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ential Equations by E. Kloeden & E. Platen (1992) [3]. Other good references
are [4] and [2], as well as [1]

1 Elements of Measure and Probability Theory

In this section, we review some important concepts and definitions, which will
be extensively used in the next sections.

Definition 1. A collection A of subsets of ) is a o-algebra if

Qe A, (1)
A°e Aif A€ A, (2)
UAnif A, 4z, A, € A (3)

This means that A is a collection of subsets of Q containing 2 and which
is closed under the set of operations of complementation and countable unions.
Note that this implies that A is also closed under countable intersections.

Definition 2. Let (2, A) be a measurable space, i.e. (2,.4) is an ordered pair
consisting of a non-empty set Q2 and a o-algebra A of subsets of Q. A measure
won (2, A4) is a nonnegative valued set function on A satisfying

wu(®) =0, (4)
(U] =S, ®

for any sequence Ay, As, ..., A,,... € Aand A;NA; =0 fori # j.



From (5) it follows that u(A) < u(B) for all A C B in A. The measure u
is finite if 0 < p(Q) < oo. Hence, it can be normalized to obtain a probability
measure P with P(A) = u(A)/p(2) € [0,1] for all A € A.

An important measure is the Borel measure pup on the o-algebra B of Borel
subsets! of R, which assigns to each finite interval its length. However, the
measure space (R, B, up) is not complete in the sense that there exist subsets B*
of R with B* ¢ B, but B* C B for some B € B with pug(B) = 0. Therefore, we
enlarge the o-algebra B to a o-algebra £ and extend the measure up uniquely
to the measure puy on L so that (R, L, uy) is complete, that is L* € £ with
pur(L*) = 0 whenever L* C L for some L € £ with pu;, = 0. We call £ the
Lebesgue subsets of R and pp, the Lebesque measure.

Definition 3. Let (4, .A;) and (2, A2) be two measurable spaces. The func-
tion f:Qy — Qo is Ay : As-measurable if

fﬁl(Ag) ={w; € Q1 : f(w1) € Ay} € Ay, (6)
for all Ay € As.
This means that the pre-image of any A € Ay is in Aj.

Definition 4. Let  be the sample space, the o-algebra A a collection of
events and P the associated probability measure. We call a triplet (2,4, P) a
probability space if A and P satisfy the following properties:

A°=Q\A, AUB, ANBe Aif A,Be A (7)
0< P(A) <1, P(A°) = 1— P(A), P(0) =0, P(Q) =1, 8)
U, An, N, An € Aif {A,, A, € A}, 9)
P(U, An) =, P(A,)if {A,, A, € Ay and A;N A; = Qforalli £ 4. (10)

The last two properties hold for a countably (finite or infinite) number of
outcomes. For uncountably many basic outcomes we restrict attention to count-
able combinations of natural events, which are subintervals of ) and to which
non-zero probabilities are (possibly) assigned.

When (21, A;, P) is a probability space and (§22,.42) is either (R,B) or
(R, L), we call the measurable function f : Q1 — R a random variable and
denote it usually by X.

2 Stochastic Processes

In this section, we review the general properties of standard stochastic processes
and discuss Markov chains and diffusion processes.

Definition 5. Let T" denote the time set under consideration and let (9, .4, P)
be a common underlying probability space. A stochastic process X = {X;,t €
T} is a function of two variables X : T' x Q — R, where

L Any subset of R generated from countable unions, intersections or complements of the
semi-infinite intervals {x € R : —oco < z < a} is a Borel subset of R.



o X, =X(t,): Q — Ris arandom variable for each t € T,
e X(-,w):T — R is a realization or sample path for each w € Q.

Depending on T being a discrete or a continuous time set, we call the stochas-
tic process a discrete or a continuous time process.

Example. A Gaussian process is a stochastic process for which the probability
law is Gaussian, that is any joint distribution Iy, o, (Xiys Xigy 0, Xg,) 18

1 1t127"',
Gaussian for all t;; € T'.

