Applications of Stochastic Differential Equations (SDE)

- Modelling with SDE: Ito vs. Stratonovich (6.1 & 6.2)
- Parameter Estimation (6.4)
- Optimal Stochastic Control (6.5)
- Filtering (6.6)

Ito SDE or Stratonovich SDE? (6.1 + 6.2)

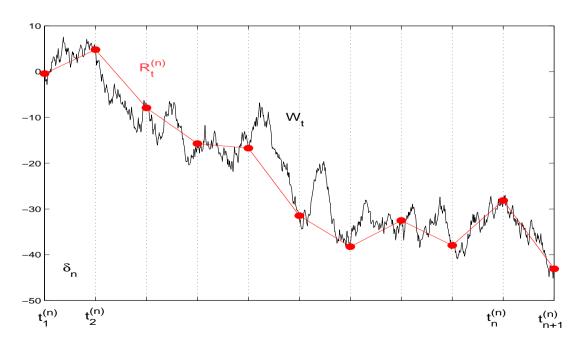
- From a purely mathematical viewpoint both the Ito and Stratonovich calculi are correct;
- Ito or Stratonovich? This question can only be discussed in the context of a particular application;
- Ito SDE is appropriate when the continuous approximation of a discrete system is concerned (many examples in the biological sciences);
- Stratonovich SDE is appropriate when the idealization of a smooth real noise process is concerned (many examples in engineering and the physical sciences).

Idealization of smooth noise processes

Example: a random differential equation

$$dX_t^{(n)} = aX_t^{(n)}dt + bX_t^{(n)}dR_t^{(n)}$$

where $R_t^{(n)}$ is the piecewise differentiable linear interpolation of a Wiener process W_t on a partition $0 = t_0^{(n)} < t_1^{(n)} < ... < t_n^{(n)} = T$



— The solution by classical calculus

$$X_t^{(n)} = X_{t_0} \exp\left(a(t - t_0) + b(R_t^{(n)} - R_{t_0}^{(n)})\right)$$

When $n \to \infty$ and $\max_{1 \le j \le n} \left| t_{j+1}^{(n)} - t_j^{(n)} \right| \longrightarrow 0$

- The noise process $\longrightarrow W_t$
- The solution $\longrightarrow X_t = X_{t_0} \exp(a(t t_0) + b(W_t W_{t_0}));$
- The random DE \longrightarrow a Stratonovich SDE

$$dX_t = aX_t dt + bX_t \circ dW_t$$

Continuous approximation of discrete systems

• Example 1: a random walk

$$X_{k+1}^{(N)} = X_k^{(N)} + \frac{1}{\sqrt{N}} \xi_k$$

at times $t_k^{(N)} = \frac{k}{N}$, k = 0, 1, ..., N, where ξ_k take +1 or -1 with probability $\frac{1}{2} \xrightarrow{N \to \infty}$ a standard Wiener process in [0, 1] (Central Limit Theorem);

• Example 2: a random walk

$$X_{k+1}^{(N)} = X_k^{(N)} + a_N \left(X_k^{(N)} \right) \frac{1}{N} + b_N \left(X_k^{(N)} \right) \frac{1}{\sqrt{N}} \xi_k$$

with consistency conditions such as

$$\lim_{n \to \infty} NE(X_{k+1}^{(N)} - X_k^{(N)} | X_k^{(N)} = x) = \lim_{N \to \infty} E(a_N(x)) = a(x)$$

$$\lim_{n \to \infty} NE((X_{k+1}^{(N)} - X_k^{(N)})^2 | X_k^{(N)} = x) = \lim_{N \to \infty} E(b_N^2(x)) = b^2(x)$$

$$\lim_{n \to \infty} NE(|X_{k+1}^{(N)} - X_k^{(N)}|^3 |X_k^{(N)} = x) = 0$$

 $\stackrel{N\to\infty}{\longrightarrow}$ an Ito stochastic differential equation

$$dX_t = a(X_t)dt + b(X_t)dW_t$$

- Example 3: a population of 2N genes with two alleles a and A.
 - Suppose that there are i genes of type a and 2N i of type A at the k-th generation;
 - The probability of j genes of type a at the k+1-th generation is $B(2N, \frac{i}{2N})$;
 - Further all time intervals between two successive generations are of length $\frac{1}{N^2}$;
 - Let's define $X_k^{(N)} = \frac{i}{2N}$. When N goes infinity, we obtain a process which is a solution of the Ito SDE

$$dX_t = X_t(1 - X_t)dW_t.$$

Parameter Estimation (6.4): An example

$$dX_t = \alpha \cdot a(X_t)dt + dW_t$$

To determine a maximum likelihood estimate of α when the trajectory X(t) of a solution process over the time interval [0,T] is given.

• the likelihood ratio

$$L(\alpha, T) = \exp\left(+\frac{1}{2}\alpha^2 \int_0^T \alpha^2(X_t)dt - \alpha \int_0^T \alpha(X_t)dX_t\right)$$

- the Euler scheme:

$$X_{i+1} = X_i + \alpha a(X_i)\Delta + \Delta W_i$$

for
$$i = 0, 1, ..., N - 1$$
 where $\Delta = \frac{T}{N}$;

- $-\Delta W_0,...,\Delta W_{N-1}$ are i.i.d. and $\Delta W_i \sim N(0;\Delta) \quad \forall i$
- $-\Delta X_0,...,\Delta X_{N-1}$ are i.i.d. and $\Delta X_i \sim N(0;\Delta) \quad \forall i$

- the Radon-Nikodyn derivation of the process X_t w.r.t. W_t

$$\frac{P(\Delta X_0, ..., \Delta X_{N-1})}{P(\Delta W_0, ..., \Delta W_{N-1})} \stackrel{N \to \infty}{\longrightarrow} L(\alpha, T)$$

