M (its states, transitions and actions are contained
in the states transitions and actions of M). Without loss of general-
ity we can assume that the set of possible stores for each machine is
the same. Then each status of M ′

1 is a status of M . If M has status
((s, σ), E) and M ′

1 has status ((s′, σ′), E) where s = s′, σ = σ′,
and E ∈ E = (A− I)∗ then we can show that they satisfy a simu-
lation relation.

Because the statuses are identical ((s, σ), E) ∼= ((s′, σ′), E).
Now assume that M ` ((s, σ), E)

t−−−→
LTS

((s1, σ1), tail(E)) where

head(E) ∈ A′. We have that M ′
1 ` ((s′, σ′), E) = ((s, σ), E)

t−−−→
LTS

((s1, σ1), tail(E)) as well. If that were not the case, since t−−−→
LTS

corresponds to a transition t−→ in M and t−→ is triggered by an event
in A′, the failure to be in M ′

1 can only be because the transition is
deleted during the construction of M ′

1 by A1 because it is unreach-
able. However since its source state is in M ′

1 (by arbitrary choice of
the status for M ′

1), it must be reachable. Thus the resulting pair of
configurations are identical and in turn must satisfy the simulation
relation. We take � as the largest simulation relation between the
configurations of the two semantics that both includes the identical
pairs from the semantics of M and M ′

1 and satisfy simulation as de-
fined in Definition 13. Finally, by construction � includes a pair of
identical statuses for every initial status in M ′

1 because A1 includes
all of M ’s initial states in M ′

1. �

We next show that there is an EFSM simulation between the orig-
inal machine and the slice produced by A2, which extends A1 by
applying constant propagation.

Proposition 1 Given EFSM M = (S, T, A, Si) and its slice M ′
2

= (S′
2, T

′
2, A

′
2, Si) produced by A2 using ignore set I, M �E M ′

2

where E = (A− I)∗.

Proof. Let M ′
1 = (S′

1, T
′
1, A

′
1, S

i
1) be the result of applying A1 to

M using ignore set I. We show that M ′
2 simulates M ′

1 for E , that
is there is a simulation �2 such that M ′

1 �2
E M ′

2 and then rely on
the closure of simulations under composition for the existence of a
simulation of M by M ′

2 for E , i.e. M(�; �2)EM ′
2.

First observe that A2 produces M ′
1 and then performs constant

propagation. The effect of constant propagation on M ′
1 is that some

transitions whose guards are constantly false in the semantics of M ′
1

are missing in M ′
2 (some rather than all because the correctness of

the constant propagation algorithm implies it is conservative). Fur-
thermore, transitions in M ′

1 only reachable via transitions whose
guards are constantly false are missing in M ′

2. So M ′
2 is a sub ma-

chine of M ′
1.

We show that there is a nonempty simulation of the semantics
of M ′

1 by the semantics of M ′
2. Let St2 = ((s, σ), E) be a sta-

tus of M ′
2. Since M ′

2 is a sub machine of M ′
1 St2 is also a status

of M ′
1 and the identical pair satisfy ∼=. Now assume that M ′

1 `
((s, σ), E)

t−−−→
LTS

((s1, σ1), tail(E)). M ′
2 ` ((s, σ), E)

t−−−→
LTS

((s1, σ1), tail(E)) will hold unless the transition t ∈ T ′
1 does not

exist in T ′
2. This could be for one of two reasons: either the guard

of t is constantly false or t is only reachable via transitions whose
guards are constantly false. In the first case M ′

1 ` ((s, σ), E)
t−−−→

LTS

((s1, σ1), tail(E)) is not possible, in the second St is not a reach-
able configuration of M ′

1, so neither is it a reachable configuration of
M ′

2. Therefore M ′
2 ` ((s, σ), E)

t−−−→
LTS

((s1, σ1), tail(E)) holds

and the resulting configurations are identical, satisfying the simula-
tion relation. Again �2 is defined similarly to � and the argument
for the initial configurations of M ′

2 satisfying the relation is similar.
�

We now show that the simulation produced by Algorithm A3 is
homomorphic to that produced by Algorithm A2.