The time variability of a stochastic process is described by all its conditional
probabilities (see Section 2.1 and 2.2). However, substantial information can
already be gained from by the following quantities:

e The means: p; = E{X;} for each t € T.
e The variances: o = E{(X; — ut)?} for each t € T..

e The (two-time) covariances: Csy = E{(Xs — ps)(X¢ — p¢)} for distinet
time instants s,t € T.

Definition 6. A stochastic process X = {X;,t € T} for which the random
variables X, , — Xy, with j =1,...,n—1 are independent for any finite combi-
nation of time instants t; < ... < ¢, in T is a stochastic process with independent
increments.

Example. A Poisson process is a continuous time stochastic process X =
{X;,t € RT} with (non-overlapping) independent increments for which

XO =0 Ww.p. 1,
E{Xt} = 07
X — Xs ~ 7)(/\<t - 5))7
for all 0 < s <t and where X\ is the intensity parameter.

As a consequence, the means, the variances and the covariances of a Poisson
process are respectively given by u; = At, 07 = At and Cy; = Amin{s, t}.

Property 6.1. A stochastic process is strictly stationary if all its joint dis-
tributions are invariant under time displacement, that is Fy
¢, for all ¢; € T with h > 0.

irt+hotigthseotinth

ti17ti27---7 159 1j+1

This constraint can be relaxed to stationarity with respect to the first and
the second moments only.

Property 6.2. A stochastic process X = {X;,t € RT} is wide-sense stationary
if there exists a constant ;1 € R and a function ¢ : Rt — R, such that

pe =p, of =c(0) and Cyy = c(t—s), (11)

for all s,t € T.



Example. The Ornstein-Uhlenbeck process with parameter v > 0 is a wide-
sense stationary Gaussian process X = {Xy,t € RT} for which

Xo ~ N(07 1)a

E{Xt} = O,

Cyy = e*v\t*S\v
for all s,t € RT.

Definition 7. Let (£, .4, P) be the probability space and {A;,¢ > 0} an increas-
ing family of sub-o-algebras? of A. The stochastic process X = {X;,t € Rt},
with X; being A;-measurable for each t > 0, is a martingale if

E{Xt|"49} = Xsa w.p. 17 (12)
forall 0 < s < t.

Equivalently, we can write E{X; — X |As} = 0. Thus, a stochastic process
is a martingale if the expectation of some future event given the past and the
present is always the same as if given only the present.

When the process X; satisfies the Markov property (see Sections 2.1 and
2.2), we have E{X;|As} = E{X;|X,}.

2.1 Markov chains

We first describe discrete time Markov chains and then generalize to their con-
tinuous time counterpart.

Definition 8. Let X = {x1,...,zn} be the set of a finite number of discrete
states. The discrete time stochastic process X = {X;,t € T} is a discrete time
Markov chain if it satisfies the Markov property, that is

P(XnJrl = {,CJ‘XH = {I,'in) = P(Xn+1 = iCj|X1 =Ty 7Xn = (Ein) (13)
for all possible z;, z;,,...,%;, € X withn =1,2,....

This means that only the present value of X,, is needed to determine the
future value of X,,11.

The entries of the transition matriz P,, €
given by

RV*N of the Markov chain are

pgf’j) — P(Xn+1 = ;(jj|Xn = SL’Z‘) (14)

for i,7 = 1,...,N. We call them the transition probabilities. They satisfy
Z;V p%’” =1 for each i, as X,, 1 can only attain states in A

Let p,, be the column vector of the marginal probabilities P(X,, = z;) for
i=1,...,N. The probability vector p,1; is then given by p,+1 = Pl p,.

2The sequence {A¢,t > 0} is called an increasing family of sub-o-algebras of A if As C Az
for any 0 < s < t. This means that more information becomes available with increasing time.



Property 8.1. A discrete time Markov chain is homogeneous if P,, = P for all
n=12...

As a consequence, the probability vector of a homogenous Markov chain
satisfies ppix = (f_’k)T pn for any k = N\ {0}. The probability distributions
depend only on the time that has elapsed. However, this does not mean that
the Markov chain is strictly stationary. In order to be so, it is also required that
pP» = p for each n = 1,2,..., which implies that the probability distributions
are equal for all times such that p = PTp.

