Applications of Stochastic Differential Equations (SDE)

Modelling with SDE: Ito vs. Stratonovich (6.1 & 6.2)
Parameter Estimation (6.4)

Optimal Stochastic Control (6.5)

Filtering (6.6)




Ito SDE or Stratonovich SDE? (6.1 + 6.2)

e From a purely mathematical viewpoint both the Ito and
Stratonovich calculi are correct;

Ito or Stratonovich? This question can only be discussed

in the context of a particular application;

Ito SDE is appropriate when the continuous approximation
of a discrete system is concerned (many examples in the

biological sciences);

Stratonovich SDE is appropriate when the idealization of a
smooth real noise process is concerned (many examples in

engineering and the physical sciences).




Idealization of smooth noise processes

Example: a random differential equation

dxt™ = ax™Mdt +bx™dRr™

where R§”> is the piecewise differentiable linear interpolation of a
Wiener process W; on a partition 0 = t(()n) < tgn) < ... < tq(ln) =T
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—— The solution by classical calculus

Xt(n) = X, exp (a,(t —to) + b(R,E"’) — R,g?))

When n — oo and max [t — 0

. _t(.”)
1<j<n J+1 J

e The noise process — W,

e The solution — X; = Xy, exp (a(t —tg) + b(W: — We,));

e The random DE — a Stratonovich SDE

dXt = CLXtdt -+ bXt ©) th




Continuous approximation of discrete systems

e Example 1: a random walk

1
v (V v (N
Ii—|—% — Ig ) /—ka

at times t,(CN) = %, k=0,1, .., N, where & take +1 or —1
with probability % V7% 4 standard Wiener process in [0, 1]

(Central Limit Theorem);

e Example 2: a random walk

1 1
X = x4 ay (x7) ~ ton (x4 N




with consistency conditions such as

lim NE(XY) - XV XN =2) = lim E(an(2)) = a()

n— 00 N —o0

lim NE(XY] — X)X = 2) = lim B0 (2)) = b (2)

n—oo N —oo

lim NE(| X% - xMPIx™N = 2) =0

k+1

n—aoo

N=go an Ito stochastic differential equation

dXt = CL(Xt)dt + b(Xt)th




e Example 3: a population of 2N genes with two alleles a and A.

— Suppose that there are ¢ genes of type a and 2N — ¢ of
type A at the k-th generation;

— The probability of j genes of type a at the k£ + 1-th generation
is B(2N, 5% );
— Further all time intervals between two successive generations

are of length %;

— Let’s define X ,gN) = ﬁ When N goes infinity, we obtain a

process which is a solution of the Ito SDE

dXt — Xt(l - Xt)th




Parameter Estimation (6.4): An example
dX; = a-a(Xy)dt + dW;

To determine a maximum likelihood estimate of o when the
trajectory X (t) of a solution process over the time interval
0,77 is given.

e the likelihood ratio

L(a,T) = exp <—|—;a2/0 o (X,)dt — a/o oz(Xt)dXt>

— the Euler scheme:
Xiy1 = X; + OéCL(Xz)A + AW;

forte =0,1, ..., N -1 where A = %;
— AWy, ..., AW _1 are i.i.d. and AW,; ~ N(0; A) Vi
— AXp,...,AXy_; areiid. and AX; ~ N(0;A) Vi




— the Radon-Nikodyn derivation of the process X; w.r.t. W,

P(AXo, ... AXN_1) N—oo
X Lo, T
P(AWq, ..., AWn_1) ()

e the maximum likelihood estimator
i a(Xy)dt

&(T) = T 2(X,)it

ItE ( OT a2(Xt)dt> < 00, the SDE above has a stationary

solution with density p —

AT — = Jo a(X)dWy 1T 7o

fOTa?(Xt)dt 1/T , [ a?(x)p(z)dx

the Central Limit Theorem —

1) - 0) ~ N (0 For




Optimal Stochastic Control

e problem formulation

— state X € R<:
dXt = CL(t, Xt, U)dt -+ b(t, Xt, U)th

— control parameter u € R*:

x u = u(t, X;) (Markov feedback control)
* u = u(t,w) (open-loop control)

— the cost functional for Markov feedback controls

J(s,z;u)=F (K(T, X;) —I—/ F(t, Xy, u)dt| Xs = x)

where K and F' are given functions and 7 is a specified
Markov time




e the Hamilton-Jacobi-Bellman (HJB) equation

The minimum cost functional

H(s,x) = Iil(lglJ(S x,u(-))

The HJB equation

Jlgg}g{F(s z,u)+ LyH(s,2)} =0

with the final time condition H(T,x) = K(T, x)

where 7 =T and

(9 ; 0?
—|—ZZ: S, T,u) ZDjsxu)ﬁxzﬁxj

Li zgl

with D = bb '




the linear-quadratic regulator problem

— K(T,Xr) = XZTRXT (R € R symmetric and positive

semi-definite)

Ft,X;,u) =X, Ct)X; +u'Gt)u (C € R, symmetric and

positive semi-definite, G € R**F symmetric and positive definite)
a(t, X, u) = A) Xy + M(H)u (A€ R M € RVF)
b(t, X¢,u) = o(t) (o0 € R™)

a guess solution

H(s,z) =2'S(s)x + a(s)

with the final time condition
S(T)=R and a(T)=0;

— the left side of HJB




' S'(s)r+ad(s)+x'C(s)x +u' G(s)u
AW + M) (56 + ST(s)2) + (00 )15,

— the minimizer of the left side of HJB

u=—-G Hs)M"S(s)x

— 0= (d(s)+tr(oca'S)| +

=0

T | S'(s)+ A(s)' S+ SA(s) — SM(s)G(s) ' M(s)S — C(s) | x

\ . 7

=0 a Riccati type equation

when situations of partial information occur, linear stochastic

control = linear filtering 4+ deterministic control




Filtering

e linear filtering

dX; = AX,dt + BdW,
dY, = HX,dt + TdW;

— the Kalman-Bucy filter

The estimate X; — E(X:|):) satisfies the SDE

dX; = (A—-SH"(IT")'H) X;dt + SH"(TT ")~ 'dY;

where the error covariance S(t) satisfies the matrix Riccati

equation

% — AS+SA" +BB' —SH'(IT")"'HS




e non-linear filtering

the Fokker-Planck equation in operator form

Op .
T

and the observation process

dY, = h(X;)dt + dW;

—

the conditional probability densities of X; given )}

Q¢ ()
[ Q+(x)dx

where the unnormalized densities Q(x) satisfy

are given by

p(t,x) =

the Wong-Zakai equation
dQ¢(x) = LQ¢(x)dt + h(x)Q:(x)dYs




Further Reading: Venkatarama Krishnan, Nonlinear Filtering and

Smoothing — An Introduction to Martingales, Stochastic Integrals

and Estimation, Dover 2005.