Proposition 2 Given EFSM M = (S, T, A, Si) and its slice M ′
3

= (S′
3, T

′
3, A

′
3, Si) produced by A3 using ignore set I, M �E M ′

3

where E = (A− I)∗.

Proof. Let M ′
2 be the slice of M produced by A2 using I. We

show that there exists a (model) homomorphism, h, from M ′
2 to

M ′
3. We then argue that h naturally extends to a homomorphism

between the simulations of M ′
2 and M ′

3; thus, M �E M ′
3 follows

from M �E M ′
2.

Assume that M ′
2 includes states s1, s2 where s1 and s2 have iden-

tical outgoing transitions for events in A − I. In more detail, for
each transition t1 where source(t1) = s1 and lbl(t1) = e[G]/acts
and target(t1) = x, there is a transition t2 where source(t2) =
s2, lbl(t2) = e[G]/acts, and target(t2) = x′ where x = x′ or
{x, x′} = {s1, s2}. Model M ′

3 is identical to M ′
2 except that s1 and

s2 are replaced by a single state s, each transition t targeting s1 or
s2 is replaced be a transition targeting s, Matched transitions t1 and
t2 in M ′

2 as above are replaced in M ′
3 by a single transition t with

source(t) = s, lbl(t) = e[G]/acts and target(t) = z where z = x
if x 6= s1 and x 6= s2, or z = s otherwise. Therefore, M ′

3 is clearly
homomorphic to M ′

2.
This model homomorphism induces a simulation homomorphism

that maps status for M ′
2 to the statuses for M ′

3. In particular, the
statuses for s1 and s2 are mapped those for s. Since the associated
transitions t1 and t2 have the same label, the resulting configurations
are not affected. Consequently, M �E M ′

2 implies M �E M ′
3. �

Finally we show that applying A4 also induces a simulation be-
tween the semantics of the original machine and the resulting slice,
but only with some further restriction on the type of input event se-
quences that can be considered in the semantics.

Proposition 3 Given EFSM M = (S, T, A, Si) and its slice M ′
4 =

(S′
4, T

′
4, A

′
4, Si) produced by A4 using ignore set I, M �4

E′ M ′
4

where E ′ = fi(itf(M,A∗), I), the set of restricted sequences which
are stutter free on M .

Proof sketch. Let M ′
3 be the slice of EFSM M produced by apply-

ing algorithm A3. Let h denote the model homomorphism the exists
between M ′

3 to M ′
4. Proposition 2 shows that there is a simulation

�3
E′ such that M �3

E′ M ′
3. (The proposition actually proves the

stronger result for E = fi(A∗, I) = (A−I)∗ which is a superset of
E ′.) The remainder of the proof shows that using h this relationship
extends to M ′

4 (i.e., that M (h(�3))E′ M ′
4).

Model homomorphism h induces a homomorphism between the
LTSs that are the semantics of M ′

3 and M ′
4 respectively but only if

the input event sequences for M ′
3 are stutter free. Consider a status

((s, σ), E) in the semantics of M ′
3. Its image in the semantics of M ′

4

under the induced homomorphism (also called h) is ((h(s), σ), E).
Now suppose M ′

