
Variational Bayes for Continuous-Time Nonlinear
State-Space Models

Antti Honkela, Matti Tornio, and Tapani Raiko
Adaptive Informatics Research Centre, Helsinki University of Technology

P.O. Box 5400, FI-02015 TKK, Finland
{Antti.Honkela, Matti.Tornio, Tapani.Raiko}@tkk.fi

http://www.cis.hut.fi/projects/bayes/

Abstract

We present an extension of the variational Bayesian nonlinear state-space model
introduced by Valpola and Karhunen in 2002 [1] for continuous-time models. The
model is based on using multilayer perceptron (MLP) networks to model the non-
linearities. Moving to continuous-time requires solving a stochastic differential
equation (SDE) to evaluate the predictive distribution of the states, but other-
wise all computation happens as in the discrete-time case. The close connection
between the methods allows utilising our new improved state inference method
for both discrete-time and continuous-time modelling.

1 Introduction

The two major types of dynamical systems are discrete time systems modelled with difference equa-
tions and continuous-time systems modelled with differential equations. Much of machine learning
research in dynamical systems and time series has focused on the the discrete time case because it is
often easier to handle. The restriction is often not too severe as regularly sampled continuous-time
systems can be modelled as discrete time systems at the sample times. Not all data sets are, how-
ever, regularly sampled and often it would be convenient to know what happens between the sample
times, hence the need for continuous-time models.

The variational Bayesian nonlinear state-space model introduced by Valpola and Karhunen in [1]
uses a general nonlinear state-space model for the observations x(t)

s(t + 1) = s(t) + gdt(s(t),θg) + m(t) (1)
x(t) = f(s(t),θf ) + n(t) (2)

with states s(t), Gaussian innovationm and noise n, and multi-layer perceptron (MLP) networks to
model the nonlinearities f and gdt. Inference and learning in the model can be made more reliable
and efficient than in [1] by using new linearisation [2] and state inference techniques [3].

In this work we outline an extension of the model for continuous-time systems along with prelimin-
ary experimental results. The method can effectively utilise new developments for the discrete-time
case, such as the improved state inference method [3], which is presented as well.

2 Continuous-time nonlinear state-space model

The general formulation of the state evolution in a continuous-time nonlinear state-space model is
given by a stochastic differential equation (SDE)

ds = g(s)dt +
√

ΣdW, (3)



where dW is the differential of a Wiener process [4].

The continuous-time nonlinear state-space model is obtained by using Eq. (3) to model state evol-
ution instead of Eq. (1). The nonlinear mapping g is again modelled by a MLP network. The
observation equation Eq. (2) remains unchanged.

3 Variational learning

Variational Bayesian learning is based on approximating the posterior distribution p(θ,S|X,H)
with a tractable approximation q(θ,S|ξ), where X = {x(ti)|i = 1, . . . , N} is the data, S =
{s(ti)|i = 1, . . . , N} are the latent state values at the times of the observations, θ are the parameters
of the model H, and ξ are the (variational) parameters of the approximation. The approximation is
fitted by maximising a lower bound on marginal log-likelihood

B =

〈
log

p(X,S,θ|H)

q(S,θ|ξ)

〉
= log p(X|H) − DKL(q(S,θ|ξ)||p(S,θ|X,H)), (4)

where 〈·〉 denotes expectation over q. This is equivalent to minimising the Kullback–Leibler
DKL(q||p) divergence between q and p [5, 6].

The nonlinear state-space model is learned by numerically maximising the bound (4) with a conjug-
ate gradient method. This requires evaluating the value of the bound and its gradient with respect to
all the variational parameters ξ.

Given a Gaussian approximation similar to the one used in [1], the most difficult part is to evaluate
the expectation

〈log p(S|θ)〉 = 〈log p(s(t1)|θ)〉 +
N∑

i=2

〈log p(s(ti)|s(ti−1)θ)〉 , (5)

where the Markov property of the state sequence has been used.