It can be shown that a homogenous Markov chain has at least one stationary
probability vector solution. Therefore, it is sufficient that the initial random
variable X is distributed according to one of its stationary probability vectors
for the Markov chain to be strictly stationary.

Property 8.2. Let X = {x1,...,zn} be the set of discrete states and f: X —
R. The discrete time homogeneous Markov chain X = {X,,,n = 1,2,...} is
ergodic if

N

i D7) =3 s (15)

=1
where p is a stationary probability vector and all x; € X.

This property is an extension of the Law of Large Numbers to stochastic
processes. A sufficient condition for a Markov chain to be ergodic is that all the
components of some k™ power P¥ are nonzero. The same result holds if all the
entries of the unique p are nonzero.

Definition 9. Let X = {z1,...,zn} be the set of a finite number of discrete
states. The stochastic process X = {X;,t € R} is a continuous time Markov
chain if it satisfies the following Markov property:

P(Xt :.’I}j|Xs :J)l) :P(Xt :JJ]“XTI :J}il,...,Xrn :.’L‘Z‘n,XS :xz) (16)
for0<rm <...<rm<s<tandall z;,..., 2,2, €X.

The entries of the transition matriz Ps, € RV*N and the probability vectors
are now respectively given by pgf;]) = P(X; = zj|X, = z;) and p; = P],p;
for any 0 < s < t. Furthermore, the transition matrices satisfy the relationship
P,. =P, Ps;forany 0 <r <s<t.

Property 9.1. If all its transition matrices depend only on the time differences,
then the continuous time Markov chain is homogeneous and we write P, =
Pyt s =Py forany 0 < s <.

Hence, we have Py, s = PP, = PP, for all s,t > 0.



Example. The Poisson process is a continuous time homogenous Markov chain
on the countably infinite state space N. Its transition matriz is given by

(A1) Y

P, =
m!

: (17)

where m € N.

Indeed, invoking the independent increments of the Poisson process we get

P(Xs = msaXt = mt) = P(Xs = mstt - Xs =my _ms)
= P(X, =ms)P(Xy — Xg =my —my)
AT g —As AT (t — S)mt_ms —A(t—s)

- mg! € (my — my)! €

The second factor on the right hand side corresponds to the transition prob-
ability P(X; = m¢Xs = ms) for mg < my;. Hence, the Poisson process is
homogeneous since

AR)™  _\n

P(Xt+h =ms + m|Xt = mt) = ml e s

where h > 0.

Property 9.2. Let f : X — R. The continuous time homogeneous Markov
chain X = {X;,t € R"} is ergodic if

L _ 2500
! / S = f Gy (18)

where p is a stationary probability vector and all x; € X.

Definition 10. The intensity matriz A € RV>*YN of a homogeneous continuous
time Markov chain is defined as follows:

. pgi’j) e . .
Q) — lim; o = if i # 7, (19)
= (i24)
hmti,o Py 1_1 le:j

Theorem 1. The homogeneous continuous time Markov chain X = {X;,t €
R*} is completely characterized by the initial probability vector pp and its
intensity matrix A € RV*N_ Furthermore, if all the diagonal elements of A are
finite, then the transition probabilities satisfy the Kolmogorov forward equation

dPy
— —-P,A=0 20
dt t ’ ( )
and the Kolmogorov backward equation
dPy T
— —A'P;=0. 21
> t (21)



2.2 Diffusion processes

Diffusion processes are an important class of continuous time continuous state
Markov processes, that is X C R.

Definition 11. The stochastic process X = {X;,t € RT} is a (continuous time
continuous state) Markov process if it satisfies the following Markov property:

P(X: € B|Xs=x)=P(X: € Bl X,, =x1,..., Xy, =Zn, Xs =2) (22)

for all Borel subsets B C R, time instants 0 < r; < ... <r, < s <t and all
Z1,...,ZTn, T € R for which the conditional probabilities are defined.