3 ` ((s, σ), E)
t−−−→

LTS
((s′, σ′), E′) where E′ =

tail(E). Since E is stutter free for M ′
3 the label on t has trigger(t) =

head(E). We have two cases to consider. In the first case, head(E)

is internal and M ′
4 takes a self-loop: M ′

4 ` ((h(s), σ), E)
h(t)−−−→
LTS

((h(s′), σ′), E′) and h(s) = h(s′) and σ′ = σ (because internal
labels have no actions). Alternatively in the second case head(E)

is exiting and M ′
4 ` ((h(s), σ), E)

h(t)−−−→
LTS

((s′, σ′), E′) because G-

mergeEquivalentStates preserves exiting transitions. Note that if

E is not stutter free on M ′
3 this breaks down. It is possible that M ′

3

stutters: M ′
3 ` ((s, σ), E)

t−−−→
LTS

((s, σ), E′) whereas because of

the merging of states there exist an exiting transition from h(s) in
M ′

4 that is triggered by head(E).
Thus, in conclusion, homomorphism h induces a homomorphism

on simulations such that for event sequences in fi(itf(M, A∗), I),
M ′

3 (h(�3))E′ M ′
4. Combined with the result from Proposition 2

that M �3 M ′
3, We conclude that M (h(�3))E′ M ′

4. �

5. EMPIRICAL EVALUATION
For environment-based slicing to be of practical use, it is impor-

tant to empirically consider the reduction obtained. This section
presents results from implementations of the four model slicing al-
gorithms A1-A4. The empirical study addresses the following three
research questions:

RQ1 What is the impact on model size of slicing with
respect to small ignore sets?

RQ2 What is the impact on model size of slicing with
respect to all large ignore sets?

RQ3 What is the performance of the slicer?

The ten EFSM models that were used in the experiment are shown
in Table 1 where each model’s size is given in terms of the number
of states (#S) and transitions (#T) and the number of events in its
input alphabet (#Event). The first six models were used by Korel
et al. [20, 21] in studies of dependence-based slicing. The last four
are the production systems INRES [6] and DoorControl [31] from
previous model-based studies, and TCP [35] and TCSbin. TCSbin,
provided by Motorola, was originally written in SDL [5]. Since SDL
specifications are richer than those currently handled by our tool, this
model was transformed to a semantically equivalent model (e.g., by
removing the need for ‘history’ and ‘All’ state types).

Table 1: Experimental Models.
EFSM Model #S #T #Event

ATM [21] 9 23 12
Cashier [22] 12 21 16
CruiseControl [20] 5 17 10
FuelPump [20] 13 25 16
PrintToken [22] 11 89 11
VendingMachine [22] 8 37 13
DoorController [31] 6 12 11
INRES protocol [6] 8 18 8
TCP [35] 12 57 6
TCSbin[Motorola] 24 65 39

Total 108 364 142

5.1 Small Ignore Sets
The first study exhaustively considers the impact of slicing using

small ignore sets. Smaller ignore sets should produce larger slices,
and thus provides a ‘worst case’ for the reductions to be expected
from environment-based slicing. In addition, slice size is a proxy for
the impact of an event: a larger slice size indicates a small impact
while a small slice size indicates an event having a large impact.
Thus, computing all possible slices can identify interesting events.

The experiment used all ignore sets of size 1, 2, and 4. Table 2
presents the average slice size computed over slices from all ten sub-
jects separately for each of the four algorithms. Overall, the reduc-
tion in the number of states and the number of transitions tell a sim-
ilar story. In addition as expected, the more expensive algorithms
provide consistently smaller slices. Considering that at n = 4 only

S
li

c
e

 S
iz

e

(S
ta

te
s

)

100%

50%

0%

Slices

12080400

A4

A3

A2

A1

S
li

c
e

 S
iz

e

(T
ra

n
s

it
io

n
s

) 100%

50%

0%

Slices

12080400

A4

A3

A2

A1

S
li
c
e
 S

iz
e

(S
ta

te
s
)

100%

50%

0%

Slices

12009006003000

A4

A3

A2

A1

S
li
c
e
 S

iz
e

(T
ra

n
s
it

io
n

s
) 100%

50%

0%

Slices

12009006003000

A4

A3

A2

A1

Figure 7: All slice sizes for Algorithms A1, A2, A3 and A4. The upper two figures show all slice sizes when the ignore set I is set to
each of the 142 events and the lower two graphs show all slice sizes when the ignore set I is set to each of the 1323 pairs of events.