• the maximum likelihood estimator

$$\hat{\alpha}(T) = \frac{\int_0^T a(X_t)dt}{\int_0^T a^2(X_t)dt}$$

If $E\left(\int_0^T a^2(X_t)dt\right) < \infty$, the SDE above has a stationary solution with density $\bar{p} \longrightarrow$

$$\hat{\alpha}(T) - \alpha = \frac{\int_0^T a(X_t)dW_t}{\int_0^T a^2(X_t)dt} \cdot \frac{1/T}{1/T} \xrightarrow{T \to \infty} \frac{0}{\int a^2(x)\bar{p}(x)dx} = 0$$

the Central Limit Theorem $\stackrel{T\to\infty}{\longrightarrow}$

$$T^{1/2}(\hat{\alpha}(T) - \alpha) \sim N\left(0, \frac{1}{\int a^2(x)\bar{p}(x)dx}\right)$$

Optimal Stochastic Control

- problem formulation
 - state $X \in \mathbb{R}^d$:

$$dX_t = a(t, X_t, u)dt + b(t, X_t, u)dW_t$$

- control parameter $u \in \mathbb{R}^k$:
 - * $u = u(t, X_t)$ (Markov feedback control)
 - * $u = u(t, \omega)$ (open-loop control)
- the cost functional for Markov feedback controls

$$J(s, x; u) = E\left(K(\tau, X_{\tau}) + \int_{s}^{\tau} F(t, X_{t}, u)dt \middle| X_{s} = x\right)$$

where K and F are given functions and τ is a specified Markov time

• the Hamilton-Jacobi-Bellman (HJB) equation

The minimum cost functional

$$H(s,x) = \min_{u(\cdot)} J(s,x,u(\cdot))$$

The HJB equation

$$\min_{u \in \Re^k} \{ F(s, x, u) + L_u H(s, x) \} = 0$$

with the final time condition H(T, x) = K(T, x)where $\tau = T$ and

$$L_{u} = \frac{\partial}{\partial s} + \sum_{i=1}^{d} a^{i}(s, x, u) \frac{\partial}{\partial x_{i}} + \frac{1}{2} \sum_{i,j=1}^{d} D^{i,j}(s, x, u) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$$

with $D = bb^{\top}$

- the linear-quadratic regulator problem
 - $K(T, X_T) = X_T^{\top} R X_T$ ($R \in \Re^{d \times d}$, symmetric and positive semi-definite)
 - $-F(t, X_t, u) = X_t^{\top} C(t) X_t + u^{\top} G(t) u \ (C \in \mathbb{R}^{d \times d}, symmetric \ and$ positive semi-definite, $G \in \mathbb{R}^{k \times k}$, symmetric and positive definite)
 - $a(t, X_t, u) = A(t)X_t + M(t)u \ (A \in \Re^{d \times d} \ M \in \Re^{d \times k})$
 - $-b(t, X_t, u) = \sigma(t) \ (\sigma \in \Re^{d \times m})$
 - \rightarrow a guess solution

$$H(s,x) = x^{\top} S(s)x + a(s)$$

with the final time condition

$$S(T) = R$$
 and $a(T) = 0$;

 \rightarrow the left side of HJB

$$x^{\top} S'(s) x + a'(s) + x^{\top} C(s) x + u^{\top} G(s) u$$
$$+ (A(s) x + M(s) u)^{\top} (S(s) x + S^{\top}(s) x) + \sum_{ij} (\sigma \sigma^{\top})_{ij} S_{ij}$$

 \rightarrow the minimizer of the left side of HJB

$$u = -G^{-1}(s)M^{\top}S(s)x$$

$$\to 0 = \left(\underbrace{a'(s) + tr(\sigma\sigma^{\top}S)}_{=0}\right) +$$

$$x^{\top} \left(\underbrace{S'(s) + A(s)^{\top} S + SA(s) - SM(s)G(s)^{-1}M(s)S - C(s)}_{=0 \text{ a Riccati type equation}} \right) x$$

• when situations of partial information occur, linear stochastic control = linear filtering + deterministic control

Filtering

• linear filtering

$$dX_t = AX_t dt + BdW_t$$
$$dY_t = HX_t dt + \Gamma dW_t^*$$

→ the Kalman-Bucy filter

The estimate $\hat{X}_t = E(X_t|\mathcal{Y}_t)$ satisfies the SDE

$$d\hat{X}_t = \left(A - SH^\top (\Gamma \Gamma^\top)^{-1} H\right) \hat{X}_t dt + SH^\top (\Gamma \Gamma^\top)^{-1} dY_t$$

where the error covariance S(t) satisfies the matrix Riccati equation

$$\frac{dS}{dt} = AS + SA^{\top} + BB^{\top} - SH^{\top}(\Gamma\Gamma^{\top})^{-1}HS$$

• non-linear filtering

the Fokker-Planck equation in operator form

$$\frac{\partial p}{\partial t} = \mathcal{L}^* p$$

and the observation process

$$dY_t = h(X_t)dt + dW_t^*$$

the conditional probability densities of X_t given \mathcal{Y}_t are given by

$$\bar{p}(t,x) = \frac{Q_t(x)}{\int Q_t(x)dx}$$

where the unnormalized densities $Q_t(x)$ satisfy the Wong-Zakai equation

$$dQ_t(x) = \mathcal{L}Q_t(x)dt + h(x)Q_t(x)dY_t$$

Further Reading: Venkatarama Krishnan, Nonlinear Filtering and Smoothing – An Introduction to Martingales, Stochastic Integrals and Estimation, Dover 2005.