Because a Gaussian variational approximation is used, only the mean and variance of s are needed
to evaluate the bound for the continuous-time model. Writing the differential equations for the mean
and covariance of a corresponding Gaussian process s satisfying Eq. (3) and using a first order
Taylor approximation of g about the mean of s yields two separate equations for the mean µ(t) and
covariance P(t) of s as

d

dt
µ(t) = g(µ(t)) (6)

d

dt
P(t) = 〈G(µ(t))〉PT(t) + P(t)

〈
GT(µ(t))

〉
+ Σ, (7)

where G denotes the Jacobian matrix of g [7]. The expected value of g and the expected Jacobian
are evaluated using the linearisation technique presented in [2].

These equations can be solved numerically using a simple Euler method to find required statistics
of p(s(ti+1)|s(ti)). Eq. (6) yields the posterior mean and variance of the predicted mean of s(ti+1)
that correspond to the mean and variance of gdt(s(t)) in the discrete-time case. Eq. (7), in turn,
yields the expected covariance of p(s(ti+1)|s(ti)), corresponding to the expected covariance of the
innovation process m(t) in the discrete-time case. The main difference here is that the covariance
of the predictive distribution arises from the process and not from simple additive Gaussian noise.

When a simple Euler method is used, gradients of the cost with respect to the variational parameters
governing the distributions of the network weights and the state values can be derived from the
prediction equations in a similar manner as in the discrete-time case. All these parameters are
updated using the same conjugate-gradient algorithm as in the discrete-time case. Higher order
parameters such as the number of hidden units in the MLP networks are optimised by comparing the
marginal likelihood values resulting from runs with different values, but more automated methods
like automatic relevance determination could easily be used as well.



4 State inference

Variational Bayesian inference of the state S happens by maximising B in Eq. (4). Doing this
directly with a gradient or a conjugate gradient method leads to suboptimal performance. This is
because the terms in B that depend on a particular s(t) include only the neighbouring states in time.
Information spreads around slowly because the states of different time slices affect each other only
between updates. Variants of the Kalman smoother propagate information very fast, but we have
found the lack of convergence prohibitive in some cases.

In [3], we proposed a novel update algorithm for the posterior means s(t). The marginal posterior
approximation is Gaussian

q(s(t) | ξ) = N (s(t); s(t),diag(s̃(t))) , (8)

where diag(s̃(t)) is a diagonal covariance matrix. We replaced partial derivatives of B w.r.t. state
means s(t) for each t = 1, . . . , T by (approximated) total derivatives:

dB
ds(t)

=
T∑

τ=1

∂B
∂s(τ)

∂s(τ)

∂s(t)
. (9)

The approximation involves linearising the nonlinear mappings around the current state estimates.
Assuming linearisations, the optimal state mean sopt(t) as a function of neighbouring state means
can be solved analytically1, but we are especially interested in the dependencies:

∂sopt(t)

∂s(t − 1)
= diag(s̃(t))Σ−1

m Jg(t − 1) (10)

∂sopt(t)

∂s(t + 1)
= diag(s̃(t))JT

g (t)Σ−1
m , (11)

where Jg is the linearisation matrix [2] of the mapping g and Σm is the noise covariance form(t)
in Eq. (1). The total derivative is then computed by propagating the gradient forward and backward
through time assuming these dependencies. The computational overhead turns out to be rather small.
Generalisation of the method to the continuous-time case is obvious with proper interpretations of
Jg and Σm as the product of the corresponding JacobiansG for each step in the solution of Eq. (6)
and as the proper value of P(ti), respectively.

5 Experiments

5.1 Continuous-time NSSM

The continuous-time NSSM is demonstrated with a data set generated by a Lorenz process [8]. A
Lorenz process has a three-dimensional state-space with non-linear chaotic dynamics determined by
the following set of differential equations:

dz1

dt
= σ(z1 − z2) (12)

dz2

dt
= ρz1 − z2 − z1z3 (13)

dz3

dt
= z1z2 − βz3. (14)

The parameter vector [σ, ρ, β] used in this experiment was [3, 26.5, 1]. The data set was generated
by unevenly sampling the process at random time instants between 0 and 20.

A data set with 201 samples was used, and the data was normalised to mean of 0 and standard
deviation of 1. Additive Gaussian observation noise with a standard deviation of 0.2 was added to
the data set. To make learning more challenging and to demonstrate the benefits of the latent state-
space, only the two first components of the observations, z1 and z2, were used in this experiment.