Slices

12080400

S
li

c
e

 S
iz

e

(S
ta

te
s

)

100%

50%

0%

A4

A3

A2

A1

Slices

12080400

S
li

c
e

 S
iz

e

(T
ra

n
s

it
io

n
s

) 100%

50%

0%

A4

A3

A2

A1

Figure 8: All slice sizes for Algorithms A1, A2, A3 and A4 using all possible ignore sets containing all but one (n− 1) events.

a third of the events are, on average, being ignored, the reductions
are considerable: A4 reduces the number of states by 60% and the
number of transitions by 70%. For expensive applications, such as
model checking, this reduction is especially significant.

Table 2: Average slice size when ignoring n events.
States Transitions

n=1 n=2 n=4 n=1 n=2 n=4
A1 85.3% 78.8% 49.3% 77.5% 70.3% 33.5%
A2 80.5% 77.2% 47.1% 71.3% 67.1% 31.1%
A3 78.6% 74.6% 45.2% 69.2% 64.1% 30.3%
A4 71.2% 70.7% 41.1% 66.1% 63.2% 29.8%

Figure 7 shows graphs of all slice sizes for all ignore sets of size
n = 1 and n = 2 using all four algorithms. In each graph, the x-axis
shows the slices in monotonically increasing order of slice size. Nor-
malized to a percentage, the y-axis shows slice size as a percentage
of number of states or the number of transitions. The data is indi-
vidually sorted, and thus should not be used to compare a particular
slice. In all graphs, the four lines show similar trends. Consider-
ing the extremes, for Algorithm A1 and singleton event ignore-sets,
there are no states removed in approx 80 of the 142 slices (indicated
by the straight line on the top right of the diagram). For these slices,
the reductions in the number of transitions is small (less than 10%).
At the other end of the spectrum, in seven cases, the slices have zero
transitions. This occurs when a key event is used as the slicing cri-
terion. Further investigation reveals that these events often occur

on the transitions close to an initial state where the triggering event
determines if further processing by the model is needed. For exam-
ple, ignoring the Card() event in the ATM model corresponds to not
inserting an ATM card, and thus the ATM remains in its idle state.

5.2 Large Ignore Sets
The second research question considers larger ignore sets. For

A1, using ignore sets of size n = 8, a larger size than considered
in Table 2, the average slice includes 27.6% of the states and 10.4%
of the transitions. The sizes for A2, A3, and A4 follow the same
pattern as seen in Table 2. At the extreme, ignoring all but one event
produces an average slice size of 12.7% states and 1.1% transitions.
Figure 8 show graphs of these slices for all ten models where only a
single line is visible for all four algorithms because they all produce
very similar sized slices.

One motivation for this research question was to support a com-
parison with dependence-based EFSM slicing techniques and with
the slicing of programs. Dependence-based techniques extract the
part of an EFSM that affects one or more elements (states, transi-
tions, or variables used in transition labels) from the EFSM. In the
following comparison these elements are assumed to be transitions.
Previous studies of such slices using the same ten subjects report an
average slice size of between 38.4% and 68.0% of the transitions us-
ing a variety of definitions of “dependence” [2]. From a program P ,
a common variant of program slicing extracts a semantically mean-
ing ‘subprogram’ that captures the execution of a particular state-
ment from P .

It is difficult to make a direct comparison of environment-based
slicing with the slicing of programs or dependence-based techniques
for EFSMs because the slicing criteria are so different: environment-
based slicing starts with one or more events to ignore, while the
others start with a particular transition or statement to preserve. The
average program slice size is about one third of a program [4]. This
is comparable to the reduction in transitions for a model using an
ignore set of size 4.

