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Stochastic optimal control problem

® Consider a system with controlled stochastic dynamics
dr = (b(x,t) + u)dt + d§ d¢ ~ N(0, vdt)

with control w.

#® Find the control u(.) that minimizes the
expected cost to end-time big u?

small u?
X High cost V
0(3307 t()) ’LL()) e
ty 1
</ §u(x(t),t)2 + V(x(t),1) dt> Low cost V
P
’ High cost V
® w2 control costs 10 ime tf

# V: path costs
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Hamilton-Jacobi-Bellman equation

® Optimal (expected) cost-to-go

J(x,t) = 151(11;1 Cx,t,u(.)).

® J satisfies the HIB eqn.,
(1 I 5
—0¢J = min S U + (b+ u)0,J + §V8xJ +V

with end-condition J(z,ts) = 0.
® The minimization with respect to u yields

U= —0.J,

1 1
—00] = =500 ) + 000 + Sv0; ] +V
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Log transformation and optimal control

The non-linear PDE of J can transformed into a linear one by the log transform
(W. Flemming, 1978, Kappen 2005). Set

J(z,t) = —vlog Z(x,1)
then the “partition function” Z can be written as

Z(a,t) = / dyp(y, ts|z, 1)

in which p satisfies the linear pde

1
Op p(z t|x,t) = =0 (b2, ) p(2’, t' |2, 1)) + iuﬁilp(:c’,t’kv,t)

V / t/
. (x7 )p($/7t/|£€,t).
14

with begin condition p(z’, t|x,t) = d(z’ — x)
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Fokker-Planck with decay

Goal: compute p(x,tf|zo, o), where
$ p($/,t0|$,t0) :5(LU/—SU)

® Evolution according to

1
atp(xvﬂx()?to) — —8x(b($,t)p($,t|$0,t0)) + §Va§,0($,t|$0,t0)
o V(x,t)p(:v,ﬂxo,to).

#® V =0 — reduces to the Fokker-Planck equation, modeling a process
of drift and diffusion, due to the terms with b(x, t) and v respectively.

# The extra term with the potential V' makes that “probability” is not
conserved.
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A stochastic dynamical process with annihi-
lation

FP with decay describes the following stochastic proces with annihilation:
particles start at x = xg and evolve according

dx = b(z,t)dt + d§ d¢ ~ N (0, vdt)
r =x 4+ dx, withprobability 1 — V(z,t)dt
x = annihilated with probability V' (x,t)dt

Example:
b= 0, V = %xQ >

Red : annihilated
Black: survived until ¢
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Relation with discrete time Kalman smooth-
ing

Dynamical system equations

Tir1 = T + b(we,t) + € e ~ N(0,v) System dynamics
yr = g(x¢) + 1 Observations

Smoothing

p(z1.7|y1:7) HP Tip1|@e)p(ye|ae) = Hp($t+1|$t)eXp(—V($tat))

fi W ﬁﬁ ﬁﬁ

Yt+1

® Rejection sampling: sample from dynamics p(xsy1|x:), reject samples at
time ¢ with probability 1 — exp(—V (x,))
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The transition density

The transition density state x to y over an infinitesimal
time step At

ply,t + Atfz,t) o

exp (— [(y 7 ;:Xi DAY v t)AtD

Over n infinitesimal time steps At

n—1 n—1 2
I (x4 —x;
/ 21;[1 dz; exp (—At ZZ:; [2V ( N b(:z;z-,ti))

+ V@it tz‘+1)D
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Path integral formulation

In the limit: A¢ Z?:_ol — [ ttf dr,and | H?:_l dx; becomes an integral over paths
that start at = and end at y, denoted as [ [dz].

plystykoosto) = [ daltexp (~Sla)

2V

Sl — / / ((@(7) ~ba(r).7)’ V(x(w)> n

= /tf L(x(7),z(7), 7)dT

to

S is called the action, and L the Lagrangian.
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Euler-Lagrange equations

The mode of the process. is the path z(ty — t), starting at given x( and ending

at arbitrary y, that minimizes the action S. We do this by applying variational

calculus.
Defining “momentum’ as

p(t) = 0;L(t, x, T)

the optimal path satisfies the well-known Euler-Lagrange equations

d/dtr = &
d/dtp = 0,L

with begin condition for x (from the problem formulation) and an end-condition
an end condition for p (which followed from the variational computation),

ZC(to) = Xo

p(ty) = 0.
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Euler-Lagrange equations