1See [3] for derivation.



A three dimensional state-space was used to learn this data set. The MLPs for both the observation
and the dynamical mapping had 10 hidden units.

The original three-dimensional Lorenz process and the three-dimensional state-space can be seen in
Fig. 1. Noiseless and noisy versions of the two-dimensional data set used to train the model and
the reconstructions of this data set can be seen in Fig. 2. The latent states and their values predicted
from the previous state are plotted against time in Fig. 3.

The presented results are still preliminary, as the size of the data set used in this experiment is
not large enough to properly form the correct state-space or to reliably predict even the short term
behavior of the Lorenz process beyond a few time steps. However, the state-space representation
was still able to capture the original three-dimensional nature of the Lorenz process using only the
two observed data components.
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Figure 1: Left: The original three-dimensional Lorenz process without noise. Right: The three-
dimensional latent state-space of the model.
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Figure 2: Left: The original data set without noise. Middle: The noisy data set used in the experi-
ment. Right: The reconstruction of the data set by the model.
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Figure 3: Top: The latent state values. Bottom: The values predicted from the previous time step.
The tick marks on the x-axis correspond to sampling instants.

5.2 State inference

The presented state inference was tested on a real world data set of speech spectra [3]. The data set
consisted of 11200 21 dimensional samples which corresponds to 90 seconds of continuous human
speech. The first 10000 samples were used to train a seven dimensional discrete-time state-space
model and the rest of the data was used in the experiments.

The test data set was divided into three parts each consisting of 300 samples and all the algorithms
were run for each data set with four random initialisations. The final results represent an average
over both the different data sets and initialisations.

Since the true state is unknown, the mean square error of the reconstruction of missing data was
used to compare the different algorithms. Experiments were done with sets of both 3 and 30 consec-
utive missing samples. The ability to cope with missing values is very important when only partial
observations are available or in the case of failures in the observation process. It also has interesting
applications in the field of control as reported in [9].

The results can be seen in Fig. 4. When large gaps of missing values are present, the proposed
algorithm (NDFA+TD) performs clearly better than the rest of the compared algorithms. The com-
pared methods of iterated extended Kalman smoother (IEKS) [10] and iterated unscented Kalman
smoother (IUKS) [11,12] had some stability problems and neither of these methods could cope very
well with long gaps of missing values.

6 Discussion

Solving the differential equations governing state evolution requires finding a suitable discretisation
of time. Finer discretisation provides more accuracy, but risks instability when the model of the
dynamics is still poor. An adaptive scheme starting with long time steps and decreasing the step
length as the model gets more reliable would most likely be very useful in learning problems with
larger time gaps.
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Figure 4: Inference with the speech data with missing values. On the top one of the data sets used
in the experiments (missing values marked in black), on the bottom root mean square error plotted
against computation time. Left side figures use a small gap size, right side figures a large gap size.
(From [3].)

By moving from discrete time to a continuous-time framework, one can more easily model phenom-
ena that have vastly different time scales. It would be an interesting extension to factor the state
s into two (or more) parts s1 and s2 where it is a priori known that the dynamics of s1 are slow
compared to the dynamics of s2. The SDE can be factored into:

ds1 = g1(s1)dt +
√

Σ1dW (15)

ds2 = g2(s1, s2)dt +
√

Σ2dW, (16)
where one should note that the slow part s1 affects the dynamics of the fast part s2 directly but not
the other way around. Such a model could in some cases be learned by first learning g1 with more
coarsely sampled data and keeping that fixed when learning g2.

7 Conclusion

We have outlined an extension of the discrete-time variational Bayesian NSSM of Valpola and
Karhunen [1] to continuous-time systems and presented preliminary experimental results with the
method. Evaluation of the method with larger and more realistic examples is a very important item
of further work.

The main differences between continuous-time and discrete-time variational NSSMs are the differ-
ent method needed to evaluate the predictions of the states and the different form of the dynamical
noise or innovation. By abstracting these suitably, the same new faster state inference method may
be applied to both of these methods. The same applies most likely to almost all improvements to the
discrete time method, such as speedups of learning and alternative observation models such as ones
including changing variance [13].
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