Comparing with EFSM dependence-based techniques, one pos-
sible comparison clearly favors environment-based slicing: given
that dependence-based approaches preserve the behavior of a sin-
gle transition, one might compare them with an ignore set that in-
cludes all but one event. Considering all but one event is similar
to dependence-based slicing’s seeking to preserve a single transi-
tion from the model. In this case A4’s average slice size of 1.0%
of the transitions compares quite favorably. A similar result might
be expected from comparing the use of ignore sets of size one with
dependence-based slices taken with respect to all transitions not us-
ing an ignored event. As this slicing criterion (starting point) is a
substantial portion of the model, this comparison too favors envi-
ronment-based slicing. Finally, consider a like-for-like comparison
using a single transition for dependence-based slicing and an ignore
set of size one for environment-based slice. Here A4’s average slice
size of 66.1% of the transitions, while toward the large end of the
range for dependence-based slicing (28.4% – 68%), still provides a
comparable reduction.

5.3 Runtime Efficiency
The final research question considers the runtime efficiency of the

slicer. Slices were computed on a 2.4GHz Intel(R)Core Duo CPU
having 4GB memory. For ignore sets of size one, the results show
that A1 and A2 are extremely fast with maximal times of 0.016s
and 0.042s, respectively. In contrast, the execution time for A3 and
A4 reflect the PSPACE complexity of minimizing an EFSM (and in
general an NFA) [18, 13]). The average times were 27s and 36s and
the maximal times were 94s and 753s, respectively. All times drop
with larger ignore sets. For example, the worst-case times for the
four algorithms using all ignore sets of size 4 are 0.0012s, 0.025s,
29s, and 126s, respectively. While all four show a large percentage
drop, the impact is more meaningful for A3 and A4, where the worst
case run time for A3 and A4 drop by 70% and 83% respectively.

6. RELATED WORK
Our model projections are related to model dependence analy-

sis and slicing. However, previous work on slicing state-based for-
malisms [17, 21, 23, 24, 33] has concentrated exclusively on a white-
box view of a state machine, in which the machine is much like a
special case of a program; its states loosely play the role of state-
ments and its transitions merely mimic control flow. This has al-
lowed concepts from program slicing to be adapted for state-based
models. Though valuable, such approaches miss the ability to talk
about sub-models extracted from an original model in terms of the
environment in which the model operates. In this section we de-
scribe the relationship between model projection and previous work
on dependence analysis and slicing of state-based models.

Korel et al. [21] describe the increased complexity of the proof
obligation for model-based slicing, arising from the presence of en-
vironmental considerations, while Sanchez et al. [30] advocate a
clear separation between equipment control activities and product
manufacturing procedures. However, neither provide algorithms that
yield model projections defined for restricted environments.

Cheung and Kramer [7] consider a form of reachability analy-
sis in terms of events. Such an analysis is a pre-requisite of slic-

ing, which we use in our model projection. However, Cheung and
Kramer use their approach to simplify interfaces, not to simplify the
models themselves. The two complement each other as model pro-
jection computes the implications of the simplified interfaces on the
models themselves.

The previous work that most closely resembles model projec-
tion is that described by Eshuis and Wieringa [11]. Their approach
was developed to handle the state-space explosion problem when
model checking workflows are modelled as UML activity diagrams.
Rather than being based on dependence analysis, their approach con-
sists of four reduction rules based on activity hypergraphs. Each of
their four rules is related to both model-based slicing and aspects of
model projection. The first of the four rules reflects changes made to
the machine during the overall rewrite process back to its environ-
ment. This is similar to our notion of implicit-transition-free event
sequences (Definition 2). The second rule insists that no two named
events can occur at the same time (i.e., they can only be interleaved).
This is similar to our requirement that only one event is dealt with
at a time. The third rule defines when a variable can be removed,
and is similar to a data dependence analysis that is a prerequisite of
dependence-based slicing. The fourth rule, which resembles a re-
stricted form of slicing, defines how wait and activity states
can be removed from UML activity hypergraphs. In comparison,
with our approach, the environmental restriction is specified by the
designer, whereas in the approach of Eshuis and Wieringa, the iter-
ative application of the four rules can have the effect of removing
some environmental elements.