For fixed s,z and t the transition probability P(X; € B|Xs = z) is a prob-
ability measure on the o-algebra B of Borel subsets of R such that

P(X, € B|X; =1x) = / p(s,x5t,y) dy (23)
B
for all B € B. The quantity p(s,z;t,-) is the transition density. It plays a
similar role as the transition matrix in Markov chains.
From the Markov property, it follows that

o0

poszit) = [ plsairap(r st da (24)
— 00

for all s < 7 < ¢t and z,y € R. This equation is known as the Chapman-

Kolmogorov equation.

Property 11.1. If all its transition densities depend only on the time dif-
ferences, then the Markov process is homogeneous and we write p(s,x;t,y) =
p(0,z;t — s,y) = p(a;t — s,y) for any 0 < s < ¢.

Example. The transition probability of the Ornstein-Uhlenbeck process with
parameter v > 0 is given by

o 1 (y—ze =)’
p(s,x;t,y) = (= ) exp {—2 (1 _ 6_27@_5)) (25)

for all 0 < s <t. Hence, it is a homogeneous Markov process.

Property 11.2. Let f : R — R be a bounded measurable function. The
Markov process X = {X;,t € R} is ergodic if

1T APV
Jim o [ fx = [ st dy (26)
— 00 0 — 00
where p(y) = ffooo p(s,x;t,y)p(x)dx is a stationary probability density.

This means that the time average limit coincide with the spatial average. In
practice, this is often difficult to verify.



Definition 12. A Markov process X = {X;,t € R*} is a diffusion process if
the following limits exist for all € > 0, s > 0 and =z € R:

1
li ot dy =20 27
tlglt_s/yzl>ep(s7x, ,y) dy =0, (27)
1
lim / (y — 2)p(s, 23 t,y) dy = als, ). (28)
tlst— s ly—z|<e
. 1
lim / (y — 2)p(s, s t,) dy = (5, ), (20)
tlst— s ly—z|<e

where (s, z) is the drift and ((s,z) is the diffusion coefficient at time s and
position .

In other words, condition (27) prevents the diffusion process from having in-
stantaneous jumps. From (28) and (29) one can see that a(s,z) and 3%(s, x) are
respectively the instantaneous rate of change of the mean and the instantaneous
rate of change of the squared fluctuations of the process, given that X, = z.

Example. The Ornstein-Uhlenbeck process is a diffusion process with drift
a(s,x) = —yx and diffusion coefficient B(s,x) = \/27.

To proof this we first note that p(s, z;t,y) = N (ylze 7=, (1 — e=2(t=9)))
for any t > s. Therefore, we have

E — 1 — e (t=s)
a(zx, s) :limM =z lim—— = —x 7,
tls t—s tls t—s
E{y?} - 2E 2
ﬁ2<$, S) — lim {y } {y}l‘ +
tls t—s
1— —2v(t—s) 1— —v(t—s))2
= lim{ ¢ + 22 (1—e ) }
tls t—s t—s
=2y+2?-0.

Diffusion processes are almost surely continuous functions of time, but they
need not to be differentiable. Without going into the mathematical details,
the continuity of a stochastic process can be defined in terms of continuity
with probability one, mean square continuity and continuity in probability or
distribution (see for example [3]).

Another interesting criterion is Kolmogorov’s continuity criterion, which
states that a continuous time stochastic process X = {X;,¢ € T} has con-
tinuous sample paths if there exists a, b, ¢, h > 0 such that

B{|X, — X,|*} < c|t —s|*T? (30)
for all s,t € T and |t — s| < h.

Theorem 2. Let the stochastic process X = {X;,t € RT} be a diffusion
process for which o and 8 are moderately smooth. The forward evolution of its



transition density p(s,x;t,y) is given by the Kolmogorov forward equation (also
known as the Fokker-Planck equation)

dp

N B e G (31)

for a fixed initial state (s, x). The backward evolution of the transition density
p(s,x;t,y) is given by the Kolmogorov backward equation

Op Op o2
gm(sx)afjt 52( )al 0, (32)

for a fixed final state (¢,y).

