Stochastic Differential Equations

Cédric Archambeau

University College, London

Centre for Computational Statistics and Machine Learning

c.archambeau@cs.ucl.ac.uk

Outline

- □ Summary RG I
- □ Theory of Stochastic Differential Equations
 - Linear Stochastic Differential Equations
 - Reducible Stochastic Differential Equations
 - Comments on the types of solutions
 - Weak vs Strong
 - Stratonovich SDEs

Modelling with Stochastic Differential Equations

(Yuan Shen)

Recap 0

□ Continuous time continuous state Markov processes:

$$dx = \alpha(t, x) dt$$

$$dX_t = \alpha(t, X_t) dt$$

$$dX_t = \alpha(t, X_t) dt + \beta(t, X_t) dW_t$$

- Random differential equations:
 - Random coefficients (or random initial values)
 - Continuous and differentiable sample paths
 - Solved sample path by sample path (ODE)
- Stochastic differential equations:
 - Random coefficients
 - Continuous, but non-differentiable sample paths (irregular stochastic processes)
 - Differentials to be interpreted as stochastic integrals!

Recap I

□ A Markov process is a diffusion process if the following limits exist:

$$\lim_{t\downarrow s}rac{\int p(s,x;t,y)\;dy}{t-s}=0,$$
 $\lim_{t\downarrow s}rac{E\{y-x\}}{t-s}=lpha(s,x),$ drift $\lim_{t\downarrow s}rac{E\{(y-x)^2\}}{t-s}=eta^2(s,x).$ diffusion

Standard Wiener process:

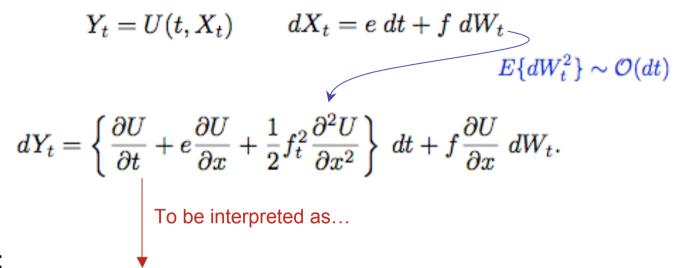
$$W_0 = 0$$
 w.p. 1,
$$E\{W_t\} = 0,$$

$$W_t - W_s \sim \mathcal{N}(0, t - s).$$

- Independent Gaussian increments
- Almost surely continuous (in time) sample paths
- Almost surely non differentiable

Recap II

□ Ito formula (stochastic chain rule):



□ Ito integral:

$$Y_t - Y_{t_0} = \int_{t_0}^t \left\{ \frac{\partial U}{\partial t} + e \frac{\partial U}{\partial x} + \frac{1}{2} f_t^2 \frac{\partial^2 U}{\partial x^2} \right\} dt + \int_{t_0}^t f \frac{\partial U}{\partial x} dW_t \text{ w.p. 1.}$$

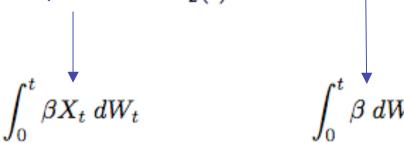
- Martingale property
- Zero-mean random variable
- Equality in mean square sense

Linear stochastic differential equations

$$dX_t = \alpha(t, X_t) dt + \beta(t, X_t) dW_t$$

$$\alpha(t, X_t) = a_1(t)X_t + a_2(t)$$
 $\beta(t, X_t) = b_1(t)X_t + b_2(t)$

- ☐ The linear SDE is autonomous if all coefficients are constants.
- \Box The linear SDE is homogeneous if $a_2(t) = 0$, $b_2(t) = 0$.
- \Box The SDE is linear in the narrow sense (additive noise) if $b_1(t) = 0$.
- \Box The noise is multiplicative if $b_2(t) = 0$.



General solution to a linear SDE in the narrow sense

$$dX_t = \{a_1(t)X_t + a_2(t)\} dt + b_2(t) dW_t$$

□ Fundamental (or homogeneous) solution:

$$d(\ln X_t) = a_1(t) \ dt \ \Rightarrow \ \Phi_{t,t_0} = e^{\int_{t_0}^t a_1(s) \ ds}$$

Applying the Ito formula leads to

$$\left. \begin{array}{l} U(t,x) = \Phi_{t,t_0}^{-1} x \\ Y_t = U(t,X_t) \end{array} \right\} \Rightarrow dY_t = a_2(t) \Phi_{t,t_0}^{-1} \ dt + b_2(t) \Phi_{t,t_0}^{-1} \ dW_t \end{array}$$

The integral form is given by

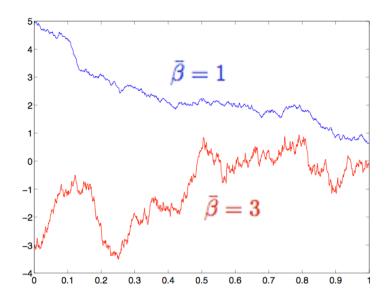
$$X_t = \Phi_{t,t_0} \left\{ X_{t_0} + \int_{t_0}^t a_2(s) \Phi_{s,t_0}^{-1} \ ds + \int_{t_0}^t b_2(s) \Phi_{s,t_0}^{-1} \ dW_s
ight\}$$