Model projection introduces the possibility of slicing on the events
in which a model participates to produce a reduced model special-
ized to a specific environment. Model projection therefore presents
new challenges and opportunities for model-based slicing, in which
the environment essentially becomes a first class citizen in the slic-
ing criteria.

7. CONCLUSION
We introduced model projection in order to extend to the design

level benefits that slicing offers at the coding level. However, mod-
eling languages are not simply higher-level programming languages
and so we found that we needed to re-think the way in which the sim-
plification inherent in slicing is defined and implemented. In partic-
ular, we focused on the model’s environment as a criterion for sim-
plification, rather than the internal white box structure of the model
itself.

As with any new approach there is an obligation to demonstrate
correctness, effectiveness, and efficiency and these have therefore
formed the primary contributions of this paper. We have introduced
and proved correct a set of four algorithms for model projection that
trade effectiveness (in terms of projected model size) for efficiency
(in terms of projection construction time). The implementations of
our four algorithms are available from the SLIM project website at
http://slim.dcs.kcl.ac.uk.

8. REFERENCES
[1] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and

L. Tratt. Survey of slicing finite state machine models.
Technical Report RN/10/07, University College London,
2010.

[2] K. Androutsopoulos, N. Gold, M. Harman, Z. Li, and L. Tratt.
A theoretical and empirical study of EFSM dependence. In
International Conference on Software Maintenance (ICSM),
pages 287–296, Edmonton, Canada, 2009.

[3] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and
functional sequence test of dynamic and state-based software

with evolutionary algorithms. In Genetic and Evolutionary
Computation Conference (GECCO ’03), pages 2428–2441,
Berlin, 2003. Springer-Verlag.

[4] D. Binkley, N. Gold, and M. Harman. An empirical study of
static program slice size. ACM Transactions on Software
Engineering and Methodology, 16(2), 2007.

[5] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico.
Specification and description language (SDL),WebPro Forum
Tutorial, Int. Eng. Consortium.

[6] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico.
Automatic executable test case generation for extended finite
state machine protocols. In IWTCS’97, pages 75–90, 1997.

[7] S. Cheung and J. Kramer. Context Constraints for
Compositional Reachability Analysis. ACM Transactions on
Software Engineering and Methodology, 5(4), October 1996.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from Java source code. In 22nd

International Conference on Software Engineering
(ICSE’2000), pages 439–448, Los Alamitos, California, USA,
June 2000. IEEE Computer Society Press.

[9] D. Drusinsky. Modeling and Verification Using UML
Statecharts: A Working Guide to Reactive System Design,
Runtime Monitoring and Execution-based Model Checking.
Elsevier Inc, 2006.

[10] B. Dutertre and V. Stavridou. Avionics systems requirements:
A comparison of RSML and SCR. In Irish Signals and
Systems Conference, Dublin Institute of Technology, 1998.

[11] R. Eshuis and R. Wieringa. Tool support for verifying UML
activity diagrams. IEEE Transactions on Software
Engineering, 30(7):437–447, 2004.

[12] C. N. Fischer and R. J. LeBlanc. Crafting a Compiler.
Benjamin/Cummings Series in Computer Science.
Benjamin/Cummings Publishing Company, Menlo Park, CA,
1988.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability.
W. H. Freeman and Company, 1979.

[14] N. Gold, M. Harman, D. Binkley, and R. M. Hierons.
Unifying program slicing and concept assignment for
higher-level executable source code extraction. Software
Practice and Experience, 35(10):977–1006, 2005.

[15] M. Harman. Why source code analysis and manipulation will
always be important. In 10th IEEE International Working
Conference on Source Code Analysis and Manipulation,
Timisoara, Romania, 2010.

[16] M. Harman and S. Danicic. Using program slicing to simplify
testing. Software Testing, Verification and Reliability,
5(3):143–162, Sept. 1995.