A rough proof of (32) is the following. Consider the approximate time dis-
crete continuous state process with two equally probable jumps from (s, z) to
(s+ As, z+ aAs+ 3v/As), which is consistent with (28) and (29). The approx-
imate transition probability is then given by

1 —
ﬁ(S,.’E,t7y):§ﬁ(5+A8,.’E-’—OéAS—f—ﬂ As7t7y)

1
5 p(s+As, v+ alAs—[FVAs; L, y).

Taking Taylor expansions up to the first order in As about (s, x;t,y) leads to

op op 1 _,0%p
0= LAstallas+ o020 LAs+0((a8)72).

0s 8+a8x S+25 0x? st (As)
Since the discrete time process converges in distribution to the diffusion process,
we obtain the backward Kolmogorov equation when As — 0.

Example. The Kolmogorov foward and the backward equations for the Ornstein-
Uhlenbeck process with parameter v > 0 are respectively given by

dp 0%p

5 78 {yp} — Y9 =0, (33)
2

op 00 0P, (34)

9s oz Vo2

2.3 Wiener processes

The Wiener process was proposed by Wiener as mathematical description of
Brownian motion. This physical process characterizes the erratic motion (i.e.
diffusion) of a grain pollen on a water surface due to the fact that is continually
bombarded by water molecules. The resulting motion can be viewed as a scaled
random walk on any finite time interval and is almost surely continuous, w.p. 1.



Definition 13. A standard Wiener process is a continuous time Gaussian
Markov process W = {W;,t € RT} with (non-overlapping) independent in-
crements for which
Wo =0 W.p. ].,
E{W;} =0,
Wt —WS NN(O,t—S),
forall0 <s<t.
Its covariance is given by Cs; = min{s,¢}. Indeed, if 0 < s < ¢, then

Cop = E{(Wy — 1) (W — ps) }
= E{WtWS}
= E{(W; — W, + W)W}
= BE{W; = W} E{W,} + E{W?}
=0-0+s.

Hence, it is not a wide-sense stationary process. However, it is a homogeneous
Markov process since its transition probability is given by

Lo 1 (y —x)°
p(s,x;t,y) = m exp {_2(15—5)} (35)

Although the sample paths of Wiener processes are almost surely continuous
functions of time (the Kolmogorov continuity criterion (30) is satisfied for a = 4,
b =1 and ¢ = 3), they are almost surely nowhere differentiable. Consider the

partition of a bounded time interval [s, ] into subintervals [r\", T,Ei)l] of equal

length (¢t — s)/2™, where T,En) =s+k(t—s)/2" for k=0,1,...,2" — 1. It can
be shown [3, p. 72] that
2m 1 )
lim Z (WT(”) (W) =W _m (w)) =t—s, w.p.l1,
n— 00 k1 k

where W, (w) is a sample path of the standard Wiener process W = {W,., 7 €
[s,t]} for any w € Q. Hence,
—s<li n - n
t—s< hgl_S)gop pemax | ’WTIi+)1 (w) WT;E >(w){

2" 1
X n - n .
Z |WT}§+)1 (w) WT}i )(w)|
k=0
(Note that limsup is the limit superior or supremum limit, that is the supre-

mum?® of all the limit points.) From the sample path continuity, we have

pcnax | ‘WTlii)l (w) — Wr,im (W) =0, w.p.lasn — oo

3For S C T, the supremum of S is the least element of T, which is greater or equal to all
elements of S.
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and therefore

2" -1
Z ’WTW (W) =W _m (w)’ — 00, w.p.1asn — oo.
k=0 k+1 k

As a consequence, the sample paths do, almost surely, not have bounded varia-
tion on [s,?] and cannot be differentiated.

The standard Wiener process is also a diffusion process with drift a(s,z) =0
and diffusion coefficient (s, z) = 1. Indeed, we have

E _
a(z,s) = lim Byt - =0,
tls t—s
. B{y*} - 2E{y}x + 2> t—s
2 _ _ _
ﬁ(l‘,s)—ltlfIsl P —ltlinsl t—s+0 =1
Hence, the Kolmogorov forward and backward equations are given by
op 1%
£ 22 =0, 36
ot 20y (36)
op 108%
s + 3922 = 0. (37)

Directly evaluating the partial derivatives of the transition density leads to the
same results.

