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Recap 0

O Continuous time continuous state Markov processes:
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O Random differential equations:
» Random coefficients (or random initial values)
= Continuous and differentiable sample paths
= Solved sample path by sample path (ODE)

Q Stochastic differential equations:
= Random coefficients
= Continuous, but non-differentiable sample paths (irreqular stochastic processes)
= Differentials to be interpreted as stochastic integrals!



Recap |

O A Markov process is a diffusion process if the following limits exist:
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Q Standard Wiener process:

Wo=0 w.p. 1,
E{W,} =0,
W, — W ~ N(0,t — s).

» Independent Gaussian increments
= Almost surely continuous (in time) sample paths
= Almost surely non differentiable



Recap |l
O Ito formula (stochastic chain rule):
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JTO be interpreted as...
O Ito integral:
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= Martingale property
= Zero-mean random variable
= Equality in mean square sense



Linear stochastic differential equations

dX, = aft, X) dt + B(t, X;) AW

a(t, Xi) = a1(8) X + aa(?) B(t, Xi) = bi(t) X¢ + ba(2)

O The linear SDE is autonomous if all coefficients are constants.
O The linear SDE is homogeneous if ay(t) =0, by(t) = 0.
O The SDE is linear in the narrow sense (additive noise) if b;(t) = 0.

O The noise is multiplicative if by(t) = 0.
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General solution to a linear SDE in the narrow sense

dX; = {a:(t) X + ax(t)} dt + bo(t) dW;

O Fundamental (or homogeneous) solution:

d(lnX;) = a1(t) dt = Py, = glig a1(s) ds

a Applying the Ito formula leads to

Ult,z) = @;, =

= dY; = az(t)®;; dt + bo(t)®;, ) dW,
Y; =U(t Xt) } ‘ az() tto + 2() t.to t

O The integral form is given by
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Example: Langevin equation ;
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O Homogeneous Gaussian process
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General solution to a linear SDE

dX; = {a1(t) X; + az(t)} dt + {b1(t) X + by (t)} dW;

O Fundamental solution:

= Qi =€ oo (a1(8)—3b3(s)) ds+ [ ba(s) AW,

QO Apply Ito formula to compute:
= U(t, X;, d);tlu)

U(t,z1,x2) = 7122

d(®;}) dY; with {

Q Integral form of the solution:

t t
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Ordinary differential equations for the first two moments

dX; = {a1(t) X; + az(t)} dt + {b1(t) X: + by (t)} dW;

O ODE of the means:

dm
— = a1m + as

dt

O ODE of the second order moment:

dP
— = (2a1+ b1)P + 2(az + byby)m + b



Reducible Stochastic Differential Equations

O Idea:
dY: = a(t,Y:) dt + 8(t,Y;) dW,;
U UltY;) =X;?

dX; = (a1(t) X + a2(t)) dt + (b1(2)X: + ba(t)) dW;

O Conditions:

108 2108 1 a2 8°U
{ a1U+a2=E+aa+§ﬂ 592

biU + by = ‘g—g

Q Special cases: see Kloeden & Platen (1999), p.115-116.



Types of solutions

O Under some regularity conditions on « and g, the solution to the SDE
dX: = at, X;) dt + 8(t, X;) dW,

is a diffusion process.

O A solution is a strong solution if it is valid for each given Wiener process (and
initial value), that is it is sample pathwise unique.

a A diffusion process with its transition density satisfying the Fokker-Planck
equation is a solution of a SDE.

Q A solution is a weak solution if it is valid for given coefficients, but unspecified
Wiener process, that is its probability law is unique.



Comments on Stratonovich SDEs
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Q Choice of the definition of a stochastic integral
» |eads to distinct solutions for same coefficients
= Solutions (may) behave differently

Q Possibility to switch from one interpretation to the other:
= Jto SDE determines appropriate coefficients for the Fokker-Planck equations
= Stratonovich obeys rules of classical calculus



Next reading groups...

o Who?
o When?
o Where?

O How?
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