[17] M. P. E. Heimdahl and M. W. Whalen. Reduction and slicing
of hierarchical state machines. In Proc. Fifth ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
Zurich, Switzerland, 1997. Springer–Verlag.

[18] J. E. Hopcroft and J. D. Ullman. Formal Languages and their
Relation to Automata. Addison-Wesley, Reading, MA, 1969.

[19] L. Ilie, R. Solis-Oba, and S. Yu. Reducing the size of NFAs by
using equivalences and preorders. In CPM, volume 3537 of
LNCS. Springer-Verlag, 2005.

[20] B. Korel, G. Koutsogiannakis, and L. H. Tahat. Model-based
test prioritization heuristic methods and their evaluation. In
A-MOST ’07: Proceedings of the 3rd international workshop
on Advances in model-based testing, pages 34–43, USA,

2007. ACM.
[21] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing of state

based models. In IEEE International Conference on Software
Maintenance (ICSM’03), pages 34–43, Los Alamitos,
California, USA, Sept. 2003. IEEE Computer Society Press.

[22] B. Korell. Private communication, 2009.
[23] S. Labbé and J.-P. Gallois. Slicing communicating automata

specifications: polynomial algorithms for model reduction.
Formal Aspects of Computing, 20(6):563–595, 2008.

[24] S. V. Langenhove and A. Hoogewijs. SVtL: System
verification through logic tool support for verifying sliced
hierarchical statecharts. In Lecture Notes in Computer
Science, Recent Trends in Algebraic Development Techniques,
pages 142–155, Berlin, 2007. Springer.

[25] D. Lee, K. K. Ramakrishnan, W. M. Moh, and U. Shankar.
Protocol specification using parameterized communicating
extended finite state machines - a case study of the ATM ABR
rate control scheme. In Proceedings of the International
Conference on Network Protocols (ICNP ’96), page 208,
Washington, DC, USA, 1996. IEEE Computer Society.

[26] T. Maibaum, P. Kan, and K. Lano. Systematising reactive
system design. In Algebraic Methodology and Software
Technology, volume 1548 of LNCS. Springer-Verlag, 1999.

[27] W. E. McUmber and B. H. C. Cheng. A general framework
for formalizing UML with formal languages. In ICSE ’01:
Proceedings of the 23rd International Conference on Software
Engineering, pages 433–442, Washington, DC, USA, 2001.
IEEE Computer Society.

[28] OMG. OMG unified modeling language specification 2.2,
Feb. 2009.
http://www.omg.org/cgi-bin/doc?formal/2009-02-02.

[29] H. A. Partsch. The Specification and Transformation of
Programs: A Formal Approach to Software Development.
Springer, 1990.

[30] A. Sanchez, E. Aranda-Bricaire, F. Jaimes, E. Hernandez, and
A. Nava. Synthesis of product-driven coordination controllers
for a class of discrete-event manufacturing systems. Robotics
and Computer-Integrated Manufacturing, 26(4), August 2010.

[31] F. Strobl and A. Wisspeintner. Specification of an elevator
control system – an autofocus case study. Technical Report
TUM-I9906, Technische Universität München, 1999.

[32] F. Tip. A survey of program slicing techniques. Technical
Report CS-R9438, Centrum voor Wiskunde en Informatica,
Amsterdam, 1994.

[33] J. Wang, W. Dong, and Z.-C. Qi. Slicing hierarchical automata
for model checking UML statecharts. In Proceedings of the
4th International Conference on Formal Engineering Methods
(ICFEM), pages 435–446, UK, 2002. Springer-Verlag.

[34] M. Weiser. Program slicing. In 5th International Conference
on Software Engineering, pages 439–449, San Diego, CA,
Mar. 1981.

[35] R. Y. Zaghal and J. I. Khan. EFSM/SDL modeling of the
original TCP standard (RFC793) and the congestion control
mechanism of TCP Reno. Technical Report TR2005-07-22,
Internetworking and Media Communications Research
Laboratories, Department of Computer Science, Kent State
University, 2005.