Note finally that the Wiener process W = {W;,t € RT} is a martingale.
Since E{W; — W|Ws} = 0, w.p. 1, and E{W,|Ws} = W, w.p. 1, we have
E{W{W4} = Wy, w.p. 1.

2.4 The Brownian Bridge

Definition 14. Let W : RT x Q@ — R be a standard Wiener process. The
(0,2:T,y)

Brownian bridge By ™ is a stochastic process defined sample pathwise such
that
3 t
BT (W) =2+ Wi(w) = (Wr(w) —y + o) (38)
for0 <t<T.

This means that the Brownian bridge is a Wiener process for which the
sample paths all start at Bt(o’x;T’y)(w) =z € R and pass through a given point
BT () = y € R at a later time T for all w € Q.

Property 14.1. A Brownian bridge Bt(07z;T’y) is a Gaussian process with means
and covariances respectively given by
t
N’t:xff(xfy)a (39)
. st
Cst = min{s,t} — ik (40)

for 0 <s,t<T.

11



2.5 White Noise

Definition 15. The power spectral density of a (wide-sense) stationary process
X = {X;,t € R} is defined as the Fourier transform of its covariance:

S(w) = / Cre™ %t dt, (41)

where w = 27 f and Cy; = C.

The spectral density measures the power per unit frequency at frequency
f and the variance of the process can be interpreted as the average power (or

energy):
Var{X;} = Cy = %/ S(w) dw. (42)

Note that the covariance Cy = % / fooo e7“'S(w) dw is the inverse Fourier trans-
form of the spectral density.

Definition 16. Gaussian white noise is a zero-mean wide-sense stationary pro-
cess with constant nonzero spectral density S(w) = Sp for all w € R.

Hence, its covariances satisfy C; = Spd(t) for all ¢ € RT. Without loss of
generality, if we assume that Sy = 1, it can be shown that Gaussian white noise
corresponds to the following limit process:

hm Xth = 7Wt+h _ Wt7

h—0 h (43)

where W = {W;,t € RT}. Hence, it is the derivative of the Wiener process.
However, the sample paths of a Wiener process are not differentiable anywhere.
Therefore, Gaussian white noise cannot be realized physically, but can be ap-
proached by allowing a broad banded spectrum (that is let h grow).

A similar result holds for the Ornstein-Uhlenbeck process with v — oco.

2.6 Multivariate Diffusion Processes

See for example [3, p. 68].

3 Ito Stochastic Calculus

The ordinary differential equation dx/dt = a(t, ) can be viewed as a degenerate
form a stochastic differential equation as no randomness is involved. It can be
written in symbolic differential form

de = a(t,z) dt (44)

12



or as an integral equation

2(t) = 7o + / o(s, 3(s)) ds (45)

to

where x(t;tg, xo) is a solution satisfying the initial condition xq = z(tg). For
some regularity conditions on «, this solution is unique, which means that the
future is completely defined by the present given the initial condition.

The symbolic differential form of a stochastic differential equation is written
as follows:

dXy = a(t, Xy) dt + B(t, Xi)& dt (46)

where X = {X;,t € RT} is a diffusion process and & ~ N(0,1) for each ¢, i.e.
it is a Gaussian process. In particular, (46) is called the Langevin equation if
a(t,X;) = —aX; and B(t, X;) = 3 for constant & and 3.

This symbolic differential can be interpreted as the integral equation along
a sample path

t t
Xi(w) = X3y (w) —|—/ a(s, Xs(w)) ds —|—/ O(s, Xs(w))&s(w) ds (47)
to to
for each w € ). Now, for the case where ¢« = 0 and 8 = 1, we see that & should
be the derivative of Wiener process W; = X, i.e it is Gaussian white noise.