Example: Langevin equation

$$dX_t = -\bar{\alpha}X_t dt + \bar{\beta} dW_t$$

□ Autonomous linear SDE in the narrow sense: □

$$\begin{cases} a_1(t) = -\bar{\alpha}, \\ a_2(t) = 0, \\ b_1(t) = 0, \\ b_2(t) = \bar{\beta}. \end{cases}$$



□ Solution:

$$X_t = e^{-\bar{\alpha}(t-t_0)} X_{t_0} + e^{-\bar{\alpha}(t-t_0)} \int_{t_0}^t \bar{\beta} e^{\bar{\alpha}(s-t_0)} dW_s$$

□ Homogeneous Gaussian process

$$oxed{\Box}$$
 Means: $E\{X_t\}=e^{-ar{lpha}t}E\{X_0\}$

 $\begin{array}{ccc} & \text{Variances:} & & \\ & E\{X_t^2\} = e^{-2\bar{\alpha}t}E\{X_0^2\} + \frac{\bar{\beta}^2}{2\bar{\alpha}}(1-e^{-2\bar{\alpha}t}) \\ & \Rightarrow & V\{X_t\} = e^{-2\bar{\alpha}t}V\{X_0\} + \frac{\bar{\beta}^2}{2\bar{\alpha}}(1-e^{-2\bar{\alpha}t}) \end{array}$

General solution to a linear SDE

$$dX_t = \{a_1(t)X_t + a_2(t)\}\ dt + \{b_1(t)X_t + b_2(t)\}\ dW_t$$

□ Fundamental solution:

$$d(\ln X_t) = \left\{ a_1(t) - \frac{1}{2}b_1^2(t) \right\} dt + b_1(t) dW_t$$

$$\Rightarrow \Phi_{t,t_0} = e^{\int_{t_0}^t (a_1(s) - \frac{1}{2}b_1^2(s)) ds + \int_{t_0}^t b_2(s) dW_t}$$

□ Apply Ito formula to compute:

$$d(\Phi_{t,t_0}^{-1})$$
 $dY_t \text{ with } \begin{cases} Y_t = U(t, X_t, \Phi_{t,t_0}^{-1}) \\ U(t, x_1, x_2) = x_1 x_2 \end{cases}$

□ Integral form of the solution:

$$X_t = \Phi_{t,t_0} \left\{ X_{t_0} + \int_{t_0}^t (a_2(s) + b_1(s)b_2(s)) \Phi_{s,t_0}^{-1} \ ds + \int_{t_0}^t b_2(s) \Phi_{s,t_0}^{-1} \ dW_s \right\}$$

Ordinary differential equations for the first two moments

$$dX_t = \{a_1(t)X_t + a_2(t)\} dt + \{b_1(t)X_t + b_2(t)\} dW_t$$

□ ODE of the means:

$$\frac{dm}{dt} = a_1 m + a_2$$

ODE of the second order moment:

$$\frac{dP}{dt} = (2a_1 + b_1^2)P + 2(a_2 + b_1b_2)m + b_2^2$$

Reducible Stochastic Differential Equations

□ Idea:

$$dY_t = \alpha(t, Y_t) dt + \beta(t, Y_t) dW_t$$

$$\downarrow U(t, Y_t) = X_t ?$$

$$dX_t = (a_1(t)X_t + a_2(t)) dt + (b_1(t)X_t + b_2(t)) dW_t$$

□ Conditions:

$$\begin{cases} a_1 U + a_2 = \frac{\partial U}{\partial t} + \alpha \frac{\partial U}{\partial y} + \frac{1}{2} \beta^2 \frac{\partial^2 U}{\partial y^2} \\ b_1 U + b_2 = \beta \frac{\partial U}{\partial y} \end{cases}$$

□ Special cases: see Kloeden & Platen (1999), p.115-116.

Types of solutions

 \Box Under some regularity conditions on α and β , the solution to the SDE

$$dX_t = \alpha(t, X_t) dt + \beta(t, X_t) dW_t$$

is a diffusion process.

- □ A solution is a strong solution if it is valid for each given Wiener process (and initial value), that is it is sample pathwise unique.
- □ A diffusion process with its transition density satisfying the Fokker-Planck equation is a solution of a SDE.
- □ A solution is a weak solution if it is valid for given coefficients, but unspecified
 Wiener process, that is its probability law is unique.

Comments on Stratonovich SDEs

$$f(t,\omega)$$
 0 = t_1 ... t_j t_{j+1} ... t_n = 1 $f^{(n)}(t,\omega) = f(au_j^{(n)},\omega)$ $au_j^{(n)} = (1-\lambda)t_j^{(n)} + \lambda t_{j+1}^{(n)}$

- Choice of the definition of a stochastic integral
 - Leads to distinct solutions for same coefficients
 - Solutions (may) behave differently
- Possibility to switch from one interpretation to the other:
 - Ito SDE determines appropriate coefficients for the Fokker-Planck equations
 - Stratonovich obeys rules of classical calculus

Next reading groups...

- □ Who?
- □ When?
- □ Where?
- □ How?

References

- □ P. Kloeden and E. Platen: *Numerical Solutions to Stochastic Differential Equations*. Springer-Verlag, 1999 (3rd edition).
- □ B. Øksendael: *Stochastic Differential Equations*. Springer-Verlag, 2002 (6th edition).
- Lawrence E. Evans. An Introduction to Stochastic Differential Equations. Lecture notes (Department of Mathematics, UC Berkeley), available from http://math.berkeley.edu/evans/.