In our problem, the Lagrangian is

(& — bz, t))”
2U

L(x,i,t) = +V(a,t)

The “momentum” p(t) = 0;L(t,x, %) = v~ (& — b(x, t)), then the E-L eqns

z(t) = b(x,t) + vp(t)
p(t) = 0.V
® Contribution of momentum proportional to noise: Thanks to the

fluctuations the surviving particles avoided from running into regions of
high annihilation rate and escaped to regions with lower annihilation rate.
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A formal forward-backward algorithm

Solution formally found by forward-backward algorithm:

1: // ** Forward pass ** //

2: for all initial momenta py do

3:  prepare the system in (z(tg) = xq, p(to) = po)
4:  integrate forwards in time ty — ¢y

5: if p(ty) = 0 then

6 keep v = x(ty)

7. endif

8

. end for
9: // ** Backward pass ** //

10: for all kept end states do

11:  prepare the system in (z(t7) = x¢;p(ty) = 0)
12:  propagate backwards in time ¢y < ¢

13:  return z,y(t) = z(t)

14: end for
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Numerical example

We consider a system with V(z) = 2ax? and b(z, t) = 0. The optimal path can
be computed, z(t) = cosh((an) /(8 —1)) )
’ cosh((av)1/2(ty))
av=1 av=>5
5 : 5

T

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

optimal paths starting at different initial points x¢ with av = 1 (left) and av = 5
(right).
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Relation with classical mechanics (b = 0)

Stochastic system Classical mechanics
p=v 1% p=mx
2 2
vp p
L=—+4+V L=—-V
2 i 2m
d/dtp= 0,V d/dtp=—0,V
z(to) = zo; p(ty) =0 x(tg) = xo; p(to) = po (e.g.0)
2 2
H="" vy H=2 4+v
2 . _2m .
Typically, start with large V and Typically, particles start with large
RO : V and zero p.
large p in direction of min V' . ;
: They end with smaller V' and larger
End with small V' and zero p.
p, or large V' and small p
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Size of fluctuations: linear noise approxima-
tion

® Fluctuations dominate in short time scale (d§ Vdt)

°

Drift and annihilation dominate in long time scale (o< dt)

°

Drift + state dependent annihilation — effective drift described by optimal
path + state independent annihilation

dx = (b+ vp)dt + vdé = Bz, t)dt + d§ (1)

Dynamics of fluctuations o*(t) around
mode follows from (1)

0,02 (t) = 20,8(x,t) o*(t) + v LN
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Numerical example

30
R

RV o

N
¥

27 \\~
1.5}
|
% 02 04 06 08 1
t
b =0, V(z) = 2az?. Optimal paths starting at different initial points z with

av = 1 (left) and av = 5 (right). Bottom: optimal paths (fat lines) starting at

xo = 3, plus indications of esitmated noise o(t) (fat dashed) and some random
paths, with v = 1 (left) and v = 5 (right). = 1 in both cases. Note: The
simulations with v = 1 started with 500 particles. The one with v = 5 started with
200 particles.
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Partition function

Normalization constant = fraction of particles that survive the process
Approximation

® cffective decay rate: fraction of particles that fluctuate towards path x
fraction of particles that survive decay along optimal path

Vpath(xjt) _ (ﬁ([l?,t) ;Vb(xvt))2 4+ V(:U,t) 7

® Correction for fluctuations around optimal path

y/bath, corrected(x)t) _ <(5(~Tat) Q—Vb(a:,t))Q + V(-%'at)>

[xopta 02]
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Partition function: numerical result

0.06

0.05}

0.04}

N 0.037

0.027

0.01}

0 1 2 3 4 5

Estimate of the partition function (i.e. fraction of surviving particles) Z based on
the mode (dashed) and with Gaussian corrections (drawn) as function of the noise
v. All processes started at x = 3. Estimates are compared with results of
stochastic simulations, each starting with 100000 particles (stars).
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Summary

® Stochastic diffusion with annihilation
® Relevant for:
# Stochastic optimal control

# Continuous-time Kalman smoothing (?)

® Path integral formalism
# Gaussian approximation,
# mode: optimal path, Euler Lagrange equations
# fluctuations
# partition function

® Numerical result for zero drift and quadratic potential
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Discussion

Methods to solve the Euler Lagrange eqns
Performance on more interesting potentials

More general stochastic dynamical systems

© o0 @

Applications of continuous time smoothing
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