This suggests that (47) can be written as follows:

X, (w) = Xip () + / als, Xo(@) ds+ [ (s, Xo(w)) dW,(w).  (48)

to tO

The problem with this formulation is that the Wiener process W; is (almost
surely) nowhere differentiable such that the white noise process & does not
exist as a conventional function of ¢. As a result, the second integral in (48)
cannot be understood as an ordinary (Riemann or Lebesgue) integral. Worse,
it is not a Riemann-Stieltjes integral since the continuous sample paths of a
Wiener process are not of bounded variation for each sample path. Hence, it is
at this point that Ito’s stochastic integral comes into play!

3.1 Ito Stochastic Integral

In this section, we consider a probability space (2,4, P), a Wiener process
W = {W;,t € R*} and an increasing family {A:, ¢ > 0} of sub-o-algebras of A
such that W, is A;-measurable for each ¢ > 0 and with

E{Wi A} =0 and E{W;—-W;|A;}=0, w.p.1,

for 0 < s <t _
Ito’s starting point is the following. For constant (3(t,z) = 3 the second
integral in (48) is expected to be equal to S{W;(w) — Wy, (w)}.

13



We consider the integral of the random function f : T x £ — R on the unit
time interval:

nmm=éfmwmmm. (49)

First, if the function f is a nonrandom step function, that is f(¢,w) = f; on
tj <t< tj+1 fOI‘jZ 1,2,....n—1with0 =1t <ty <...<t, =1, then we
should obviously have

1) = 32 5{Wepr @) = Wy @), wp. 1 (50

Note that this integral is a random variable with zero mean as it is a sum of
random variables with zero mean. Furthermore, we have the following result

n—1
E{I[f](w)} = Z f7 i — t5). (51)

Second, if the function f is a random step function, that is f(t,w) = f;(w)
ont; <t<tjpiforj=1,2,...,n—1witht; <t2 <...<t,is .At].—measurable
and mean square integrable over 2, that is E{ff} <ooforj=1,2,...,n. The
stochastic integral I[f](w) is defined as follows:

n—1
I[.f] (w) = Z fj (w){Wtj+1(w) - Wtj (w)}7 W.p. 1. (52)

Lemma. For any a,b € R and any random step function f,g such that f;, g;
on tj §t<tj+1 fOI‘j = 1,2,...,n71With0:t1 <ty <...<t,=1is .Atj-
measurable and mean square integrable, the stochastic integral (52) satisfies the
following properties:

I[f] is A; —measurable,

E{I[f]} =0,

E{I*[f]} = S, B{f7 Yt — 1)),

Ilaf + bg] = aI[f] + bI[g], w.p.1.

53
54

95

(
(
(
(56

)
)
)
)

Since f; is A;;-measurable and {W;,,, =W, } is Ay, -measurable, each term
fiiWi; ;o — Wi, } is Ay, -measurable and thus A;-measurable. Hence, I[f] is
Aj-measurable.

From the Cauchy-Schwarz inequality* and the fact that each term in (52) is
mean-squre integrable, it follows that I[f] is integrable. Hence, I[f](w) is again

4The Cauchy-Schwarz inequality states that |f£ fg dm|2 <] f(f f? da| f: g? dz|.
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a zero mean random variable:

B = Y BUWe o, W)} = 30 BB, — Wyl 4y} =0

Furthermore, I[f] is mean square integrable:

B = 3 BUDE(W, ., — WP = S B2 (e — 1),

j=1 j=1

Finally, af + bg is a step random step function for any a,b € R. Therefore,
we obtain (56), w.p. 1, after algebraic rearrangement.

Third, if the (continuous) function f is a general integrand such that it
f(t,-) is A-measurable and mean square integrable then we define the stochas-
tic integral I[f] as the limit of integrals I[f(™] of random step functions f(*)
converging to f. The problem is thus to characterize the limit of the following
finite sums:

n—1

I[f(”)](w) _ Z f(t;n),w){wtj+1(w) - Wy, (w)}, wp. 1. (57)

Jj=1

where f(V(t,w) = f(tg-n),w) ont; <t < tjpq forj =1,2,...,n—1 with
t1 <ty <...<tp From (55), we get

E{I*[f™)]} ZE{f2 (™ ) tj1 — t)).

This converges to the Riemann integral fol E{f*(s,-)} ds for n — oo. This
result, along with the well-behaved mean square property of the Wiener process,
ie. E{(W, — Wy)?} =t — s, suggests defining the stochastic integral in terms
of mean square convergence.

Theorem 3. The [to (stochastic) integral I[f] of a function f: T x Q — R is
the (unique) mean square limit of sequences I[f(™)] for any sequence of random
step functions f(™ converging® to f:

n—1

I[f)(w )—mshme (W) W, () = Wi, (@)}, wop. 1. (59)

n—oo

5In particular, we call the sequence f(") mean square convergent to f if

B{ [0 ) = fr?ar} — 0, torn—oc, (58)
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The properties (53-56) still apply, but we write E{I?[f]} = fol E{f3(t,")} dt
for (56) and call it the Ito isometry (on the unit time interval).

Similarly, the time-dependent Ito integral is a random variable defined on
any interval [to, t]:

X (w) = /t F(s,w) dW.(w), (60)

which is A;-measurable and mean square integrable. From the independence of
non-overlapping increments of a Wiener process, we have E{X; — X;|As} =0,
w.p. 1, for any ty < s < t. Hence, the process X; is a martingale.

As the Riemann and the Riemann-Stieltjes integrals, (60) satisfies conven-
tional properties such as the linearity property and the additivity property.
However, it has also the unusual property that

/ Ws(w) dWs(w) = %Wf(w) - %t, w.p. 1, (61)
0

where Wy = 0, w.p. 1. Note that this expression follows from the fact that

Zj Wtj (Wtj+1 - Wtj) = %WE - %Zj<Wtj+1 - Wt1)27 (62)
where the second term tends to t in mean square sense.
By contrast, standard non-stochastic calculus would give fot w(s) dw(s) =

1w?(t) if w(0) = 0.

3.2 The Ito Formula

The main advantage of the Ito stochastic integral is the martingale property.
However, a consequence is that stochastic differentials, which are interpreted as
stochastic integrals, do not follow the chain rule of classical calculus! Roughly
speaking, an additional term is appearing due to the fact that dW}? is equal to
dt in the mean square sense.

Consider the stochastic process Y = {Y; = U(t,Xy),t > 0} with U(¢,z)
having continuous second order partial derivatives.

If X; were continuously differentiable, the chain rule of classical calculus
would give the following expression:

dYy; = 88—2] dt + % dXy. (63)

This follows from a Taylor expansion of U in AY; and discarding the second
and higher order terms in At.

When X; is a process of the form (60), we get (with equality interpreted in
the mean square sense)

C(OU 1 ,,0%U oU
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where dX; = f dW; is the symbolic differential form of (60). The additional
term is due to the fact that E{dX?} = E{f?}dt gives rise to an additional term
of the first order in At of the Taylor expansion for U:

ou . oU U, U 82

Theorem 4. Consider the following general stochastic differential:

t t

Xy(w) — Xa(w) = / e(u,w) du + / Flu,w) dWa (). (65)
Let Y; = U(t, X;) with U having continuous partial derivatives %—lt], %—g and
%1[{ The Ito formula is the following stochastic chain rule:

1 , 02U tou

The partial derivatives of U are evaluated at (u, X,).

From the Ito formula, one can recover (61). For X; = W; and u(z) = =™
we have

(m

m— -1 m—
AW™) = mw ™ aw, + %)Wt( 2 gt (67)

In the special case m = 2, this reads d(W?) = 2W, dW, + dt, which leads to
¢
WE—WE:Q/ Wy dWy + (t — s). (68)
Hence, we recover fot W, dW; = %Wf — %t for s = 0.

3.3 Multivariate case

See [3, p. 97].

A Probability Distributions

Definition 17. The probability density function of the Poisson distribution
with parameter A > 0 is defined as follows:

A'VL B
P(n|A) = ) e, (69)

for n € N. Note that E{n} = X\ and E{(n — E{n})?} =\

Definition 18. The probability density function of the multivariate Gaussian
distribution with mean vector p and covariance matrix 3 is given by

N (x|, ) = (2m)PP2[z| 12 g3 bem = 0o, (70)

where ¥ € RP*P is symmetric and positive definite.
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